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Preface

Some six years ago, Vinzenzo de Risi approached me (7 November 2016, to be
precise), inviting me to write a short volume for a new series at Birkhduser which he
edited. It was supposed to be based on some as yet unpublished paper of mine and be
between 70 and 150 pages.

That should be quite easy — so thought Vincenzo and so thought I. We agreed on
a volume dealing with the Italian abbacus tradition. That should still be easy, and the
material I had at hand still seemed to fit the planned length.

How naive I was! One might as well have sent an alcoholic well provided with money
to the supermarket expecting him to buy nothing but bread. Like Oscar Wilde I can resist
anything but temptations, and in my case sources took the place of alcoholic beverages.
Having no predefined deadline I dived into Leonardo Fibonacci’s Liber abbaci, Benedetto
da Firenze’s Praticha d’arismetricha, Luca Pacioli’s Summa and many other works, all
of which I had worked on at earlier occasions but always from some particular and partial
perspective. Obviously, there was more to say about all of them, but saying it presupposed
reading and analyzing, and writing the outcome asked for the many pages that follow —
and a cobweb of more than 600 cross-references.

Nobody lives eternally; so, I did have an implicit though not sharply defined deadline.
Somehow suspecting that I decided from an early moment to include normal abbacus
geometry but to disregard the large vernacular translations of Fibonacci’s Pratica
geometrie. Figures at the periphery of abbacus culture — Nicolas Chuquet, for one, in spite
of his impressive work — were left at the periphery, or beyond the horizon.

I started in earnest in early October 2019. My thanks to Vincenzo for having kept
me busy during the Covid-19 pandemic!

Technically: All translations into English from original sources or secondary literature
are mine where nothing else is stated. When translating, I try to keep as close to the
original text as possible, often at the cost of stylistic elegance (with the exception that
fractions will be written with a slash, whereas the sources invariably use a horizontal
fraction line); terms and phrases in the original language may be inserted in square
brackets. Illustrations taken from manuscripts are redrawn for clarity, not reproduced
directly.

When an edition of a manuscript exists, my references will be to this edition; however,
if T have had access to the manuscript, I have controlled critical points.

References are made according to the author/editor-date system, in the format [N
N year], or alternatively “NN ... [year]”; for works that cannot be ascribed to an author
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or an editor, [7Zitle] is used.

My thanks to Fabio Acerbi, Ahmed Djebbar, Enrico Giusti and Ulrich Rebstock for
interaction along the road.
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Introduction

As 1 was around fourteen years of age, my Danish school arithmetic taught topics
like these:

— Applied proportionality (no longer called the “rule of three”, but a few decades before
it had been reguladetri );

— alligation and fineness of bullion;

— the partnership rule (proportional sharing);

— simple and compound interest;

— bills of exchange;

— discounting;

— and bonds and stocks.

At the time I probably understood vaguely that this was the mathematics of the financial

infrastructure of capitalism (not of capitalism fout court, it goes by itself) — around the

same time I read the Communist Manifesto. What 1 did not understand, and what my

teacher probably did not know, was that all of this, bonds and stocks excepted, belonged

within a tradition reaching back to the Italian 13th—14th century — that is, to the beginnings

of Italian commercial capitalism, and to the Italian abbacus school and its mathematics.

The preceding line invites two misunderstandings, which have to be cleared away.
Firstly, the abbacus school did not thrive in the whole of Italy but between the Genua-
Milan-Venice arc to the north and Umbria to the south. Secondly, much more important,
“abbacus” has only the etymology in common with “abacus”. The abbacus school taught
calculation with Hindu-Arabic numerals (what we mostly speak of as “Arabic numerals”
today) on paper, and never made use of a reckoning board. Those of its students who
later as bank employees had to make use of a calculating board for accounting purposes
were trained in that during their apprenticeship, following after their frequentation of the
abbacus school. “Abbacus” (abbaco) can be understood approximately as “practical
calculation” — but of the particular kind which was taught in the school.

In any case, in Western, Central and Northern Europe, from around 1300 and until
around 1960, those who learned mathematics of the abbacus kind constituted the majority
of those who were at all subjected to systematic mathematics teaching. In this sense, we
may say that abbacus mathematics and its direct descendants were highly visible for two
thirds of a millennium — all who were professionally engaged in commercial activities
knew at least its basic level.

Yet in the historiography of mathematics, abbacus mathematics as a specific
undertaking went completely unnoticed until the mid-20th century; at most it was subsumed
under the general heading “practical arithmetic” (and its geometry under that of “practical



geometry”).

Change was announced — but hardly more than announced — by Amintore Fanfani,
an economic historian and leading Christian Democratic politician (six times Italian prime
minister), in a lecture held at Université de Liege in 1950 and published in [1951]. As
already Henri Pirenne [1929] had done with emphasis on north-western Europe, Fanfani
contradicted Werner Sombart’s opinion [1919: 1.1, 296-298] that late medieval merchants
were almost illiterate and hardly able to calculate (Sombart, it is true, admits that the Italian
situation was not quite as gloomy). Accordingly, Fanfani’s main interest was the abbacus
school system; but he also referred to specific “abbacus books”, which he had obviously
inspected.

Louis Karpinski had published a couple of descriptions of abbacus treatises in [1910]
and [1929], yet without seeing them as representatives of a particular genre; editions of
full texts only began in the 1960s with Gino Arrighi’s work, much of which will be drawn
upon below. In the late 1970s, Warren Van Egmond undertook to produce a complete
catalogue (published in [1980]) of all abbacus manuscripts he could trace in Italian
libraries — still almost complete four decades later. By then and thereby, the existence
of the particular abbacus tradition was finally established beyond doubt.

The continuation of this tradition (as we shall see, a reconstructing adoption) by the
German Rechenmeister and other teachers of practical arithmetic, as well as its impact
on writers such as Luca Pacioli, Michael Stifel, Johann Scheubel, Nicolo Tartaglia and
Rafael Bombelli was also recognized. Lacking, however, and on the whole lacking to
this day, is understanding of how one particular aspect of the abbacus tradition — namely
its algebra — through these contributed to the redefinition of higher-level mathematics
from the 17th century onward.!"

Outside that restricted part of the scholarly community which reads Italian, knowledge
about the abbacus tradition in general is also missing to this day. Only two abbacus texts
have been translated into any language. The short Larte de labbaco or “Treviso
Arithmetic”, originally printed in 1478, was translated into English by David Eugene Smith
(published in [Swetz 1987]); and the Vatican version of Jacopo da Firenze’s Tractatus
algorismi from 1307 was translated into English by myself [Hgyrup 2007].

The primary purpose of the present volume is to present a fairly detailed portrait of
the abbacus tradition as it developed historically; as will be argued, Fibonacci was much

' “Algebra” is a notoriously ambiguous term — its reference constitutes, so to speak, a Wittgensteinian
“natural family”. Wherever “algebra” is spoken of in what follows, equation algebra is meant. There
is no reason to get lost in discussions about “geometric” or “Babylonian algebra”; neither is relevant.
Nor do group theory and its further developments enter in any way, not even as a matter of fact
the “theory” of equation algebra. In the present context, “algebra” is the technique of equation
algebra. Even when “our algebra” is spoken about, it is this technique that is referred to — “the
art of x and y” of school mathematics, so to speak,.
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less important for the emergence of the this tradition than mostly assumed — but since
his importance in broadly taken for granted, that argument needs to be made, for which
reason Fibonacci’s Liber abbaci is also described and analyzed in some depth. A secondary
purpose is to show (in less depth) how the adoption of abbacus mathematics in German
lands gave rise to the creation of a different tradition. The very end of the book investigates
that interplay of abbacus algebra with other intellectual currents which turned the whole
mathematical undertaking upside-down in the 17th century.

Fibonacci wrote before the emergence of the abbacus school, but the discussion does
not start with him. Chapter I gives a short introduction to the abbacus school institution
and to its curriculum, and chapter II presents the mathematics that it taught through
analysis of a particular abbacus book — the revised version of Jacopo da Firenze’s Tractatus
algorismi, which adapted it to the curriculum that was taught. The Liber abbaci is dealt
with in chapter III, while the stages of the development of the abbacus tradition are
described and analyzed in chapter I'V. Chapter V delineates what happened to the abbacus
tradition, on one hand in 16th-century Italy when it went into print, on the other when
it was adopted, adapted and transformed in the German area from the mid-15th century
onward. The first section of the “double conclusion” of chapter VI returns to the abbacus
tradition of the 14th and 15th centuries and portrays it as a particular mathematical practice;
the second section looks at the process in which it contributed, in interaction with other
forces, to that “analytical” transformation of European mathematics that took place after
1600.



I. The home of abbacus mathematics: the abbacus school

The abbacus school was a school type that thrived between Genua-Milan-Venice to
the north and Umbria to the south. The earliest evidence for its existence is truly
accidental: in 1265, a certain Pietro characterized as abbacus master appears as a witness
in a contract in Bologna. Within the next decades, however, documents appear confirming
the existence of abbacus schools financed by the city communes;™® such schools remained
in existence until well into the 16th century, after which they seem to have merged with
the elementary schools that taught reading and writing [Grendler 1989: 22f]. Big towns
like Florence and Venice also allowed a number of private abbacus schools to flourish.”

Abbacus teaching was a craft, and the trade was often handed down from father to
son; for instance, the Bologna master serving as witness in 1265 had a son who wrote
his testament in 1279 and also identified himself as an abbacus master. The students were
mainly artisans’ and merchants’ sons, who frequented the school for 12 to 2 years, as
a rule around the age of 11 or 12. Even those of higher social standing, however, often
frequented the school. So did Niccoldo Machiavelli, a lawyer’s son, in 1480 (he was born
in 1469) [Black 2007: 379], and in 1479 a brassworker wrote to Lorenzo de’ Medici il
magnifico, the de facto ruler of Florence, that he had gone to the abbacus school together
with Lorenzo’s father Piero [Goldthwaite 2009: 552].

We have some numbers. Writing at a few years’ distance about the Florentine situation
as it had looked in the years 1336-38, Giovanni Villani [1823: VI, 193f] states in his
Cronica that some 5500 to 6000 children were born each year in the city, and that 8000
to 10000 went to school learning to read; taking child mortality in account, this means
that at least half of all children, boys and girls together, learned to read and write (which
explains why vernacular writing matured in Italy well before it did in the rest of Europe).
Six abbacus schools taught 1000 to 1200 boys — which, if true, means that at least 20%
of all boys went through an abbacus school. Grendler [1989: 72] argues that real numbers
must have been considerable lower, from the premise that each school will have had a
single teacher with no assistants. A Florentine contract (on which below, p. 5) shows that
this premise was not always true. Moreover, a probably Florentine manuscript (Vatican,
Vat. lat. 10488), written in 1424 by several hands (see below, note 284) looks as if it
is the product of the collaboration of a master and several assistants, or between assistants
alone: hands may change in the middle of a page, and occasionally those who write express

?Elisabetta Ulivi [2002a: 124-126] offers a convenient summary.

3 For Florence, see [Ulivi 2004].
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their own opinion about how matters should be treated, showing that they were not
professional scribes. Data from 1480, finally, indicate that more than one third of Florentine
boys aged between 6 and 14 went to school (and remember that only those who went
to a grammar school continued beyond the age of 12). All in all, Villani’s numbers seem
reliable. We should not believe, however, that the situation in average cities was similar
to that of Florence (that in the countryside even of Florence certainly was not).

We have two sources specifying the curriculum taught in the school. One [ed. Arrighi
1967c], from the first half of the 15th century, sets out how the abbacus is “taught in the
Pisa way”.

At first the boy is taught how to write the digits from 9 to 1 (an order that still reflects
Arabic writing from right to left as interpreted in an ambience that wrote left-to-right),
then the place-value system and the use of the multiplication table (learned by heart),
and squares until 99x99 (to be calculated) as well as further multiplications of two-digit
numbers. Next follow monetary and metrological conversions and shortcuts, and in many
steps more advanced multiplications and divisions and the computation with fractions.

This is followed by commercial calculation: simple and compound interest and
reduction to interest per day; the rule of three, with extension to partnership; area
calculations; discounting, with simple and compound interest and per day; alloying; and
finally the single false position.” From multiplications beyond the 10x10-table everything
is trained as problems done as daily homework.

The other specification of the curriculum is a Florentine contract [ed. Goldthwaite

*“Single” because there is also a “double false position”. We may exemplify by the corresponding
ways to solve the problem “a quantity, with '/, of it added to it, gives 40”.

We may try the convenient guess or “position” that the number is 6. Then the total will be
7, and not 40 as it should be. Therefore, the true value must be */, times as large, that is, */,-6 =
34%/,. In the abbacus books, the last step would instead be made by means of the rule of three, “to
the false value 7 corresponds the true value 40; what corresponds to the false value 6?”, which
leads to the formula /..

The double false position normally served for more complex (though still linear) problems,
but it can also be used in the present case. One position may be that the quantity is 6; that still
yields 7 for the total. Alternatively, we may try 60, which yields 70 for the total. The former value
falls 33 short of what we need, the latter exceeds by 30. The texts never explain the basis of the
method, but the trick is to “mix” the two positions in such a way that the errors cancel out. We
might take the former guess 30 times, this would give a total deficiency of 30-33; and the second
guess 33 times, that would give a total excess of 33-30. But we should only make 1 guess, not
30+33 = 63 guesses, and therefore we have to divide by 63. The total true value is therefore
0633607 o0 = 2%, = L. If both guesses had been deficient or both in excess, we would have
had to use subtraction.

The principle of the double false position is the same as the “alligation principle”: if we are
to mix gold of 15 carats and gold of 22 carats in such relative quantities that the mixture will be
of 20 carats we have to take 2 measures of 15 carats and 5 measures of 22 carats — and in order
to get only one measure, divide both by 2+5.



1972: 421-425], signed in 1519. It
states what the assistant signing the
contract has to teach: multiplication,

> || !

division and fractions, as in the Pisa
document; finally, the rule of three and
the (complicated) Florentine monetary
system. It can be imagined that the
more advanced matters that are listed
in the Pisa curriculum were to be

taught in Florence by the master
Francesco Ghaligai himself; it is also
possible that the syllabus of Ghaligai’s
school went no further than the rule of
three and the monetary system,
although  Ghaligai’s Summa de
arithmetica from [1521] (depicting on
its title page the Medici dedicatee

_‘.‘l."&l. |- ) .| | @i

throning over four students, one of

whom is engaged in weighing and

another one busy with a compass)

makes it unlikely. As pointed out by
Goldthwaite, however, homework
problems (ragioni) about the rule of
three might also have been understood to involve the application of this rule to partnership,
alloying, interest calculation, etc. Even the single false position is so closely connected
to the rule of three that it may have been subsumed under this heading — after all, the
contract primarily deals with the salary to be paid per student in each section and with
the mutual obligations of master and assistant, the curriculum only comes in as description
of the contents of the single sections.

The so-called abbacus books cannot be used uncritically as information about the
school curriculum. Abbacus books were not textbooks for the students. The term refers
to all kinds of manuscripts about practical mathematics written by authors who were or
had once been connected — as masters or as students — to the abbacus school institution.

Abbacus books may be messy problem collections (zibaldoni), or more orderly,
looking like “teachers’ books” without being necessarily meant to serve in this function.
The orderly books may indeed also have been written for friends or patrons, and some
claim that they can serve self-instruction. Three (to which we shall return below, p. 245)
are genuine mathematical encyclopedias. Some are author’s autographs — but still, as so
many mathematics textbooks from all epochs, drawing heavily on named or unnamed
predecessors; some are booksellers’ copies. Some are anonymous, some indicate the name
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of an author, some borrow the name of a famous author but alter or maltreat his material.
Some authors display a thorough understanding of the mathematics they present, others
make gross blunders as soon as they arrive at the inverse rule of three or volume
determination. Some cheat, or naively plagiarize the fraud of predecessors (Piero della
Francesca’s abbacus collection famously falls in this category, as shown by Enrico Giusti
[1991: 64]). Some stay within the limits of the Pisa curriculum, some go far beyond (not
least taking up algebra). All types are represented in Van Egmond’s above-mentioned
catalogue.

Fraud (to be discussed in detail below) mostly concerns the algebra. Cheating at the
level that was to be taught and used in commercial practice was of course excluded: it
would readily drive the teacher out of business. But nobody would ever discover in a
commercial dispute that a formula for solving a third-degree equation was fake. Such
formulas might therefore serve to impress mathematically incompetent municipal authorities
and fathers of prospective paying students; they may also have been meant to bewilder
rivals in competitions for employment — rivals who might not understand the deceit, and
who would in any case find it difficult to explain to the judging authorities that something
was fishy.



II. An example: Jacopo da Firenze’s Tractatus
algorismi, the short version

In 1307, one otherwise unidentified Jacopo da Firenze (‘“from Florence”), at the time
living in Montpellier in Provence, wrote a Tractatus algorismi. After the Latin title and
an equally Latin incipit, the language of the work is Tuscan. Three manuscripts claim
to represent the treatise:

—  Vatican, Vat. Lat. 4826, datable by watermarks to ca 1450 (henceforth V¥');
— Milan, Trivulziana 90, to be dated in the same way to ca 1410 (henceforth M);
— Florence, Riccardiana 2236, written on vellum and therefore undatable (henceforth

F).

F and V are very close to each other, F with somewhat more errors than M.

The present chapter discusses the version of the treatise represented by M and F.
V is longer and probably closer to the original than M+F, as shall be argued later (and
in much greater depth in [Hgyrup 2007: 5-25]). M+F look like an adaptation of the
original treatise to what was actually taught in the school. It is therefore a better
introduction to the general undertaking of abbacus mathematics, and will serve as such
in this chapter.

I shall follow the semi-critical edition of the two manuscripts given in [Hgyrup 2007:
382-456] — “semi-critical” because I worked directly on M but used Annalisa Simi’s
transcription of F [1995] and not the manuscript itself (however, comparison of Simi’s
transcription with a facsimile of one page from the manuscript that is included in her
publication shows the transcription to be reliable). Page references in the following point
to this semi-critical edition. When the same matter appears in V and in M+F I shall refer
to its location in both versions (that of V anchored to the edition in [Hgyrup 2007:
193-376]); when translating I shall build on M+F.

>1 shall write sigla for manuscripts in boldface; they correspond to the list on p. 408.

%Van Egmond’s dating of F merely repeats the date given in the shared incipit and is thus no dating
of the manuscript but only of the original from which the manuscript claims to be derived.



The introduction

As mentioned, the treatise opens with a Latin incipit. It states where and when the
treatise was written, and moreover (p. 383) that the

art [of algorism] consists of nine species, namely, numeration, addition, subtraction,
mediation, duplation, multiplication, division, progression, and root extraction.

The same list is found in V (p. 193), and it is equally misleading in both versions. It is
copied verbatim from Sacrobosco’s Algorismus vulgaris [ed. Pedersen 1983: 174f] and
is indeed a precise description of the contents of that work.

The incipit is followed immediately by an introduction, equally shared with V, and
actually copied more often than any other introduction to abbacus writings during the
following two centuries (from which we may conclude that it expresses widely shared
attitudes):”!

Admittedly, all those things which the human race of this world know or are able to know,
are obtained in two main ways, which ways are these. The first is discernment [senno |,
the second is science. And each of these two ways is accompanied by two gentle and noble
partners. One is the grace of God. And the other is knowledge by reason. And of the
partners of science, one is mastery of what has been written. And the other is understanding
with good intelligence. And according to what the Holy Scripture says, discernment is
the noblest treasure that there is in the world. And you shall know that Solomon, who
was close to being the wisest man of all the world, asked the Lord in his youth to give
him discernment. And our Lord said to him that his request was the highest request that
he could have asked. Wherefore he gave him one third of the discernment of Adam, and
this discernment was by grace of God. The Holy Scripture also says that no man until
now asked God for any request more beautiful or higher than that, since all God’s good
and pure gifts descend from this request. It is true that one may call discernment and
science, one natural discernment, the other accidental science. And you shall know that
everything men do naturally and by accident, our Father has granted (them) to know in
his most holy virtue and grace and compassion. And therefore we are all obliged to thank
Him who is such a sweet Father and Lord, who has given us to know so much subtlety
for our use.®

And therefore in His most holy name and His most holy honour we begin our treatise,
which is called algorism. And know that we call it algorism because this science was first
made in Arabia, and those who found it were similarly Arabs. And art in Arabic is called
algo, and the number is called rismus, and so it is called algorism. Which algorism
distinguishes five chapters, which we shall show you manifestly in our treatise ordered
according to the said matter, as the said science asks for. And we begin in the honour
and reverence of our Lord Jesus Christ and his most holy mother Virgin Mary and the

"Beyond V, F and M, it is recycled more or less completely in no less than 10 treatises from
between ca 1370 and 1513 described in [Van Egmond 1980] — detailed list in [Hgyrup 2007: 46
n.120].

¥ “for our use” is not in V — probably by omission, since it is in Giovanni de’ Danti’s copy of the
text [ed. Arrighi 1985: 9].
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whole celestial court, and with the assistance of our predecessors, and in honour of all
masters and scholars of this science, and of every other honest person who might see and
read this treatise with dedication and sense.

Now we shall show the properties of the five chapters spoken of above according
to what Boethius says in his Arithmetic.”’ The first chapter is to multiply. The second
chapter is to divide. The third chapter is broken numbers. The fourth chapter are the rules.
The fifth chapter is the general understanding which is drawn from the said four chapters.
And you shall know that the said five chapters have many subdivisions and sections, such
as multiplying by two or three or four or more figures [i.e., digits]. Division falls in whole
numbers and fractions. The fractions are to multiply, to divide, to join, to subtract, and
to say which fraction is greater than the other, or how much smaller, and which. And to
recognize them, seeing them written by figures. The rules comprise many routines [mdniere
and insights and subtleties, which you will hear in orderly manner according to their nature
which is explained.

As in this treatise the mind and good intelligence grants us to know the great subtlety
of the prophecies and the philosophies and the celestial and temporal writings, it will grant
us to know even more henceforth, since by mind and good and subtle intelligence men
make many investigations and compose many treatises which were not made by other
people, and know to make many artifices and written arguments which for us bring to
greater perfection things that were made by the first men. Hence as we have said above,
our treatise is called in Arabic algorism, and so we should write the ten figures of the
said algorism according to the custom of the Arabs, since they were those who found this
science. That is, we shall write backwards and read to the right according to [what is
customary with] us, that is to say, we shall begin by writing from the smallest number
and read from the greatest number.

A number of observations can be made on this introduction. First of all, we should take
note of the praise of knowledge and the belief in the continuous growth of knowledge;
this goes further than Bernard of Chartres’ oft-quoted point that we are like dwarfs perched
on the shoulders of giants'” — Jacopo is convinced that others shall still climb onto
his shoulders. At the same time we notice the strong religious key, rather different from
what we see in the works of even outspokenly strong believers among the university
scholars of the time.'"" Admittedly, the distinction between discernment (senno) and
science, of which the former is “natural” and the latter is “accidental” is a trace of the
Aristotelian philosophy of the time (where “accidental” often replaces the Aristotelian

? Another case of deceptive namesdropping. This time, the description corresponds to what Jacopo
deals with in his treatise, but there is no connection to Boethius’s Arithmetic.

19«<Bernard of Chartres used to compare us to [puny] dwarfs perched on the shoulders of giants.
He pointed out that we see more and farther than our predecessors, not because we have keener
vision or greater height, but because we are lifted up and borne aloft on their gigantic stature” —
thus John of Salisbury in the Metalogicon from 1159 [ed. trans. McGarry 1971: 167].

" For example, William of Ockham, Duns Scotus and Dietrich von Freiberg, all three as dry as
Aristotle’s Second Analytic whether writing about theology or philosophy.
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notion of being “by art”); but as we see, Solomon, not Aristotle is called in as witness.!'”
That the art (pp. 194, 383) is

called algorism [...] because this science was first made in Arabia, and those who found
it were similarly Arabs. And art in Arabic is called algo, and the number is called rismus,
and so it is called algorism

is a reflection of Sacrobosco’s Algorismus vulgaris. It is hardly direct — Sacrobosco does
not mention the Arabic origin and does not state that algo means “art” in Arabic (rismus,
shared with Sacrobosco, obviously reflects Greek arithmds). However, The Art of
Nombryng, an English version of Sacrobosco, states that algos means “art” in Greek. So
does the Craft of Nombrynge, an amplified translation of a commentary to Alexandre de
Villedieu’s Carmen de algorismo [ed. Steele 1922: 33, 3]. Both are known from 15th-
century manuscripts, but it seems likely that the ascription of the meaning to a prestigious
language (whether originally Greek or Arabic is a guess) goes back to a common source.

'20n the whole, the Solomo story is borrowed from 1. Kings 3:5-14 and 2 Chr. 1:7-12. But the
borrowing is clearly indirect: none of the two Biblical versions refer to “one third of the discernment
of Adam”; nor is this part of the story to be found anywhere in the Bible (including apocrypha),
the Qur’an, or the ca 170000 densely printed pages of the Patrologia latina, Latin Christian writings
written before 1200. I presume it comes from the lay pious environment which is reflected in
Jacopo’s and other abbacus writings.



About the numerals and the place-value system

So, Sacrobosco, albeit indirectly, is one source for the presentation of the Hindu-Arabic
numerals. But he is not the only source. Jacopo goes on,

These are our abbaco figures, by means of which you may write whatever number you

wish, or of whatever quantity it were. And these are the figures of the old art and the
13]

new.

The idea of presenting two variants of the figures goes back to the Maghreb/al-Andalus
mathematician Ibn al-Yasamin (f ca 1204) [Burnett 2002a: 240] (if not to some
predecessor). Ibn al-Yasamin shows the ghubar (“dust”, referring to their use on a dust
abacus; mostly referred to as “western”) as well as the “Eastern” shapes of the numerals.
Jacopo, as we see, lists the shapes current in 13th- and 14th-century Latin Europe (both
derived from the ghubar shapes). The idea of presenting both of these together recurs

M and

in a Trattato di tutta 'arte dell’abacho written in 1334, probably in Avignon,'
independent of Jacopo’s Tractatus; we may surmise that Jacopo follows a more general
Provencal habit, on its part ultimately inspired by Ibn al-Yasamin in ways we cannot trace.

Jacopo goes on (pp. 196, 385),

Further we shall write here below how the said figures denote. And so that they may be
understood better and more clearly we shall write them by figures, and similarly by letters,
so that one may understand by himself without any master teaching him. And you shall
know, and it is thus that the zero by itself does not signify anything, but it surely has the
power to make signify when it is accompanied [from here only in V], but not always but
according to where it is put, either before or behind. That is, if the zero is put before!”!
another figure it does not have the power to make signify anything, but if placed behind
the figure then it has the power to give to signify according to which figure it is. That
is, if it were beside 1, it signifies 10, and if it were beside 2, it signifies 20. And if it were
beside three, it signifies 30. And thus according to the figure which it makes signify.

This is followed by an extensive table containing numbers in Hindu-Arabic writing together
with the corresponding writings by means of Roman numerals. Whereas we would explain
that “ccxxxiiii means 234”, subliminally understanding ‘234" as being the number and
not being a mere writing, Jacopo obviously expects his reader to see things in the opposite
way.

That “zero by itself does not signify anything, but it surely has the power to make

" Redrawn after the Trivulziana manuscript.

" Both in the compiler’s draft autograph (T, fol. 23") and in a copy of the final version (Tg, fol.
3"); the treatise and its dating is discussed in [Cassinet 2001] — cf. below, p. 196.

15 “pefore”, as we notice, is now to the left — the local writing direction has taken over.
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signify” is borrowed from Sacrobosco [ed. Pedersen 1983: 176]; that this power depends
on whether it is written left or right, however, is not from Sacrobosco, and it may well
be Jacopo’s own addition to the text.

The table is followed by a very pedagogical exposition of the place value principle —
more fit for self-study, in agreement with what is promised (‘“‘without any master teaching
him”), than as support for a teaching master who already knows.



Multiplication, division, fractions

After this follows (pp. 203, 389) another table containing first squares n’, 2<n<10,
then products mxn, m<n<10 (called librettine minori, “minor booklets”), continued by
other examples where one or both factors is multiplied by a power of 10 (for example,
300%x600)." Then (pp. 206, 391) come librettine maggiori (“major booklets), products
mxn, 11<n<20, m<n<20, and then (p. 392 — in tables organized in the Arabic way, from
right to left) all squares from 1x11 until 99x99 and select other products of two-place
numbers, all controlled by casting out nines — but that this is the reason that, for instance,
the field containing the numbers 840, 24 and 35 (meaning 840 = 24x35) also contains
the number 3 is not explained. Another (equally unexplained) set of products (p. 403)
involves mixed numbers (also written according to Arabic custom, with the fraction to
the left); this time, the control is made by casting out sevens (after transformation of the
mixed numbers into pure fractions). Since the fractional and integer part of the mixed
numbers are widely separated in M as well as F, the compiler of the archetype for M+F
is likely not to have understood what was meant (which is also the likely reason that he
did not normalize the writing of the mixed numbers).""”!

Two types of division follow (pp. 220, 408) — in general known as a regolo (“by
ruler”) and a danda (“by giving”), here unexplained and unnamed. The former are
sequences of 10 to 12 short divisions, starting from a dividend of 6 to 8 digits.!"® The
danda method was the outcome of the transfer of a division algorithm performed on a
dustboard to paper, where deletions were no longer possible — a forerunner of our long
division. A regolo division is shown for divisors from 2 to 12, a danda is used on 12
examples — for example, 71422330+37.

As in the Pisa programme, fractions close the section about pure arithmetic, and as
explained in the introduction to the treatise it is taught here how “to multiply, to divide,
to join, to subtract, and to say which fraction is greater than the other, or how much
smaller, and which”. At first (pp. 228, 415), the procedures are summarized in schematic
examples:

'®We observe that addition and subtraction go unmentioned, just as in the Pisa and Florence
programmes. In Sacrobosco’s Algorismus vulgaris, on the other hand, they are the first operations
to be explained [ed. Pedersen 1983: 177-181].

7'V contains the squares from 11x11 to 99x99 (organized left to right) with check by casting out
nines, but nothing more.

'8 With the successive remainders put in as a first digit in the results, so as not to make the students
“run out of numbers, as they would soon do if remainders were not picked up”, as Pacioli explains
[1494: 327].
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To multiply broken numbers
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After the schemes follows (pp. 230, 416) this introduction to the topic,

We have spoken about the multiplications and the divisions and of all that is necessary
concerning this. Now we leave this, and we shall speak in proper and legitimate rule about
all routines about broken numbers, such as we proposed before in the prologue, since they
give tools for the other computations, and without them this art cannot be subtly exercised

nor learnt.
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Then 19 examples are explained — first this one:

Let us first begin in the name of the supreme God and say thus, say me, how much is,
joined together, ', and Y. Do thus, say, a half and a third are found in six because 2
times 3 makes 6. And take the half and the third of 6, which are 5, and divide 5 by 6,
from which comes 5 sixths. And we shall say that ', and Y, joined together are 5 sixths.
And in this way you may join whatever broken number it be.

Neither God nor the product of denominators are mentioned in the other examples, but
apart from that their general style is the same. The following 18 examples merely prescribe
the finding of a common multiple when it is pertinent — actually, the least common
multiple. Curiously, the writing of fractions with a fraction line (verga, literally “a cane”)
is only described after the third example.



The rule of three

In agreement with both curricula, fractions are followed by topics of specifically
commercial relevance — at first, as in the Florence document, the rule of three. V (p. 236)
has an introductory remark similar to the one that precedes the operations with fractions,

We have said enough about fractions, because of the similar computations with fractions
all are done in one and the same way and by one and the same rule. And therefore we
shall say no more about them here. And we shall begin by doing and showing some
computations according to what we shall say soon.

It is absent from M and F, but its stylistic agreement with the introduction to fractions
suggests that it belonged to Jacopo’s original and is no addition. It contains an important
piece of information about abbacus meta-terminology: Addition and multiplication of
fractions certainly do not follow the same steps. That they are “done [...] by one and the
same rule” indicates that “rule” is not necessarily to be understood as a precise procedure
or algorithm but may refer instead to some general principle.'”!

In all three manuscripts (pp. 236, 419), the rule of three is introduced in this way:

If some computation should be given to us in which three things were proposed, then we
should always multiply the thing that we want to know against that which is not of the
same (kind), and divide in the other, that is, in the third thing.

With no or minimal deviations, this was to remain the standard formulation of the rule
of three for two centuries.*”

" This, by the way, was to become the meaning of “algorithm” until the late 19th century — after
having first, spelled algorismus, simply referred to the calculation with Hindu-Arabic numerals.
The shift of meaning and to the hypercorrect spelling is marked by Christoph Rudolff’s Coss [1525:
9'], who states that his second chapter ist von gemeinem algorithmo der Pruch, “is about the general

o <6

algorithm for fractions” — precisely Jacopo’s “one and the same rule”.

®1In V, the precise formulation is

If some computation should be given to us in which three things were proposed, then we
should always multiply the thing that we want to know against that which is not similar,
and divide in the third thing, that is, in the other that remains.

The Livero de I’abbecho (discussed in detail below, p. 155), known from a 14th-century copy
in the manuscript Florence, Ricc. 2404 but probably to be dated around or slightly after 1300
[Hgyrup 2005: 27-28, 47], has almost the same formulation as M and F [ed. Arrighi 1989: 9],
followed word for word by the anonymous Liber habaci [ed. Arrighi 1987: 111] from ca 1309:

If some computation was said to us in which three things are proposed, then we shall multiply
the thing that we want to know with the one which is not of the same (kind), and divide in
the other.

Pacioli explains in the Summa de arithmetica [1494: 57] that

The rule of 3 says that the thing which one wants to know is multiplied by that which is not
similar, and divided by the other which is similar, and that which results will be of the nature
of that which is not similar, and the divisor will always be of the similitude of the thing which
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A number of examples follow. The first one (pp. 237, 419) runs like this (tornesi
are minted in Tours, parigini in Paris):

I want to give you the example to the said rule, and I want to say thus, vii tornesi are
worth viiii parigini. Say me, how much will 20 tornesi be worth. Do thus, the thing that
you want to know is that which 20 rornesi will be worth. And the one which is not the
same is that which vii fornesi are worth, that is, they are worth 9 parigini. And therefore
we should multiply 9 parigini times 20, they make®" 180 parigini, and divide in 7,
which is the third thing. Divide 180, from which results 25 and %. And 25 parigini and
% will 20 tornesi be worth.

Then come three more examples with the same ratio between fornesi and parigini, the
third however asking for the value of 150 £, 13 B and 4 & of tornesi.” With no
intermediate calculations, 9 times 150 £, B 13, § 4*¥ is stated (correctly) to be £ 1356,
and the outcome of the division is similarly announced directly.

The next examples astonish a modern ear. First (pp. 238, 420), “if 5 times 5 would

one wants to know

which merely adds the clarification “and that which results [...] wants to know”.

' This way of speaking characterizes the whole of M+F (but not V, abbacus writers had different
views on the matter). The idea is that the number 20 (in itself seen as a singular) occurs 9 times,
and these 9 constitute a plurality that together make 180.

22 £ stands for lirallire (singular/plural), 8 for soldo/soldi, & for denaroldenari. The lira was a money
of account (in Carolingian times the value of a pound of silver, but that was 500 years of monetary
debasement ago). It was divided into 20 soldi (the soldo descending from the solidus introduced
by the Emperor Constantine the Great in 312, by then ', of a Roman pound of gold); the soldo
was divided into 12 denari. Those who remember the British monetary system as it looked until
1971 will recognize it.

The main weight unit used in the treatise is the (light) pound, libbra (sottile ), varying according
to location but mostly ca 320 g. It was divided into 12 ounces. 8 ounces constituted a mark
[marcha], and 2 marks in most places a “heavy pound” (which was thus close to a British pound).
The ounce was subdivided into weight denari — with a few exceptions, 24 denari, and the denaro
into 24 grani. See [Zupko 1981: 106, 129-135, 139f, 174-177]. Henceforth, Zupko’s work will
be the basis for all metrological information unless a different source is indicated.

Apart from the denaro being a specific monetary unit, the plural denari also had the generic
meaning “money” (as soldi in present-day Italian and pennies in obsolete English). Even though
the abbacus authors probably did not think of the difference (and used the same abbreviation in
both cases) I shall try to reserve the abbreviation for the cases where the monetary (or, occasionally,
metrological) unit is intended.

ZIn the first example, Jacopo follows general spoken language, stating the “quantity” (7) before
the “quality” (fornesi). Now, he gradually shifts to the commercial technical order quality-quantity
(still with us today). In my translations I shall try to be locally faithful to the originals (inconsistent
though they often are, as here), while complying with the habits of spoken language in paraphrases
and commentaries.
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make 26, what would 7 times 7 make at the same ratio?”, next, “if 3 times 4 would make
13, what would 7 times 9 make?”. As we shall see, these “counterfactual calculations”
are informative about the historical process; for the moment we shall simply take note
of their presence though as secondary examples.

Returning to monies, Jacopo now teaches what to do when fractions are involved
in the parameters; at first, “3'; tornesi are worth 4 parigini” is transformed by
multiplication into “10 fornesi are worth 12 parigini”. Three more examples follow.



Basic commercial techniques

The rule of three, with examples mostly speaking of money, looks commercial.
Actually, it is a general — we may say functionally abstract — technique; as we shall see
below (p. 384) it had an almost axiomatic status within abbacus mathematics.

It is followed, in Jacopo’s Tractatus (pp. 242, 422) as well as the Florence curriculum
by a definitely commercial subject: shortcuts to be used in the calculation of simple
interest. Interest was habitually specified as denari per month and per lira, and the
problems dealt with (all corresponding to previously stated general rules) are to find
— how much is earned by 100 £ in six months if the £ is lent at 3 & per month;

— how many £ will earn 1 8 in a day if 1 £ is lent at 3 & per month (the month being
counted at 30 days);

— how many £ will earn 1 § a day if 100 £ are lent at 12 £ per year;

— in how much time 100 £ will be doubled if lent (at simple interest) at 3 6 a month;

— in how much time is doubled 1000 £ if 100 £ are lent at 6 £ per year;**

— how much does 100 £ earn per day if they are lent at 12 £ per year.

All rules are stated without argument; for the third problem the unexplained rule is thus

to divide 150 by the number of £ earned per year by 100 £.

It is sometimes believed that the abbacus books could not deal with interest calculations
because interest-taking was considered usury and hence forbidden by the Church; the
preceding shows that this was not the case.”” As to interest-taking in Florentine
commercial practice, one may consult [Sapori 1955: I, 236-240]. There we notice that
30 per £ per month (15 % per year) was in the high end of the acceptable, but still within
the limits.

Another sort of calculational shortcuts follows (pp. 246, 423). At first comes a general
rule:

If some computation was given to us in this way, and let us say that the load"®® ofpepper,

*1In this case, the preceding rule which the question is supposed to illustrate speaks of a different
problem type: “if 100 £ earn me so and so many £ per year, how many £ will earn me 1 & per
day?” The same confusion is found in V. Two possible explanations are at hand: either Jacopo
copied from a source and skipped an example and the rule for the subsequent example; or all three
extant manuscripts descend from an archetype already copied from Jacopo’s original text with a
similar omission. Without being able to offer strong arguments (beyond the absence of other shared
demonstrable omissions) I favour the first possibility.

» A rare expression of doubts caused by the sinfulness of usury is found in the encyclopedic
manuscript Florence, BNC, Palatino 573, fol. 258" [ed. Arrighi 2004/1967: 183]: since the soul
of the one who practices usury ends up in Hell and his body in prison, the author promises to deal
with the topic with brevity — which he then does over 104 folio pages (counting letters around one
twelfth of the whole Liber abbaci)!

* Carica. The load of 300 pounds or 3 quintals was a Provencal and the usual French unit. The
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or any other thing, which is 300 pounds, is worth so many £, or so many f, or so many
, and we want to know what the pound will be worth. Then you should know that for
each £ that the load is worth, the pound is worth 4/5 of a denaro, and for each soldo that
the load is worth, the pound is worth Y5 of a denaro, and for each denaro which the load
is worth, the pound is worth one three-hundredth of a denaro.

Examples, inversion, variations for a different value of the load and for other weight units
follow — all of it evidently very useful for quick calculation in practical trade, where the
rule of three would be utterly cumbersome for the determination of the price of a pound
if, for instance, the load was told to cost 13 £ 8 B.

normal Florentine load was 400 pounds. The exact number of pounds to a quintal might vary (a
Barcelona quintal consisted of 104 pounds), as might also the weight of the pound. See [Hgyrup
2007: 68].



Mixed problems

These two quite orderly sections, both of evident commercial relevance, are followed
(pp- 251, 426) by a messy collection of 39 mixed problems, of which some are still
commercial in substance as well as dress, some are recreational problems — mostly
traditional, and making use of methods (such as the single false position, the rule of three
and the inverse rule of three) that could also serve commercial calculation.

We may look at some examples. The very first problem (pp. 251, 426) deals with
a partnership (compagnia), but it is not solved by means of the usual partnership rule.
Instead it runs:

There are three partners who make partnership together. And one partner puts into the
principal of the partnership £ 150, and the second partner puts into the principal of the
partnership £ 230, and the third partner puts into the body of the partnership £ 420. Now
it occurs after a certain time that they have earned £ 100 and want to divide. Say me how
much comes to each one as his share, remaining untouched the capital of each of these
three partners. Do thus, first join together all that which they have put into the principal
of the partnership, that is, the £ 150 and £ 230 and £ 420, which in all are £ 800. Now
divide that which they have earned, that is, £ 100, by 800, from which results 2 5 6,
and as much comes per £, that is, B 2 8 6. Now multiply 150 times B 2 8 6, which make
£ 18 B 15, and so much shall the first partner have, who put into the principal of the
partnership £ 150, that is, 3 18 B 15. Now multiply 230 times B 2 & 6, which make £ 28
4 15, and so much shall the second partner have, who put into the principal of the
partnership £ 230, that is £ 28 B 15. Now multiply 420 times B 2 & 6, which make £ 52
3 10, and as much shall the third partner have, who put into the principal of the partnership
£ 420, that is, £ 52 8 10. And it is done. Now join together all these parts, that is, £ 18
B 15,and £ 28 B 15, and £ 52 B 10, which make in all £ 100. We have thus divided well,
and in this way and by this rule do with whatever partnership it be and whatever each
one has put into the principal of the partnership, and you see how much comes per £.

The “partnership rule” — the parallel application of the rule of three — would have
prescribed a different procedure. The share of the first partner would have been found
as 1% £, that of the second as %% £, that of the third as *“'%%, £. The
advantage of this procedure (and in general of the rule of three) is that it avoids the
multiplication of rounding errors (mostly, the multipliers involved would be larger than
1); the disadvantage is that the intermediate results (230-100, etc.) have no intuitively
meaning (as revealed by their dimension £?). The intermediate result of the present
procedure, instead, is meaningful, and explained to be the gain falling to each invested
£. We may assume that Jacopo choose the alternative way for pedagogical reasons, but
since he does not explain we cannot know. In any case he took advantage of the nice
numerical parameters and the absence of rounding errors.

In contrast we may next consider a problem (pp. 259, 429f ) where the partnership
rule proper is not only applied but seen to be a standard structure onto which other
questions can be mapped — a functionally abstract representation of proportional
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sharing.”” With occasionally varied parameters, the problem occurs in many abbacus
texts; as pointed out by Moritz Cantor [1875: 146-149], it is first found in an ancient
Roman jurisprudential text (Dig.2.13) — but since it stands there as a pure hypothesis (“If
it be written thus ...”) and does not agree with the normal principles of Roman Law, one
may guess that the second-century jurist Salvius Julianus draws upon an already circulating
piece of recreational arithmetic.”

A man is ill and wants to make his will. And he has a wife, who is pregnant. And the
good man decides in this way, and says to the wife, if you get a male child, I leave to
him two parts of what I have, and to you the third; and if it happens that you get a female
child, then I leave to her the third of everything I have, and to you I leave the two parts.
And the good man departed from this life, and after a certain time the wife gave birth
and made a male child, and a female. Tell me in which way one shall divide this pos-
session, since one cannot divide in the way the father left to the wife and the children.
Do thus, and this is its rule, firstly make a position of one and say thus, when the girl
should have one, the wife were to have two. And when the mother were to have two,
the boy were to have four. Thus, of whatever possession one were to divide between them,
of every 7 the male child should have 4 and the wife two and the female girl one. We
have thus brought this computation to a partnership, and we say thus, there are 3 partners
who have made partnership together. And one partner puts in 4, the other partner puts
in 2, and the third puts in one. And they have earned as much as that which the bequest
was. How much comes to each? And this is done after that way of the partnership which
we have shown earlier. Now let us posit that this bequest were 1400 gold fiorini. Say me,
how much shall the mother have of it, how much the male child, and how much the female.
Do thus, join together 4 and 2 and 1, which makes 7, and this is the divisor. Now multiply
4 times 1400 gold fiorini, it makes 5600 gold fiorini, and divide in 7, from which results
800 gold fiorini. And so much shall the male child have, that is, 800 gold fiorini. Now
multiply 2 times 1400, it makes 2800 gold fiorini, and divide in 7, from which comes
400, and so much shall the mother have, that is, 400 gold fiorini. Now multiply 1 times
1400, it makes 1400, divide by 7, from which comes 200. And so many gold fiorini shall
the female child have, that is, 200. And it is done, and in this way and by this rule you
may divide whatever bequest that he left.

This explicit use of the partnership as a functionally abstract structure is not widespread
in abbacus mathematics;*” in the early period it was characteristic of Jacopo and a
few other treatises linked to the Provencal environment [Hgyrup 2007: 129f]. More

?"We shall encounter another instance of this use of the abstract model below, p- 53 (in V only,
eliminated in M+F).

8 Quite similar structures are indeed to be found in even older Chinese mathematical texts — both
the Suan shit shii from 186 BCE or earlier [ed. trans. Cullen 2004: 45] and the Nine Chapters on
Arithmetic [ed. trans. Chemla & Guo 2004: 285-287], from no later than the first century CE.

»The application of the rule to the twin inheritance problem throughout the period we are
considering certainly was.
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widespread, as we shall see repeatedly, is the use of the rule of three as the basic
representation of proportionality.

Other recreational problems are based on methods that have no evident commercial
bearing — thus problems of meeting and pursuit and of combined works. Both types are
widespread, and both are represented in the present collection of mixed problems. We
may look at one of the meeting problems (pp. 262, 431) — pursuit problems, in which
the two parties leave in the same direction, are absent from Jacopo’s treatise:

A man is in Rome, and wants to go to Montpellier and would go there in 11 days, neither
more nor less. And another man is in Montpellier, and wants to go to Rome, and would
go there in 9 days, neither more nor less. Now they leave at the same hour one from Rome
and the other from Montpellier. Say me know in how many days they will meet on the
way. Do thus and say, because one comes in 9 days and the other goes for 11 days, then
multiply 9 in 11, it makes 99, and divide 99 in 20, because 11 and 9 make 20, from which
results 5 less a twentieth, and after so much time the said men meet, that is, in 5 days
less a twentieth of a day.

A strict parallel follows “in order to show it more clearly”. There the calculation is
organized differently, agreeing with the way both problems are solved in V, where the
procedure is organized as follows (p. 262):

Do thus and say, because one comes to Rome in 9 days and the other goes to Montpellier
in 11 days, join together 11 and 9, which make 20. And this is the divisor. Now multiply
9 times 11, it makes 99. Divide in 20, from which results 4 and '%,.

“The divisor”, with definite article (il partitore ), indicates that a specific, pre-existing
method is followed (we already encountered it on p. 23 in the twin problem, and it is
indeed recurrent when the partnership rule is used). In the present case the rule in question
is that for “combined works”; the underlying reasoning (whether understood or not by
Jacopo) could be that in 9-11 days the first man can cover the distance 9 times, and the
second man can cover it 11 times — in total thus 9410 = 20 times. The distance is thus
covered a single time by the two together in °'%, days.”

Another favourite dress for the “combined works” in abbacus books is a ship with

several sails.”"! In Jacopo’s collection of mixed problems we find this version (pp. 268,
433):

% Alternatively, the idea could be that one man covers %, of the distance in a day, the other '%.
Using the rule for adding fractions one finds that they cover **',,, of the distance in a day, and
hence the whole distance in °'',,, days. This argument is made explicit in an analogous problem
in the Liber habaci [ed. Arrighi 1987: 144], on which below, p. 173.

*! The classical representative of the problem type, a cask or other container filled or emptied through
several channels, is also found in M and F [ed. Hgyrup 2007: 433] but not in V. Since the channels
are mostly more than two (thus also here), the formula is slightly different.
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A galley is in Genua and wants to go to Aigues-Mortes. And the said galley has two sails
such that, with one sail it would go there in 7 days, and with the other sail it would go
in 9 days. Now it occurs that I hoist up both sails at a time. Say me in how many days
the galley will have made its voyage from Genua to Aigues-Mortes, operating each of
these sails by its force. Do thus, say, because with one sail it would go there in 7 days,
and with the other it would go in 9 days, then join together 9 and 7, they make 16. And
similarly multiply 7 times 9, they make 63, and divide 63 by 16, from which comes 4
less Y4, and in so many days will the galley have reached Aigues-Mortes, that is, in 4
days less Y.

A problem type with many representatives, in Jacopo’s collection as well as the
abbacus tradition in general, is a quantity divided into parts, of which one is given
absolutely and the other or others relatively. They may deal with a tree partially above
ground and partially underground; with the parts of a fish, with the components of a goblet
or the components or contents of a purse; etc. We may look at the fish variant (pp. 261,
430):

A fish, whose head weighs the third of the whole fish, and the tail weighs the Y, of the
whole fish. And the body in middle weighs ounces 8. Say me, how much weighs the head
alone, how much weighs the tail, and how much the whole fish. Do thus, say, ", and
'/, one finds in 12. And seize the '/, and the Y, of 12, they are 7. And say, from 7 until
12 there are 5, and this is the divisor. Now because the body in middle weighs 8 ounces,
then multiply 8 times 12 ounces, they make 96, and divide by 5, from which comes ounces
19 and Y, and as much weighs the whole fish, that is, ounces 19 Y. If you want to know
how much weighs the head alone, then take ", of 19 and Y, which is 6 and %, and as
much weighs the head, that is, ounces 6 and %. If you want to know how much weighs
the tail, then take Y, of 19 and ', which is 4 and %, and as much weighs the tail, that
is, 4 ounces and ¥ of an ounce. And it is done. If you want to prove it, join together
what the head weighs, that is ounces 6 and 2/5, and what the tail weighs, that is, ounces
4 and %, and that which the body in middle weighs, that is, 8 ounces, which in total are
ounces 19 and ;. We have thus done well. Thus are made all the similar.

The underlying idea is a single false position, even though the trick is not named. Since
'/, and Y, are both found in 12 (as integers), the total weight is posited to be 12. If so,
the weight of the head would be 4, and that of the tail would be three, leaving 5 for the
body in middle. Now to these 5 correspond 8 ounces; the correspondent of 12, the total
weight, is then found by means of the rule of three, as *'%;. The weights of head and
tail are found in the same way.

As pointed out by Fibonacci in the Liber abbaci [ed. Boncompagni 1857: 173; ed.
Giusti 2020: 296],1*% a different approach is possible. He explains a tree example thus:

2 In [1857], Baldassare Boncompagni made an edition of the Liber abbaci based on a single good
but not perfect manuscript. In 2020, Enrico Giusti published a new, critical edition. Since the former
is easily accessible on the web, for instance (2 May 2023) at the addresses
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There is a tree, of which ', ', is underground. And they are 21 palms. It is asked how
much is the length of this tree. Since ' Y, can be found in 12, understand this tree to
be divided into 12 equal parts; of which the third, and the fourth, that is 7 parts, are 21
palms; therefore, as 7 are to 21, thus are proportionally 12 parts to the length of the tree.
And therefore, when four numbers are proportional, the multiplication of the first in the
fourth is equal to the multiplication of the second in the third. Therefore, if you multiply
the second, 21, by the third, known to be 12, and similarly divide by the first, namely
by 7, 36 results as the fourth, unknown number, that is, for the length of that tree; or
because 21 is the triple of 7, take the triple of 12, and you will similarly get 36.

However, the early abbacus school was not familiar with even the most elementary
proportion theory; Fibonacci explains the procedure in terms of scientific (“magisterial”)
mathematics. Afterwards he explains the procedure of practical commercial reckoners:

There is another methods which we use, namely, that for the unknown thing you posit
a freely chosen number, that can be divided in whole numbers by the fractions that are
posited in this question.

And then he goes on with this single false position, and calculation according to the rule
of three (not named, as Fibonacci never gives a name to this procedure). Since this is
not the method just taught, this “we” cannot be an authorial plural, it must refer to a
community of which he considers himself a member — the “proto-abbacus” community,
we may call it.

Other classical recreational problems are dressed in ways that seem to connect them
to commercial practices of the day but do not correspond to anything that would happen
in the world of real trade; their role is to train the mathematical mind and, at times,
particular methods.

One of them is of the type known as “the lazy worker” (pp. 266, 430):

A master undertakes to construct a building in 30 days. And the day where the master
works he shall have from the gentleman B 5. And the day where he is not working he
shall give the gentleman 7 back. Now the master has worked so much and has been
so much away from work that he shall have nothing from the gentleman and shall give
nothing back. Say me, how much the master was not working, and how much he worked,

https://archive.org/details/bub_gb_CrdUBgtAZFoC/page/n3/mode/2up
https://archive.org/details/bub_gb_w86fLKi88pYC
https://archive.org/details/scrittidileonardOObonc/page/n181/mode/2up
and
https://archive.org/details/bub_gb_G4IL1D5PUsoC
while the new edition may not be easily accessible in libraries for quite some time, further references
to passages in the Liber abbaci (some 250 in number) will for brevity have the form [Bm;Gn ],
standing for page m in [Boncompagni 1857] and page »n in [Giusti 2020] (indicating the pages where
the passage begins if it extends over several pages). Readers are exhorted to persuade their libraries
to procure Giusti’s edition.



- 27 —

that is, how many days. Do thus, first join together 7 and 5, which make 12 8, and this
is the divisor. Now multiply 30 times 5 days, they make 150 days, and divide in 12, from
which comes 12, days, and so much he was not working, that is, 12, days. And similarly
multiply 7 times 30 days, they make 210 days, and divide in 12, from which results days
17 and ', and so much he worked, that is, days 17'/,. Now we shall say that the master
worked days 17, and was not working days 12 and Y, which in all are 30 days. He thus
made the said building in 30 days. If you want to prove it, say thus, the master worked
days 17, and took B 5 per day, then he took in all £ 4 B 7 & 6. And so much he took
from the gentleman, that is, £ 4 8 7 § 6. And say, the said master was not working days
12, and gave back to the gentleman B 7 per day, which in all are £ 4 B 7 & 6. He thus
took as much from the gentleman as he gave back to him. And it is well done.

The basic trick is obviously the same as the one used in the double false position and
in alligation; the reference to “the divisor”, and thereby to a standard method, suggests
that the creator of the problem thought of one or the other (not necessarily Jacopo, who
may have copied uncritically, like not a few compilers of mathematics textbooks from
Antiquity until present times).

Another problem where the double false position might have been used by other
authors but is shunned by Jacopo deals with the packing of cloth in bales (pp. 268, 433).
400 pieces of cloth are to be packed in 38 bales, of which some should contain 10 and
some 11 pieces. The prescription only states the numerical steps to be taken, but the idea
is quite simple: that if all bales contained 10 pieces, only 380 pieces would be packed.
Therefore 20 of the bales must contain an extra piece.

There are two more recreational problems. One of them (pp. 271, 434) is of the
classical “Chinese box” type: Somebody picks oranges in a garden which he has to leave
through three guarded doors; to each doorkeeper he has to hand over half of what he has
and one more, and in the end 3 oranges should be left. The solution goes by stepwise
backward computation. Other abbacus books offer problems with the same mathematical
structure while speaking instead of commercial travels in several steps with costs or
customs payment (see [Tropfke/Vogel et al 1980: 582-584], and below, p. 88); but even
then the mathematical problem is clearly recreational — no merchant would ever need this
backward calculation.

Another question (pp. 263, 431) does seem to speak of trade: two merchants are
transported by ship, one with 20, the other with 24 sacks of wool. Since they cannot pay
the freight in coin, each gives a sack to the master of the ship to sell, asking him to take
what is owed and to give back the rest; from the amounts the two merchants receive back
the price of a sack as well as the total freight is determined. The recreational character
of the problem is clear, firstly from the mathematical problem itself, which would never
present itself to real-life merchants; secondly by the solution, which presupposes that the
merchants themselves travel for nothing.

Certain problems really prepare directly for commercial life. A number of these are
based on the intricacies of the monetary system. The first of them runs as follows (pp.
253, 427):
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I have to make in Bologna a payment of £ 100 of bolognini piccioli. And in Bologna the
bolognino grosso is worth 8 13 and Y, of bolognino picciolo. And in Florence the said
bolognino is worth & 15',. And in Bologna the gold fiorino is worth B 31, and & 6 of
bolognini piccioli. And in Florence the said fiorino is worth 8 39 8 6 of the coin of
Florence. Say me what is better for me to carry to Bologna, starting from Florence, in
order to make the said payment, either gold fiorini, or bolognini grossi, and how much
it will be better for me at the said /ibre 100. Do thus, know firstly how many bolognini
grossi it suits him to carry in order to make the said payment. And multiply 100 times
15 and ,, which makes 1525, and divide by 13", from which comes £ 123 B 12
8 11%, of bolognino [error for £ 114 B 7 & 6].”*) And so much will it suit him to carry
in bolognini grossi, that is, £ 123 B 12 8 11*%,,. Now let us know how much it suits him
to carry in gold fiorini, and multiply 100 times 39 and Y,, they make 3950, and divide
3950 by 31 and Y, from which comes £ 123 8 7 8 9 [error for £ 125 B 7 & 11 ';1,%
and so much will it suit him to carry in gold fiorini, that is, £ 123 8 7 § 9. And it will
thus be better to carry gold fiorini than bolognini, as much as there is from 123 £ 7
8 9 until 123 £ 8 12 8 11 and *%,. And we shall thus say that it will be better for him
to bring gold fiorini than bolognini grossi, and on the whole payment of the said 100 £,
it will be B 5 8 2 and %, precisely better for him.

It seems that the compiler of M+F has recalculated, made a mistake, and then trusted
his own calculations. Apart from that, the solution is blameless; in order to see that we
should take into account that the relation between £, B and 8 is the same in the monetary
system of the two cities (namely 240 : 12 : 1), and that the ratio between the Bologna
and the Florence soldo is determined by the values of the gold fiorino and the bolognino
grosso (both actual, physical coins) expressed in the two kinds of soldi respectively denari.
Evidently, the reader is supposed to understand this immediately.

A whole handful of problems deal with the difficulties arising from the complex
monetary system; among these, one (pp. 277f, 436f) speaks specifically about how
payments are made in Sicily and Puglia, and another one (p. 437, absent from V) about
the practice of the fairs of Champagne.

These fairs had been of supreme importance for European long-distance trade in the
12th and 13th centuries; the presence of the corresponding problem in the revised version
of Jacopo’s Tractatus may be taken as evidence that its compiler wanted not only to adjust
it to the school curriculum but also to include material of direct mercantile interest. The
contents of the problem confirms this:

* The correct result is found in V; the wrong result shared by M and F corresponds to a division
by 12, instead of 13%.

3* Apart from a writing error probably due to a copyist ('%, instead of '%;), V has the correct result.
The wrong result of M and F appears to be the outcome of at least two errors. Possibly, **%,,,
was transformed into Y, instead of ™", and the outcome £ 123 B 8 8 9 then miswritten as

£123B87809.
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In the fairs of Champagne purchases and sales and all payments are made in provisini
forti,”" and provisini are sold the dozen. And of this we shall give an example. The
dozen of forti, that is, 12 libre, is worth libre 37, soldi 10. Say me, how much will 1443
libre of forti be worth. Now know that you should do thus, and say thus, 1200 libre are
one dozen of hundreds, hence the 1200 libre of forti will be worth libre 3750. Now libre
243 are saved for you, and the 240 libre are two dozens of tens, and each 120 libre of
provisini are worth libre 375, hence two dozens are worth /ibre 750, and you gave in total
libre 4500. And we have to make the 3 [ibre, which are worth the 1/4 of libre 37, soldi
10, that is, libre 9, soldi 7, denari 6. And you have in all libre 4509 soldi 7 denari 6.
And it is done, and we shall say that libre 1443 of forti are worth libre 4509, soldi 7,
denari 6 of whatever money you posit at the rate of libre 37 and Y, the dozen of provisini.

The method here introduced was to be known among German Rechenmeister as
Welsche Praktik.”® It asks for much less use of paper and paper algorithms than the
rule of three (whose answer is (1443-37'%,)/12). A trained merchant would probably
be able to make the partition 1443 = 1200+240+3 mentally and keep it in mind. If not,
the converted payment could be made piecemeal.

The welsche Praktik is used again in a later problem (p. 439), discussed in [Hgyrup
2007: 87f]. This problem about cloth bought in Florence and sold in Nimes involves both
the relation between the length metrologies of the two locations and the ratio between
fiorini and tornesi. The modern reader may note with satisfaction that even the medieval
calculator gets lost here, mixing up the rule of three and the inverse rule of three.””

% That is, minted in the Champagne town Provins [Travaini 2003: 37].

% At the time, welsch might refer to the Italian and French regions, preponderantly perhaps the
latter. The Rechenmeister may thus have thought of the commercial practices of Flanders and
northern France. But it might also be a practice of Italian merchants which rarely made its way
into the writings of abbacus masters, and never systematically, as was to happen in 16th-century
German writings.

The former possibility could be suggested by the appearance of the method together with a
reference to the Champagne fairs; the latter, on the other hand, would be a parallel to the appearance
of tollet calculation among the Rechenmeister (below, p. 364), which indubitably is of Italian origin
(the name comes from Italian favoletta ) but was a technique used by merchants and shunned by
the abbacus masters. Though a relatively late witness, Stifel translates the name as praxis italica
in the Arithmetica integra [1544: 83"].

In spite of its practical advantage, Welsche Praktik as well as follet may indeed have been
considered mathematically undignified by professional teachers of mathematics, however much
mathematicians of our times might think the same about much abbacus mathematics. The proper
practice of the abbacus school teachers was after all not trade but teaching, and as teachers they
may have preferred mathematical coherence (or elegance, or what else we may call it).

7 The rule of three solves problems of type a : p =A : P, where a and A have the same dimension
(for instance volume or weight) and p and P a different dimension (for instance, price). The inverse
rule serves for problems of type g-w = Q-W, where ¢ and Q are of one kind (for instance, the
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None the less, one problem shared by V and M+F (pp. 252, 427) deals with
discounting in the way it would probably be dealt with in practical life and not in the
mathematically most elegant way:

A merchant has to give to another one £ 200 two and a half month from now. The one

who shall receive the said £ 200 says, give them to me now, and reduce your money at

a rate of & 2 per lira per month. Say me, how much he should give him in advance for

the said 200 £. Do thus, say, in two months and a half, at 2  per lira the lira is worth

8 5. Do thus, put yourself at the 195 £, and know how much the said 195 £ are worth

in interest, and they are worth £ 4, 3 1, 8 3, and is in all £ 199,81, 8 3. B 18 8 9 are

lacking there, that in interest are worth & 5. Now detract 8 5 from B 18 69, B 18 & 4

remain. Now join B 18 & 4 above £ 195, and you have in all £ 195 B 18 & 4, it is done.

And we shall say he shall pay him £ 195 B 18 & 4 in advance for the said £ 200. And

in this way do all the similar.

We may tend to observe that 1 £ = 240 & grow to 245 9 in five months. Therefore, the
true answer has to be *%,5-200 £. The medieval calculator could formulate the same
according to the rule of three, and get the equally unhandy *°%%,, = **Y,.. The present
approximate iteration is much more likely to correspond to what was done in practice
(and perhaps to what we would do if we were requested to perform the complete
calculation on paper). In the first approximation, we may observe that 1 £ =240 J grows
to 245 & in 2"/, months. Even this is slightly unhandy, and since it is only a preliminary
step the text instead supposes that 200 grow to 205, or that 195 grow to 200. Then it is
calculated that the value of 195 £ after 2'/, months is 199 £ 1 B3 8 — 18 8 9 & below
the requested 200 £. But 18 5 9 J is almost 1 £, and therefore carry an interest of 5 &
in 2'/, months. Detracting these 5 8 we may claim that 18 B 4 § also carry an interest
of approximately 5 8, and that an advance payment of 195 £ 18 B 4 § is adequate; the
error is obviously a fraction only of 1 & (actually 0.40... ).

The 15th-century Libro di conti e mercatanzie [ed. Gregori & Grugnetti 1998: 95]
(probably copying from an earlier treatise) contains an analogous calculation, showing
the equivalence of the solution by means of the rule of three and by (here exact) iteration
in 7 steps, stopped only when the correction vanishes. It is concluded that the solution
by means of iteration is piit breve, “shorter” (the calculation by means of the rule of three
leads to a division by 227,).

Two more topics of genuine commercial interest are dealt with (simplified so as to
allow the application of simple arithmetic): Alloying and washing of wool.

One alloying problem (p. 429, no counterpart in V) runs as follows:

The mark of silver, which is 8 ounces, costs me B 66 of fornesi. Now

quality of an alloy) and w and W of a different kind (for instance, weight), which corresponds to
a proportion g : Q = W : w. In the rule of three, the intermediate product in the rule of three
(pA) has no concrete meaning, in the inverse case it has (in the example, [ounces silver per pound
of alloy]-[pounds of alloy], that is, ounces silver in total, cf. the example on p. 51.
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it happens that I have the said silver melted and refined. And when
I take it from the fire I weigh it and find that each mark decreases by
¥, of an ounce, that is, that each mark becomes ounces 7 and Y,. Say
me how much it suits me to sell the mark in order to reconstitute my
capital. Do thus, say, 8 ounces of silver are worth 5 66; what will
ounces 7 and '/, be worth? Multiply 8 times B 66, they make £ 26 and
B 8. And divide by 7 and Y, in this way. Say, 4 times 7 and "/, make
29. And say, 4 times 26 £ and 8 8 make £ 105 and 6 12, and divide
£ 105 and B 12 by 29, from which results 72 and 8 9 and “ of a
4. And at so much will it suit him to sell the mark of silver in order
to reconstitute his capital, that is, 8 72 and 8 9 and %%, of a 8. And
it is done. Thus do all the similar.

The problem is a simple case of inverse proportionality, and solved in a simple way,
referring neither (as V mistakenly does in several similar cases though without erring
mathematically) to the language of the rule of three, nor to the inverse rule of three (none
of the two versions of the treatise ever do so with any name). Q being the price per ounce
of the refined silver, it simply uses that the total value should not change, that is, 668 =
07", (the value of the copper in the alloy being disregarded).

The other alloying problem (pp. 256, 428) is strictly analogous: gold containing 2
ounces of copper per pound is paid back with gold containing 3 ounces of copper per
pound, the copper considered worthless.

Even the wool-washing problem (pp. 279, 437) is similar: 100 pounds of wool, bought
for 10 £, becomes wet, and when dried its weight is reduced to 95 pounds. At the end
there is a reference to the rule of three which is not found in the counterpart in V.

We may wonder at the story, but other texts betray what really happens and why it
is commercially relevant: raw wool is dirty, and has to be washed; in this process, it loses
weight — namely the weight of the dirt.

Finally, four of the mixed problems are geometric in character — several of them also
in the view of fellow abbacus writers, who would deal with such problems in a geometry
section.

First we may look at one about cloth (pp. 270, 434):

A man wants to dress [in woollen cloth] and finds cloth of cubits [braccia] 11, which
is sufficient for a robe, and the said cloth is palms 3 and ", broad. And he finds another
cloth which is palms 5 and ', broad. Say me, how much will be enough to make a robe
of this which is palms 5' broad at the same rate. Do thus, multiply 11 times 3 and
'1,, they make 38", and divide 38", by 5 and ',, from which comes 7, and we shall say
that 7 cubits of cloth will be enough to make the robe.

It looks at first as if the text finds the area of the cloth in question and then divides by
the breadth of the second kind of cloth in order to find the corresponding length. However,
the units in the two dimensions are not the same. Maybe the compiler did not bother about
this difficulty — explicit dimension analysis, after all, was half a millennium in the future;
but maybe he merely used the technique of the inverse rule of three.
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In V, the inverse rule of three is indeed used — and as always in this manuscript, the
terminology used (the similar/not similar) is that of the direct rule of three, which at several
points has baffled the original compiler of M+F. Most likely, this time he did not fall
into the trap.

The next geometric problem certainly deals with area calculation (pp. 276, 436)

38]

A church, or indeed a building [palazzo1,°¥ is cubits 120 long, and cubits 36 broad,
neither more nor less. And I want to flag it with flags or slabs that are all of one and the
same magnitude. And each slab is long half a cubit and broad a quarter of a cubit. Say
me how many slabs are needed to flag the said church or palace, neither more nor less.
Do thus, firstly bring to square cubits the church or palace, and multiply the length against
the breadth, that is, 120 times 36, they make 4320, and so many square cubits is the whole
floor of the palace, that is, 4320. And similarly bring to square cubits the slab, and multiply
the length of the slab against the breadth, that is, a half times Y, it makes %, and we
shall say that 8 slabs enter in each square cubit. And we want to know how many slabs
enter in cubits 4320. Multiply 8 times 4320, which make 34560, and we shall say that
in the whole floor of the church or palace enter 34560 slabs, neither more no less. And
it is done. Make thus the similar.

If you want to prove it, say thus, in the length enter 240 slabs, and in the breadth
4 slabs for each cubit, multiply thus 4 times 240, they make 960, and so many slabs enter
in breadth for each cubit, that is, 960. And you want to know how many enter in 36 cubits.
Multiply 36 times 960, they make 34560. We thus find our computation again.

The method by which the problem is solved asks for no explanation, but it still invites
a commentary. We observe a particular kind of proof, namely a calculation by a different
method; such checks, not only of the result but, so to speak, also of the method, turn up
repeatedly in abbacus texts.

Finally, two problems deal with volumes; first this one (pp. 269, 433):

Somebody lends to a friend of his a chest full of feeding grain. And this chest is in all
directions 4 cubits, that is, long and broad and high. And after a certain time had passed,
the one who had lent the grain asked his friend, who said, I do not have a chest made
as the one which you lent me, but I have two chests, each of them in all directions 2 cubits,
that is, 2 cubits in height and two cubits in breadth and 2 in length. Say me if he is paid
with these two small chests for his large chest, or how many times he shall give them
full. Do thus, firstly bring to square cubits the large chest, and multiply for the length

3 Una chiesa overo palazzo. V has una sala overo piazza, which agrees much better with the
reference to a length and breadth only — when referring to a “hall” or a “square” it is indeed possible
to think only of the floor that is to be paved; for a “building” with several rooms this is less near
at hand. The compiler of M+F seems to have misread piazza as an abbreviated palazzo
(p’lazzo), and to have replaced V’s “hall” by a “church” under the influence of problems he knows.
The problem type is indeed borrowed from the medieval post-agrimensor tradition, found in the
Carolingian Propositiones ad acuendos iuvenes [ed. Folkerts 1978: 62] as well as in the Geometria
incerti auctoris IV.38 [ed. Bubnov 1899: 355]. Both of these speak of a basilica.
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and the breadth 4 times 4, they make 16. And for the height multiply 4 times 16, they
make 64, and so many square cubits is the large chest, that is, 64 cubits, Now we bring
to square cubits the large chest, that is that we say it is 64 square cubits. And similarly,
we bring to square cubits the small chest. And we multiply for the breadth and the length
2 times 2, they make 4, and for the height multiply 2 times 4, they make 8, and so many
square cubits is the same chest, that is, 8 cubits. Now divide 64 by 8, from which comes
8, and we shall say that he ought to give back 8 small chests full of grain for one of the
large ones. And it is done.

This problem type is rather common in abbacus books, with varying numbers but mostly
powers of 2 for the sides, mostly cubic chests, and mostly more or less explicit hinting
at an intended fraud. As confirmed by other writings, stereometry was at the limit of
mathematical intuition. The failing distinction between square and cubic cubits — in
principle explainable as a conceptualization of volumes as made up of “thick surfaces
”, surfaces provided with a standard thickness, which however is never made explicit
— will not have helped.

Another stereometric problem determines the number of ashlars of given dimensions
that go into a wall of given dimensions. The solution follows the same pattern as the
determination of the number of slabs in the church floor, omitting only the proof.



Practical geometry with approximate determination of square roots

The chapter on practical geometry is much more orderly, and is announced in these
words (pp. 284, 440):

In the name of God, amen. Here we shall begin to speak of all modes of measures, and
firstly we shall speak of the compass-made round. And about this we shall show an
example by proper rule.

We observe, firstly, that Jacopo (also in V) speaks of measures, not of geometry, as
one might expect if the Latin post-agrimensor tradition had been in the background (or
Fibonacci’s “practice of geometry”, for that matter, the Pratica geometrie ).

Secondly, we take note of the use of non-technical terminology, “round” (fondo ),
not “circle” (cerchio ); there are several similar examples, though sometimes the technical
term is used first.

The promised first example runs like this:

There is a terrain, which is all round by compass, and its a4
circumference, that is, that which it goes around, 44 cubits.
Say me how much is its diameter, that is, (how much it is)
by the straight in middle. This is its proper and legitimate rule.
Always, when you know the circumference of a round, and
you want to know how much it is by the straight in middle,
then divide its circumference by 3 and ', and that which
results from it, so much will its diameter be, that is, the
straight in middle. And similarly when you know the straight
in middle of a circumference and you want to know in how
much it goes around, then multiply the straight in middle by 3 and ', and as much as
it makes, in so much does the said round go around. Thus, as our rule says, we should
divide the circumference of the round, that is, 44, by 3 and 1/7. And say, 7 times 3 and
'/, make 22, and say, 7 times 44 make 308. And it is as much to divide 308 by 22 as
44 by 3 and ', from which 14. And we shall say that the said circumference shall be
14 by the straight in middle. And it is done, and do in this way and by this rule with all
the circumferences, when you want to know the diameter, such as I show you the form
here.

As we see, the Archimedean approximation to the ratio between perimeter and diameter
is taken to be plain exact truth; this is so in all abbacus writings. None know about
arguments in the Archimedean style. Instead, V (p. 285) has its own kind of demonstration
before the words “thus, as our rule says ...

And if you should want to know for which cause you divide and multiply by 3 and ',

% Paolo Gherardi’s Libro di ragioni, written in Montpellier in 1327, does distinguish between rules
di misure and di giomatria [ed. Arrighi 1987], where the latter might indeed refer back to the Latin
post-agrimensor tradition; but this seems to be unique, and therefore cannot count as firm evidence
of anything.
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then I say to you that the reason is that every round of whatever measure it might be is
around 3 times and Y, as much as is its diameter, that is, the straight in middle. And for
this cause you have to multiply and divide as I have said to you above.

We may not find this demonstration very persuasive, but we should observe the
presence of the idea of demonstration, an appeal to a general principle. We may indeed
claim that the Archimedean approximation serves as an axiom (cf. below, p. 384), though
obviously not a part of any axiomatic system.""!

Next follows the reverse calculation, the determination of the circumference from
the “straight in middle”, taken to be 19 cubits.

As third comes the determination of the area (terreno) when the circumference is
22 cubits. At first the diameter is found to be 7 cubits, next the area is determined as
the product of circumference and diameter divided by 4.

This primacy of the perimeter does not characterize abbacus geometry broadly. Jacopo
shares it with two other treatises also written in Provence, one (the Liber habaci — below,
p- 173) around 13009, the other (the Trattato di tutta I’arte dell’abacho; above, p. 12) from
ca 133411 _ clear evidence that Jacopo had gone to Montpellier in order to learn from
the local environment, not only with the aim to disseminate Florentine knowledge (a point
we shall return to)."*?

Two problems teach how to find the diagonal of a right triangle and the hypotenuse
of a square (pp. 286, 441):

A terrain with three edges, the two edges straight and the other edge skew, of that size
that one side, that is, the straight side, is 30 cubits. And the other side is 40 cubits. Say
me how much the skew side of the terrain will be, that is, from the tip of one side of the
terrain to the other. Do thus, multiply 30 times 30, they make 900, and multiply 40 times
40, they make 1600. Now join together 900 and 1600, they make 2500. Now find the
root of 2500, that is 50. And we shall say there are 50 cubits from one tip of the terrain

“0'We are thus far away from the Euclidean system. Not necessarily very far from what Hippocrates
of Chios had done in his analysis of lunes, however. Hippocrates appears in the same way to take
as foundations in need of no further argument such things as the Pythagorean rule and the
proportionality of areas to the square of a linear dimension — thus things which Near Eastern practical
geometers had known and used for well over a millennium; cf. [Hgyrup 2019c: 163-177].

! Apart from that, I have observed it in two 15th-century writings, not properly abbacus treatises:
a Praticha di geometria e tutte le misure di terra [ed. Arrighi & Nanni 1982], written in the earlier
15th century by Tommaso della Gazzaia, a nobleman from Siena, “for his pleasure, taking delight
in the science of geometry” [Van Egmond 1980: 187], and also in other respects close to Jacopo
and thus probably (given the respective dates) borrowing from him; the other a Praticha di
gieometria [ed. Arrighi 1970a] written by the military engineer Giorgio Martini around the mid-15th-
century, sharing some particularities with Tommaso della Gazzaia.

“2His way to present the rule of three is Italian, however, is not Provencal — cf. the analysis of
Ibero-Provencal ways below, p. 176 onward.
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to the other, as I show you its diagram [forma ] here.
A square terrain, which is 10 cubits by each face. I want to know
how much there will be from one corner'* of the terrain to the other,
measuring across. Do thus, multiply 10 times

10 10, they make 100, and double 100, they 40 50
are 200.' Now find the root of this number,
0 wb?/ o that is, of 200, which is 14 and 1/7. And it is
done. And we shall say that this terrain is,
measuring [quadrare ] by the edge, 14 cubits and s
10 '/,. And in this way make all the similar.

V specifies that 14" is “the closest, because precisely it cannot be found”. As we shall
see, and as confirmed by other texts, this is a technical term for the first approximation
obtained by the standard method,

Vn?+r =« n+ L

2n

Later in the chapter there are other problems involving the Pythagorean rule, and a
section teaching how to find “the closest” approximation to a square root. But first there
is an intruder that has little to do with measure or geometry"*®' (pp. 287, 441):

A serpent is at the foot of a tower, which tower is 30 cubits high, and the said serpent
wants to climb to the top of the tower. And each day it climbs a third of a cubit, and in
the night it descends a fourth of a cubit. Say me, in how many days the serpent will have
climbed to the crown of the tower. Do thus, say, '/; and Y, are found in 12, and multiply
12 times 30, they make 360. Now take ‘/3 of 12, which is 4, and take '/4 of 12, which
is 3. Now detract 3 from 4, one remains, and divide 360 by 1, from which comes 360.
And we shall say that in 360 days will the serpent climb the tower, as I show you in
drawing. And you could also make the said computation in a different way and say, '
and Y, are found in 12, a third is thus ¥, and a fourth is ¥,. The Y is thus %, more
than Y,. And because Y is Y, more than a fourth, the serpent advances every day Y,

4 Canto, the term here translated “corner”, is used (alternatingly with the synonym cantone) in
the preceding problem about the side, and there translated “edge”. The terminology is obviously
vacillating, not yet technical.

*Here, V has the misleading explanation “multiply one face of the terrain against the other, that
is, 10 times 10”.

*V insists on the misunderstanding, “further multiply the other two, 10 times 10”.

“The problem type is known under the name leo in puteo, “the lion in the pit”, after the earliest
known version offered in the Liber abbaci [B177;G302]. Afterwards Fibonacci offers another version
speaking of two serpents, one coming from the top of a tower and the other from the ground, both
with alternating motion.
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of a cubit. In 12 days it thus advances 1 cubit. And we want it to advance 3o
30 cubits. Multiply 12 times thirty, they make 360. And it is done. It thus
comes in one way as in the other.

First of all we notice that the solution misses the recreational prank
of the problem: after 357 days, the serpent has advanced
37,, =297, cubits. The next day it reaches the top; it then probably does
not slide down any longer, but in any case this is immaterial for the ¥
answer: after 358 days, the serpent has reached the top. The use of the
dress simply as a pretext for subtracting one fraction from another and
then dividing by the outcome is no particularity of the compiler of M+F,
it is shared not only with V but also with abbacus books in general (we
shall encounter an exception below, p. 170), and even with the Liber
abbaci, which however formulates itself in terms of a single false position. 36e

Noteworthy is also that we encounter a second instance of the check u
of the method, not merely of the result. The second way of the text is
identical with that of V. The first, instead, is independent, or perhaps inspired by a different
source.

After this arithmetical aside, the text returns to measures, first the measure of a
rectangular area (pp. 288, 442):

A terrain which by its two larger faces is 60 cubits, as you see drawn,
and by the other two it is for each face 17 cubits, say me how much is
this whole terrain in area [quadro ]. Do thus, because it is by one face
60 cubits and by the other face 17 cubits, then multiply 17 times 60, which %
make 1020. And we shall say that this whole terrain is 1020 square cubits. °r o
And always, when you want to bring to area whatever terrain it may be
with equal sides, as we have said, then multiply the length against the
breadth.

This straightforward rule invites a linguistic observation: Jacopo has no specific term for
arectangle, technical or otherwise. Once a “terrain” is specified (in drawing and measures)
to be quadrangular and to have equal opposing sides, then it is assumed by default to
be rectangular. Such default understanding is much more common in mathematical thinking
(even ours) than we are usually aware of: who, even among those who have learned in
school about negative, broken and irrational numbers, would ever think of anything
belonging to these categories when asked to “think of a number”? Even the mathematician
will assume without reflecting that the one who asks means “a positive integer”, and will
at most think of -V as a provocation.

After this, Jacopo returns to the tower, but now as a dress asking for application of
the Pythagorean rule (pp. 289, 442):

A tower, which is 50 cubits high. And at the foot of this tower there is a moat, which
is 30 cubits broad. Now I want to carry a rope or string which reaches from the border
of the moat until the crown of the tower. Say me how long the said string will be. Do
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thus, say, since 50 cubits is the height of the tower, then multiply 50
times 50, they make 2500, and because the moat is 30 cubits broad, then
multiply 30 times 30. they make 900. And join together 2500 and 900,
they are 3400. Now find the root of 3400, which is 58 and %,, and so
long should the rope be that reaches from the border of the moat until
the crown of the tower, that is, cubits 58 and 9/29. And it is done. And
here I show you the diagram in order to understand better.

The calculation itself asks for no explanation. Once again, nothing
is said about the approximate character of the square root; in V (p.
289), even this time, we find “that is, the closest, and closer one
cannot find”; but even in V, the explanation only comes later.

A similar problem follows, in which the height of the tower is
told to be 40 cubits, and the length of the rope 50 cubits, the breadth
of the moat being asked for.

Before explaining how to find “the closest” square root, Jacopo
inserts another circle problem (pp. 290, 442):

A compass-made round which goes around in 100 cubits. Do thus, 100
and that is its proper rule, divide 100 by 3 and Y, in this way, say,
7 times 3 and 1/7 make 22, and say, 7 times 100 make 700. And as 31 1% o

much is to divide 700 by 22 as 100 by 3 and Y, from which comes
31 and %,. And so much is this round by the straight in middle, that
is, cubits 31 and %, of a cubit, such as I show you drawn in the
diagram.

This, of course, is a repetition of what has been shown already (see above, p. 34).
V (p. 290) is aware of that (“I have also said it to you above, (for) every round, if one
wants to know how much is its diameter, one shall divide by 3 and 1/7”), and also has
a detailed explanation of the division (transforming 3, into 22 seventh, and 100 into
700 seventh). All these reasons for the repetition have been left out in M+V.

Then comes the explanation of what a square root is and how it can be found or
approximated (pp. 291, 443):

This is a rule which shows us how to find the root of every number of which one can
find the root, or indeed the closest root that one can find. And this we shall show by proper
rule.

First we say thus, as example: The root of 4 is 2 because 2 times 2 make 4. And
the root of 9 is 3 because 3 times 3 make 9. And the root of 16 is 4 because 4 times 4
make 16. And the root of 100 is 10 because 10 times 10 make 100. And the root of 169
is 13 because 13 times 13 make 169. And the root of 10000 is 100, because 100 times
100 make 10000. And thus happens with every other number which you multiply in itself,
this same number is the root of its multiplication, as you have understood.

Now we shall say in which way the root can be found for every number for which
it can be found, namely the closest root. Know that you shall do thus. You shall find a
number which, when multiplied by itself, is closer to the number of which you want to
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find root than any other number. And then divide the remainder by the
double of that number which you multiplied. And in this way one finds
true or closest root.
And to this we shall say the example, and we shall say thus, a
find me the root of 10. Do thus, say, 3 times 3 make 9. And say, p
from 9 until 10 there is 1. Now divide 1 by the double of 3, that
is, by 6, from which comes Y. And join Y, above 3, they are 3
and Y. And we shall say that the root of 10 is 3 and Y, that is,
the closest root than can be found. And in this way and by this rule
you can find root to every number, or indeed the closest root that
can be found, by the rule stated above.

V is more detailed, both in the exposition of the rule for finding
the “closest root” and the example. Neither V nor M+F, however,
contains the least hint of an explanation why the rule works; this is
characteristic of the abbacus tradition as a whole, as is the expressed
belief that the “closest root” is indeed as close as one can get. If they had also presented
the possibility to approach from above (say, approximating V15 as 4— ., =3.875 instead
of 3+%., = 4 — the true value is 3.87298...), they would have discovered that this is not
true (not to speak of the possibility to iterate the process); but they very rarely do.*”
For geometrical use (or pretended use), what they offer was probably quite sufficient.
We may appreciate the drawing of a plant with root; in V it is much more beautiful.
Two more examples follow, the determination of the “closest roots” of 67 and 82.
Then follow applications of the formulas for finding areas and volumes. First rectangular
areas (pp. 295, 444):

A terrain which is 567 cubits long, and 31 cubits broad, as I show you drawn opposite
by diagram. And I want to build on all of it. Say, I want to build on all of it with houses
that are each 11 cubits long and 7 cubits broad, neither more nor less. Say me how many
houses you can lodge there so that you fill the whole terrain. Do thus, first bring to square
cubits the whole terrain, and multiply the length against its breadth, that is, 31 times 567,
that make 17577. And so many square cubits is the whole terrain, that is, cubits 17577.
And similarly bring the house to square cubits, and multiply the length against the width,
that is 7 times 11, they make 77. And so many square cubits is the house, that is, 77 cubits.
Now, if you want to know how many houses can be lodged there, then divide 17577 by
77, from which comes 228 and ¥,. And it is done. And we shall say that in this whole
terrain 228 houses and ¥, of a house can be made, neither more nor less. And in this
way make the similar.

As in the serpent-problem, we observe that the dress is not taken seriously: 7 divides 567,
but 11 divides neither 567 nor 31. It is therefore not possible to fill the terrain with houses

“"Below (p. 44) we shall encounter a case where Jacopo copies a calculation which starts with an
approximation from above, and even goes on with a (mistaken) second approximation. But Jacopo
seems not to understand what goes on.
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of the requested dimension. Apart from that, the text is quite 11
straightforward, and correct. 7

The problem type comes from the Latin post-agrimensor tradition.
Three versions occur in the Propositiones ad acuendos iuvenes [ed. 11
Folkerts 1978: 60f ]. In one case, houses there have to be built within 31

a trapezoid, in one within a triangle, and in one within a circle; the
houses are rectangular, that is, unable to fit precisely. The problems in
Geometria incerti auctoris 1V.35-37 [ed. Bubnov 1899: 354f] are

similar, and so are those of the Artis cuiuslibet consummatio 1.34-36 o

[ed. Victor 1979: 212-218]. From the latter treatise the triangle- and i o[
the circle-version went into the late-13th-century vernacular (Picardian) ©

Pratike de geometrie (1.34,36, ed. [Victor 1979: 504, 506]), which we o

shall encounter again in note 49. o1

When volumes are dealt with, Jacopo’s intuition fails (pp. 296, 444):

A square well, which is 2 cubits by each face, and is
50 cubits deep, and it is quite full of water. Now it
happens that a square column falls into it, which by

each face is 1 cubit and which is 25 cubits long. Say

me how much water flows out of the said well (

because of this column which falls into it. Do thus,

first bring the well to square cubits, and multiply 2

by 2, they make 4. And for the depth multiply 4 by

50, they make 200. And so many square cubits is the -L
S0

whole well, that is, 200 cubits. Now, similarly bring
the column to square cubits, and multiply 1 by 1, it
makes 1. And for the length multiply by 25, it makes
25. And so many square cubits is the column, that is,
25 cubits. Now divide 200 by 25, from which comes
8. And we shall say that 8 square cubits of water flow
out of the well because of this column which falls into
it, such as I show you the diagram of the well and the
column.

The fallacy is shared with V. Since the compiler of M+F has intervened actively in the
text, this means that the elementary mistake committed by Jacopo has been accepted by
somebody who was thinking through its subject-matter.*®! Stereometry was evidently
not the strong point of abbacus mathematicians. We observe in this connection that there
is still no distinction between the units for area and volume, both are measured in “square
cubits”.

The origin of the error can be understood from similar problems in the Liber

“V, on the other hand, may descend from Jacopo’s original by professional scribal copying.
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mahameleth (Latin version ca 1160, [ed. Vlasschaert 2010: 397; ed. Sesiano 2014: 536],
cf. below, note 76) and the Liber abbaci [B403f,;G618—620]. In these, together with the
dimensions of the column and of the well (in both actually a cistern) the contents of the
latter measured in barrels is given, and the quantity of outflowing water measured in
barrels is to be determined. In both, as here, the ratio between the two volumes is found
(here, 8), and this is then used to convert the volume of the immersed body into hollow
measure measured in barrels. There can be little doubt that this problem type, known in
Iberian area around 1160, reached the Provencal area and Jacopo from there, and was
miscopied without understanding by Jacopo or some predecessor of his (and, in the latter
case, re-copied without understanding by Jacopo and again by the compiler of M+F).
The next problem (pp. 297, 445) is also fallacious:

A terrain with five equal faces, as you see it drawn here, which
is called a pentagon, and by each face it is 8 cubits. Say me, how
much is this whole terrain in area. Thus is its rule, multiply one
of its faces by itself, that is, 8 times 8, they make 64, and multiply
3 times 64, they make 192. And from 192 detract one of the faces,
that is, 8, 184 remain. And it is done, and we shall say that this
whole terrain is 184 square cubits. and in this way and by this rule do whatever the terrain
is by face, if the faces are equal and if there are 5 faces, multiply always one of the faces
in itself and then make three times this multiplication, and from the total detract one of
the faces, and the remaining will be this whole terrain, as we have said.

This strange formula — immediately understood to be impossible by anybody who knows
about dimensional analysis (or its foundation in metrology, given that a change of unit
will change the outcome) — comes from the Latin post-agrimensor tradition, and ultimately
from the ancient theory of polygonal numbers. The nth pentagonal number is indeed
'/, (3n*~n), a formula taken over by Jacopo with omission of the factor %, — most likely
by a predecessor of his*").

“Tn V the factor 3 is indeed explained as the number of remaining sides, which presupposes that
the product of one of the faces by itself is replaced by the product of two of the faces (cf. also
note 44). Several variants of the formula must have been current in Provence — Paolo Gherardi,
writing in Montpellier in 1327 [ed. Arrighi 1987: 61], has the “correct” formula (3n’-n )/2. The
Trattato di tutta I’arte dell’Abacho (T,, fol, 137"") gives two procedures, first per ’arte di
rismetricha, then per giometria. The former prescribes to multiply 8 by 8, then by three, and then
to subtract the square of a side, leaving in total 128. The latter prescribes to multiply half the side
by the measured height (claimed to be 6%, — it should be 5.5055...) and then by 5, which yields
128%,, almost the same. This can only come from a repair of “Jacopo’s formula”, made by
somebody who had a better intuition of dimensional homogeneity. Since the Trattato di tutta I’arte
betrays no general familiarity with Jacopo’s Tractatus, a shared source for the mistake imposes
itself.

The method per giometria is shared with the Picardian Pratike de geometrie [ed. Victor 1979:
489], which however does not propose a value for the height. Since references to genuine measuring
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When dealing with a cone-shaped pavilion, Jacopo also runs into trouble (pp. 298,
445):

A pavilion, whose mid-pole [V: the post that supports it] is 40 cubits, and the cloth from
the peak of the pole until the lower border of the pavilion is cubits 50. Do thus, say, know
how much is all this cloth, and how much ground the said pavilion occupies under itself.
Do thus, say, because the cloth is 50 cubits long, then multiply 50 times 50, it makes 2500.
And because the pole is 40 cubits long, then multiply 40 times 40, it makes 1600. Now
detract 1600 from 2500, 900 remains, and find the root of 900, which is 30. And double
30, they make 60, and so much is broad the pavilion by the straight in middle, that is,
60 cubits. Now multiply 60 times 3 Y, which makes 188%,, and so much
is the whole circle of the pavilion around. Now, if you want to know how
much ground it occupies under itself, then divide the straight in middle of
the pavilion by half, that is, 60, from which comes 30. And similarly divide
in half the circle of the pavilion, that is, 1884/7, from which comes 94 and
% Now multiply 30 times 94 and %, which make 2828 and ¥,. And the
said pavilion occupies so much under itself, that is square cubits 2828 ¥,.
Now if you want to know how much is all the cloth, divide the diameter,
that is, 60, by ', from which comes 30, and multiply 30 times 50, they
make 1500, and so many square cubits is all the cloth of the said pavilion, i
that is, 1500 cubits. And it is done, as you see drawn in diagram.

The diagram in M is not very informative, as we see. The counterpart in V (next page)
is somewhat more convincing.

The fallacious answer to the second question is shared, however. Jacopo confirms
that he had no spatial intuition, nor experience with cutting cloth to fit a conic shape —
and the compiler of M+F no more."”

The answer to the first question is found in agreement with Jacopo’s basic formula
for the circular area, semi-diameter times semi-periphery, characteristic of Provence. We
may conclude that he found the problem here, and guess that his source shared his failing
spatial competence, which agrees well with what is said in note 50.

Even the next problem (pp. 300, 445), dealing with the simple plane geometry of

(as distinct from calculation on the basis of measures already known) are extremely rare in the
so-called “practical geometries”, a connection (hardly direct descent) is none the less almost certain;
cf. [Hgyrup 2009c].

30 This lack of spatial understanding did not lead Jacopo to invent a wrong solution — only to copy
one uncritically. The same fallacy (and the same doubly mistaken formula for the area of a regular
pentagon) is found in a geometry contained in the Latin manuscript Munich, Clm 26639 [ed.
Kaunzner 1978: 36, 39]. As argued by Kaunzner, at least the geometrical part of the manuscript
was written in the outgoing 15th century, but nothing in its texts betrays inspiration from the abbacus
tradition.
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a “shield” shaped as an equilateral triangle,”" appears to be copied without full
understanding:

A shield, that is, a triangle, which by the straight in middle is 5 cubits, say me, how much
will the said shield be by each face. Do thus, multiply 5 times 5, they make 25, and divide
25 by 3, from which comes 8 and Y, and join 8 and '; above 25, they

are 33 and ;, know that the said triangle will be root of 33 and Y, by face.

Find the root following the rule we have said, which root we say to be

5 and % less "7, not precisely, and so much will the shield be by face.

I show you the diagram in order to understand better. Make thus all the

similar. And this is understood about a shield which has faces equal in

measure.

The first step (shared with V) presupposes awareness that the half-side of an equilateral
triangle equals Y, times the height. This is not difficult to show — according to the
Pythagorean rule the square on two half-sides equals the sum of the square on one half-side
and the square of the height; but if Jacopo understood this, he would probably tell — when
it is within his reach he likes to explain things that are not quite straightforward. The
problem is thus likely to have been borrowed wholesale. The second part, the determination
of the approximate square root, supports this conclusion, since it is not done according
to the rule taught at an earlier moment.

Here, however, a comparison with the corresponding lines in V (p. 298) is informative:

Now find its root, that is, of 33 and Y, which comes to be 5 and 7, less ¥.

This looks suspicious. Why “7, less ¥4 and not just “%,? Calculation according
to the method that was taught would give

' The cyclopic dimensions of the “shield” (schudo ) in question — the cubit is ca 50 centimetres —
shows that the word serves as a semi-technical geometric term and does not refer to a real piece
of armour.



_44 —

1

8
3
331 = Stap =5

If we use the same method but approximating from above, observing that 33", =
36-2%,, we get

| »

2 2
3 7
Bs =6-3 =55
So, 57, is a first approximation reached through approximation from above." Now,
(5")* =333, =33'%,+%,. The correct second-order approximation (again from above)

would be , _;1_
33! — 5 __"_
33? = 557

g

Instead, the author simply subtracts the excess, obviously not understanding why the usual
approximation works. And then either he, Jacopo, or some further copyist on the way
toward V, miswrites %, as Y.

The compiler of M+F has obviously seen that something was wrong, and tried his
own hand. The usual first approximation from below gives him 5%. Since (5%)* =
34'Ls = 33'%+%L, a correct second-order correction (from above) would be a subtraction
of (¥ )/(2'5%) = %,. How this has become a subtraction of '/, I cannot explain®®*' —
but at least we see that the compiler knows about the possibility of a second approximation,
improving on the “closest root”.

Another problem about a “shield” follows, now with height 9 cubits. The first part
of the calculation goes as before, leading to the extraction of N 108, this time found as
10%; according to the method that was taught for the “closest root”. V instead repeats
the blunder of the first shield problem, subtracting the excess from the “closest root”.

After this, Jacopo (in both versions) gets back to something he appears to
understand (pp. 301, 446):

Two lances which are stuck in one plane, and one lance is 10 cubits long, and o
the other is 17 cubits long, and from one lance to the other there are 20 cubits.
Say me how many cubits there will be from one of the points to the other of
the said lances. Do thus, detract 10 from 17, 7 remain, and multiply 7 times
7, they make 49. And similarly multiply 20 times 20, they make 400, and join
together these two numbers, that is, 49 and 400, they make 449. And find the
root of 449, which is 21 and %,. And we shall we say that from one point
of the lance to the other there are cubits 21 and %, of a cubit. And it is done. -
I show you the diagram.

21t is possible that 33", has been reexpressed as '*Y, = **Y, and the root of 300 = 32424 then
found by approximation from above as 18—>%.,,. The outcome is the same.

3 1n [2007: 22], calculating badly I suggested (2-57%)/36, which is indeed """, .
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The mathematics asks for no commentary — but we may take note of the dress which,
like the towers with moat and the pavilion, reminds us that the artisans and merchants
who sent their sons to the abbacus school lived under the conditions of endemic
warfare.>¥

The next problem, also a rather simple application of the Pythagorean rule, is
characteristic of Jacopo: it borrows a traditional dress but uses it for a different
mathematical purpose (here, as repeatedly, a much simpler purpose; pp. 301, 446):

There are two towers in a plane, as I show you drawn. And one tower is 20 cubits high
and the other is 25 cubits. And in the middle between these two towers there is a goblet,
as you see drawn. And from one tower to the other there are 100 cubits. And on top of
each one of these towers there is a dove, which wants to go drink from this goblet. And
from one tower to the other there is 100 cubits, and they set out at one and the same hour,
and fly equally, one as the other. Say me how much earlier one will be there than the
other to drink from the goblet. Do thus, say, because from one tower to the other there

(R
Ik

is 100 cubits, then divide 100 by half, from which comes 50, and multiply 50 times 50,
they make 2500. And because one tower is 20 cubits high, then multiply 20 times 20,
they make 400. And join 400 above 2500, and you have 2900. Now find the root of 2900,
which is 54 less %;. And in so much will the dove come to drink which is on the tower
that is 20 cubits high, that is, in 54 cubits less ¥, of a cubit. If you want to know when
the other dove will be there, then multiply 25 times 25, they make 625. And similarly
join above 2500, they are 3125. And find the root of this, that is, of 3125, which is 56
and ',,, and in so much will the other dove be to drink of the goblet, that is, in cubits
56 and Y,,,. Now detract from 56 and Y,,,, 54 and ¥,, 1 and "%, remains, and in so much
will one dove be earlier to drink of the goblet than the other, that is, cubit 1 and %, of
a cubit, that is, the one that is on the tower of 20 cubits.

Traditionally, the dress of the two doves on two towers is used for a different purpose:

> Obviously, from this and so many other texts it appears that these conditions were taken for
granted. In the words of the Danish poet Otto Gelsted, “Under the crumbled walls / rot the forgotten
corpses. / On top of the heaps / the children play at war®. (Note added in April 2022, another
moment of war reaching the “Western” media.)
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instead of giving the position of the goblet, it is stated that the two doves not only set
out but also arrive at the same moment — that is, the distances from the tops of the towers
to the goblet are the same. The solution builds on application of the Pythagorean rule
to two equilateral triangles that have one side (namely the hypotenuse) identical and the
sum of two corresponding sides given (here the distances of the goblet from the towers).
The same trick serves in the determination of the height of a triangle with given sides.
That is observed by Mahavira in his ninth-century Ganita-sara-sangraha (VI1.201%2-203Y2,
ed. trans. [Rangacarya 1912: 249f7), whereas Paolo Gherardi has a correct but only halfway
argued solution in his Libro di ragioni [ed. Arrighi 1987: 65-67]. The Liber habaci
(equally Provencal, we remember) has a sham solution which only works for its specific
parameters, while the Columbia Algorism (late 13th century, as we shall see on p. 166,
and linked to the Ibero-Provencal region) prescribes a correct calculation without any
argument (while replacing the doves by falcons and the cup by a duck). This may have
been too difficult for Jacopo (and most abbacus writers). Instead, as we see, he changes
the problem in such a way that nothing but simple use of the Pythagorean rule is required.
We may wonder that he measures time as length, but as familiar from 14th-century
Aristotelian natural philosophy, velocity (“motion’) was not a developed, quantified notion;
Jacopo’s choice is after all the best he can make.

Less adequate are the determinations of the square roots. V (p. 303) claims the root
of 2900 to be 537%,,, while the usual “closest root” is indeed 53°Y,,, (almost certainly
a writing or copying error). M and F instead approximate from above, which should give
54—%,,. M instead has an indubitable “54 less %", while F [ed. Simi 1995: 32] gives
“4 less ¥,,”. V correctly approximates V3125 from below as 55'%, (p. 303), while M
as well as F try an approximation from above (in principle a good idea). This should give
56-",,, — but both write “56 and ',,”. The difference found by both, which on the
conditions of F should be (56+,,,)—~(54—",,), is given as 56—(54+%,,). We may conclude
that the common archetype for these two manuscripts (not necessarily the text of the
original compiler) had %, and not ¥, — but also that the familiarity of the compiler with
approximations from above was more than counterbalanced by other shortcomings of his.
In German, there are two terms for this kind of misrepair of a text: Verschlimmbesserung
and Verballhornung. For some reason, there seems to be no established correspondingly
colourful equivalent in English.

A problem follows in V as well as M+F (pp. 303, 447) about a rather impossible
building — gutters (pioveroi) being put in a position where they cannot serve to collect
the rain falling on the roof. Instead they serve as pretext for another application of the
Pythagorean rule, leading to the extraction of V569. V approaches from below, which
gives 237, , and adds the same erroneous correction term as in the shield problems (here
(*hs)* = *%,,). This time M+F do not venture into independent calculation but simply
omit the additional term.

M-+F close the chapter by showing how to extract the (“closest”) root of 101. This
has no counterpart in V.
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All in all, Jacopo’s “practical geometry”, in either version, has little to do with the
genuine practice of surveyors or with the use of their measurements in the determination
of rent or taxes.



The coin list

The next section brings us back to what is needed in commercial life — more
precisely, in exchange reaching beyond local trade. Its introduction runs (pp. 331, 448):

In the name of God, Amen. Here are written all modes of alloys of coins, and similarly
all alloyings of gold and silver and copper, how are alloyed one coin or bullion of gold
in ingots, or silver of all rates.

And we begin thus. You shall know that one ounce of fine gold is 24 carats. And
the baser the gold, the less carats are there in the ounce.”® And the better the gold,
the more carats are there in the ounce. And similarly happens with silver, but silver is
alloyed at ounces, or indeed at denari of weight. And the silver that holds 12 ounces per
pound is fine silver and good and pure.

A list of coins of 6 pages (fol. 42'—44" in M) follows. It may at first astonish a modern
reader that only the fineness and not the value in terms of some standard is indicated.
The explanation is obvious, however: as long as the value of a coin was its metal value
and not guaranteed by some central bank, the only thing that was certain was the fineness
(unless the coin was counterfeited). The quantity of metal had to be controlled by weighing,
since some small clipping (or simply honest wear at the touchstone) might have reduced
it. We may look at an extract:"”

fiorini of gold from Florence are alloyed at carats . ................. 24 per ounce
Augustales of gold are atcarats . . . . ........ .. ... ... ... 20'/, per ounce
Perperi pagliolati are at carats . .............. ..., 15 per ounce
Dobre dell’Amira are at carats . ...............c..uuueeeo.... 23/, per ounce
Dobre del Rascetto are at caratS . . ............c.oveuueenneon.. 23/, per ounce
Castellani of gold are atcarats . ................c.vvuirnnn... 23/, per ounce
Alfonsini of gold are at carats .. ............... ... .. 20'/, per ounce
Tornesi of gold are atcarats . ................uuuninieiennnnn.. 237, per ounce
Old Bezants of gold are at carats ... .............. ... 24 per ounce
Old communal and intermediate Perperi of gold are at carats . . ......... 17 per ounce
Saracen Bezants of gold, of which 12 go per ounce, are at carats ........ 15 per ounce

% “Next” in M+F; in V, the geometry and the coin list are separated by several chapters of algebraic
character — see below, p. 181.

% The established value of the carat was 4 grains, that is, ', of a Roman solidus, and fineness
was measured as carats in a solidus, not of an ounce [Zupko 1981: 79]; cf. above, note 22. Since
this was always used as a relative measure (different from when the weight of diamonds is given
in carats), the definition given here actually changes nothing. The mistake, or whatever we will
call it, seems to be of French-Provencal origin, cf. [Hgyrup 2007: 123f].

5 The full lists of M+F as well as V (almost identical) are in [Hgyrup 2007: 448—452, 331-336],
the latter with translation. The full list is also transcribed in [Travaini 2003: 104—108]. Lucia Travaini
further gives a full description of all the coins listed in this and a number of other coin lists (pp.
235-313); my commentary draws on this description.
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— 26 more gold coins follow —

Here are written what all silver coins contain.

Tornesi grossi . ... ... are at ounces11Y, per pound
And it is to be understood that the pound is of 12 ounces of fine silver in all alloyings

Medals™ from Tours, first class, are at oUNces . .................. 11, per pound
Medals [from Tours], third class, are atounces . .................... 11 per pound
Carlini and mergugliesi and barzellonesi are at ounces 11, per pound
Sterlings . ............... ... are at ounces . . .......... 11 denari 2 per pound
Venetiani from Venice ......... are at OUNCeS . . . ...« .ov v ... 117, per pound

— 14 more silver coins follow —

Here are written the alloyings of small coins

Parigini of first class are at denari 5 and grains 18 of alloy™”
Parigini of second class are at denari 4 grains 16 of alloy
Parigini of third class are at denari 3 grains 14 of alloy
Old Tolosini “with the cross” are at denari 6 grains 18 of alloy

— 50 small denominations follow!®” —

First of all we notice the wide commercial network implied by the coins: Perperi
(from hyperperon ) is a Byzantine coin; pagliolati refers to the dynasty of Palaeologoi,
the “communal” were minted by the Nicaea dynasty during the crusader occupation of
Constantinople during the first half of the 13th century. Augustali had been minted in
Sicily by Frederick II of Hohenstaufen and Charles d’ Anjou. Dobre (“‘double”, originally
double dinar) were minted in the Iberian Peninsula and in the Maghreb (“Amira” is
Almeria, Arabic al-Mariyya). Castellani were Castilian emulations of the dobre. Alfonsini,
minted by Alfonso VIII of Castile, were also emulations of a Moroccan dobre. “Bezant”
was used about the hyperperon in the Latin world, but also about the many imitations
from the crusader states and the Islamic Mediterranean (Jacopo’s “old bezants” are
probably from Egypt, his “Saracen bezants” from the Jerusalem Kingdom). Tornesi, as
we remember, are from Tours in France. Carlini were minted in Naples, mergugliesi in
Montpellier, barzellonesi in Barcelona. Sterlings were English (then as now), Parigini
were from Paris, folosani from Toulouse. The many coins left out above are mostly from
the same region but add German areas.

Since the coin list is present in V as well as M+F (with minor variations, apart from
the final addition in M), we may safely assume that it was also present in Jacopo’s

¥ Medaglia, from medius >medialia, is mostly a half-denaro, here however the half of a more
valuable unit.

% “Denari of alloy” actually corresponds to ounces per (light) pound; cf. note 22.

%0 34 of these, all dealing with Lombard coin, are a secondary addition and absent from F as well
as V. They have obviously been important in the environment where M (or some precursor later
than the shared compilation of M+F) was produced.
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original. Jacopo is likely to have copied an existing list — after all, he was almost certainly
neither a money-dealer not a banker. Since one of the coins, the rinforzati from Provence
(not present in the extract) was only coined from 1302 onward, while other coins from
1303 are not included [Travaini 2003: 102], the list he copied must have been a quite
recent list.



Alloying problems

The coin list calls for no mathematics beyond the numbers indicating fineness. The
last chapter in the treatise, about alloying, does. Indeed, it contains nothing but
mathematics: one will look in vain for technical advice about the refining or alloying of
bullion, and also find nothing about assaying.

All calculations are straightforward and well explained, and there are few repetitions.
The metrology is the same as in the coin list — ounces and carats for gold, pounds, ounces,
denari and grani for silver and copper.

V contains an explicit transition between the two chapters (p. 337):

Here end all the alloys of coins. Now we begin to make some computations of alloying.
M-+F start directly with a problem (p. 452):

I have 60 ounces of gold which is 16 carats per ounce, and I want put it in fire and refine
it so much that it becomes of 21 carats per ounce. Say me how much these 60 ounces
will become in weight, taken out of the fire when it is of carats 21, neither more nor less.
Do thus, know how many carats of gold there are in the said 60 ounces which you put
in fire before, and multiply 60 times 16, they make 960, and so many carats was the gold
that you put to in fire before, that is, carats 960. Now if you want to know how much
it will become in weight, then divide carats 960 by 21, because you want it to become
of carats 21, from which comes 45 and %, and they are ounces. And we shall say that
the said 60 ounces which you put in fire at carats 16 per ounce, will become, when taken
out of the fire, ounces 45 and 5/7 of an ounce, and will be of 21 carats per ounce. And
it is done.

This is followed in M+F by a strictly analogous problem (absent from V) where the
resulting gold is requested to be of 24 carats. As we see, there is no reference to a general
rule (for instance, the inverse rule of three, which would be fully adequate, cf. note 37);
instead, the reasons for the single calculational steps are made clear.

After these two comes a mathematically simple problem of mixing, shared with V
(pp- 338, 452):

I have 7 ounces of gold, which is at carats 19", per ounce. And I have 9 ounces of it
which is of carats 20 and Y, per ounce. And I have 16 ounces of it which is of carats
21 and % per ounce. And I also have 20 ounces of gold of carats 23 ¥, per ounce. Now
I want to fuse all these four golds together and make an ingot of them, thus mixed together.
Say me how much this whole ingot will be in weight, and of how many carats of gold
per ounce it will turn out to be precisely. Do thus, firstly know how many carats of gold
you have in the first 7 ounces, which is of 19, carats per ounce. And multiply 7 times
19, carats, which makes 136 and Y, that is, which are carats. And we shall say that
in the said 7 ounces there are 136, carats. [similarly for the other golds]. Now join
together all these carats, that is, carats 136/, and carats 182", and carats 346 %, and carats
475, which in total are carats 1140 and ¥, of a carat. Now similarly join together all the
gold, that is, ounces 7 and ounces 9 and ounces 16 and ounces 20, which in total are
ounces 52. Now divide all these carats, that is, 1140 and 5/12, by 52, from which comes
carats 21 and **Y,,, which is well over %,. And we shall say that this whole ingot will
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be ounces 52, and of carats 21 and ¥,. And it is done.
At the end, V adds

And thus all the similar computations are done. And if you might want to fuse together
of 100 rates of gold and of different rates, then do always by this rule. And you cannot
g0 wrong.

This is evidently the reason to illustrate the principle by means of four different alloys;
the compiler of M+V either has not understood that purpose or, more likely, has found
the observation superfluous. Apart from that we may have a look at the rounding (present
only in M+F). Expressed as a decimal fraction, **'/,, is 0.931..., certainly well above
¥, and pretty much closer to 1. We may think the precision to be poor, but it may perhaps
have a decent reason. In the coin list, the fineness of gold coins is mostly given with a
precision of Y/, of a carat. “Well over” 217, carats thus ensures that the ingot is presented
with no more than its actual value, while the closer approximation 22 carats would be
fraudulent. Like the welsche Praktik, the safe rounding may thus have been inserted with
the purpose of adapting the text to the conditions of the market.

The next problem (pp. 339, 453) is of the type referred to in note 4 as a model
explaining the principle of the double false position:

I have bullion which is at denari 11 of alloy®" and bullion which 3 4
is at denari 4 of alloy. Now I want to make a coin that is at denari 11 4
7 of alloy, neither more nor less, and I want to alloy 100 marks of
it. Say me how much I should put of each of these two bullions in
these 100 marks so as to get 100 marks at denari 7 of alloy. Do thus,
say, the alloy which I want to make is at denari 7, and the highest
bullion I have is at denari 11. We shall thus say, from 7 until 11 there
is 4. And take marks 4 of the contrary bullion which is at denari 4 /3 — 33
of alloy. And similarly say, from 7 until 4 diminishes 3, and take
marks 3 of the contrary, that is, of the one which is at denari 11 of
alloy. Now you have alloyed marks 7 of denari 7 of alloy. And you
have put marks 4 of the bullion which is of denari 4 of alloy, and
you have put marks 3 of the bullion which is of denari 11 of alloy. /42 5471
And we wanted to alloy 100 marks. Therefore multiply 3 times 100 7100 — 700
marks, they make 300 marks, and divide 300 by 7, from which comes -
42 and %. And so much is needed of the bullion which is at denari

11 of alloy. Now multiply 4 times 100, they make 400, and divide in 7, from which comes
marks 57 and '/, of mark, and so much is needed of the bullion which is at denari 4 of
alloy. Now we have alloyed 100 marks of bullion, which is at 7 denari of alloy. And we

7

/4 — 16
N7 —— 49

157 228

S[IRIENTES

51 Cf. note 59 for the expression “of alloy”. In the present calculations, the denaro is taken to be
Y, of a mark.
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have put 42 marks and % of bullion that is of 11 denari of alloy, and he!™ has put
there 57 marks and ', of bullion which is at 4 denari of alloy. Now join together marks
42 and % and marks 57, which are 100 marks. You have thus alloyed 100 marks of
it. And by this rule you can alloy as much of it as you wish. Let us now verify whether
we have alloyed well, and it is verified in this way. And say thus, in the said 100 marks
that you have alloyed at denari 7 of alloy, there enter denari 700 of alloy. Now let us
see whether we find again the said 700 denari. Say thus, we have alloyed and put there
marks 42 and % of a mark at denari 11 of alloy, in which there are 471 denari and %
of a denaro. And you have put there marks 57 and ', of bullion which is at denari 4 of
alloy per mark, in which there are denari 228 and ¥,. Now join these denari together,
that is, denari 471 and ¥, and denari 228%,, which in all are denari 700. We have thus
alloyed well, since we precisely found again the said 700 denari. It would have been a
pity if we had found more or less.

The accompanying diagram comes from V and is absent in M and F. Another striking
difference is that V explicitly uses the partnership model for the determination of how
much each sort should contribute to the 100 marks (a capital of 7 and a profit of 100 to
be shared between partners having invested 4 respectively 3).

The charming closing remark is an innovation of the compiler of M+F — V closes
with a reference to the diagram.

The following two problem are analogues of the ingot-problem and of the one just
discussed. At the end (pp. 344, 455) comes this:

This is a general alloying of four bullions, and in the said way we may alloy gold and
silver and copper of whatever fineness they be and however much you may want to make
the alloy. And in this way you may alloy however many bullions or coins it may be. And
this we shall write hereby, and similarly we shall show it materially by diagram, how
the said alloying is made and how the bullions are to be taken.

First say, I have bullion of four kinds. The first is base bullion and is of denari 3 of
alloy, the second is of denari 4 of alloy , and the third is at denari 9 of alloy, and the
fourth is of denari 12 of alloy. And I want to make a coin that is at denari
7 of alloy, neither more nor less, and I want to alloy 30 marks of it. Say , 5 5 3 4,
me how much T shall put into these 30 marks of each of these bullions so 73 ¢ 9 127
that the said 30 marks be alloyed at denari 7. Do thus, say, the alloy that
I want to make is at denari 7, and the best bullion I have is at denari 12,
therefore say, from 7 to 12 there are 5. And take marks 5 of the contrary,
that is, of the basest bullion, which is at denari 3 of alloy. And similarly
say, from 7 to 3 diminishes 4, and take marks 4 of the contrary bullion,
that is, of the best, which is at denari 12 of alloy. And further say, from 7 until 9 there
are 2, and take marks two of the bullion that is of denari 4 of alloy. And similarly say,

52 This sudden shift to the third grammatical person is present in M as well as well as F. Abbacus
masters in general were no great mathematicians, nor great masters of style. Unmotivated jumps
into the third person are still rare, but vacillation between “I do”, “you do” and “we do” are
pervasive — thus also in the present problem, and in its counterpart in V.
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from 7 to 4 diminishes 3, and take marks 3 of the bullion that is at denari 9 of alloy. Now
we have alloyed marks 14 of bullion at denari 7 of alloy, having put there marks 4 of
the bullion that is at denari 12 of alloy, and having put there 5 marks of the bullion that
is at denari 3 of alloy; and having put there marks 3 of the bullion that is at denari 9 of
alloy, and having put there marks 2 of the bullion that is at denari 4 of alloy. Now you
have known how much is needed of each of these 4 bullions. And we wanted to alloy
30 marks. Do thus, join together all these marks, that is, 4 and 5 and 3 and 2, they are
in all marks 14, and this is the divisor. Now, because you want to alloy 30 marks of it,
then multiply 30 times 4, they make 120, and divide 120 by 14, from which comes 8§ and
%,, and so many marks of fine silver will enter in the said 30 marks. Now multiply 3 times
30, they make 90, and divide 90 by 14, from which comes 6 and ¥,, and so many marks
are needed of the silver which is at denari 9 of alloy, that is, marks 6 and 3/7 of a mark.
[...]. Now join together all these marks which you have put together, and know whether
they are 30 marks, that is, marks 8 and % and marks 6 and ¥, and marks 4 and % and
marks 10 and %, which in all are marks 30. We have thus alloyed 30 marks of it. And
in this way you may make all alloyings.

Explicit liber Tractatus algorismi. Deo gratias.

Evidently, this problem (shared with V) is strongly underdetermined; what is offered
is a possible solution. Most noteworthy is perhaps the reference to a diagram, which is
in neither M nor F but only in V — one of many indications that V is Jacopo’s original
version.

V, once again, has an explicit reference to the use of the partnership model. M+F
has eliminated it, but this time a trace remains, the reference to “the divisor” (cf. above,
p- 24).

The final explicit and reference to divine Grace is obviously not present in V, which
goes on with a collection of 32 mixed problems. But the routine religious tone is not rare
in abbacus texts. The commercial environment and its teachers may not have been much
influenced by the ecclesiastical prohibition of usury (relative as it was) — but sinning (in
this as in so many other environments and situations) did not prevent pious attitudes (cf.
above, note 25).

This was one abbacus book among many — and because it seems to be a recast of
an original — a recast meant to adapt the text to the school environment — probably as
representative as a single specimen can be, apart from the occasional Provencal colouring
and from the absence of algebra, included in many abbacus books (as also in Jacopo’s
original). However, even this absence (shared by many other abbacus books) reflects its
adaptation to the school environment. In any case, we shall return to the algebra contained
in V and to abbacus algebra in general in chapter IV.



II1. Fibonacci and the Fibonacci story

From the references in the preceding chapter to analogues in earlier sources it is
obvious that abbacus mathematics had roots in preceding mathematical cultures. Since
Italian traders had direct interaction with neither Indian nor Chinese mathematics, the
most important inspiration must have come from the Arabic world. There are admittedly
some borrowings from Latin post-agrimensor geometry, and also some influence from
the Byzantine world, to which we shall return; but the overarching importance of the
Arabic influence is obvious already from the first part of the standard curriculum of the
abbacus school: the teaching of the Hindu-Arabic numerals and their use.

It is widely claimed in popularizations (in print and on the web) that Fibonacci was
the one who brought the Hindu-Arabic numerals to Europe.'*” Historians of mathematics
know better — after all, Jacopo’s title Tractatus algorismi refers to al-Khwarizmi’s
introduction to the topic, translated as Dixit algorismi rather early in the 12th century.*"
Even historians of mathematics, however, have tended to believe that abbacus mathematics
descends from Fibonacci’s writings. Thus, Elisabetta Ulivi, one of best scholars in the
field, explained in [2004: 44] that

the name “abbacus school” designates those secondary-level schools that were essentially
dedicated to practical arithmetic and geometry and were in the tradition of Leonardo
Pisano’s Liber abbaci and Practica geometriae,

and in [2002a: 10] that libri d’abbaco

were written in the vernaculars of the various regions, often in Tuscan vernacular, taking
as their models the two important works of Leonardo Pisano, the Liber abaci and the
Practica geometriae.

These are comparatively weak statements — after all, “in the tradition” and “take as models”

83 Cf. this (which even mistakes Europe for “the world”):

Fibonacci is considered to be one of the most talented mathematicians of the Middle Ages.
Few people realize that it was Fibonacci that gave the world the decimal number system
(Hindu-Arabic numbering system), which replaced the Roman numeral system.

(https://www.thoughtco.com/leonardo-pisano-fibonacci-biography-2312397, accessed 3 February
2020, defunct 12 May 2023). It would not be difficult to put together a whole collar of idiocies,
but this single pearl should suffice.

 According to André Allard [1992: xv], the manuscript of a descendant treatise was copied in
Toledo around 1143. [Folkerts 1997] contains a critical edition with German translation of the treatise
itself.
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are rather open claims. Much stronger was the assertion of Van Egmond [1980: 7] that
all abbacus writings “can be regarded as [...] direct descendants of Leonardo’s book”,
repeated [Van Egmond 2008: 303] in the statement that the “trattati o libri d’ abbaco [were]
clearly modeled after LEONARDO PISANO’S Liber abbaci of 1202”. Raffaella Franci and
Laura Toti Rigatelli said in [1985: 28] that “the abacus schools had risen to vulgarize,
among the merchants, Leonardo’s mathematical works”, yet adding cautiously on p. 45
that

in Florence, in the 14th century, at least two algebraic traditions coexisted. One of them
was inspired by Leonardo of Pisa and was improved by Biagio the Old and Antonio de’
Mazzinghi, the other, the beginning of which is unknown until now, has Gerardi [i.e.,
the above-mentioned Paolo Gherardi / JH] as its first exponent.

As we shall see, there is nothing in Biagio’s and Antonio’s algebraic writings that
points to Fibonacci; but at least Franci and Toti Rigatelli had seen that not everything
in the abbacus tradition comes from Fibonacci. Arrighi [1987: 10] goes further in this
direction, suspecting Paolo Gherardi’s Libro di ragioni as well as the Liber habaci — in
toto, not only Gherardi’s algebra — to be either re-elaborations or translations of French
(that is, Provencal) writings (there is no algebra in the Liber habaci). As we shall see
in the chapter IV, this is a perspicacious observation.

In chapter IV we shall see more: namely that Fibonacci’s presumed role in the
formation of the abbacus tradition is not as much an overstatement as an illusion. However,
in order to see that we shall need a closer view of the Liber abbaci. This will also
contribute other insights that will serve later — and finally provide necessary background
when we come to those “abbacus encyclopedias” which did take up material from the
Liber abbaci around 1460.

The Liber abbaci is very famous, but not rarely misrepresented; for that reason this
closer view will have to be quite extensive. It follows Fibonacci’s own order.



The Liber abbaci, the autobiography, and the meaning of the title

Nine complete or fairly complete manuscripts of the Liber abbaci survive, listed in
[Giusti 2020: xxix—xxxi]. The full edition made by Boncompagni in [1857] was based
on a single manuscript from the 14th century.®” The English translation made by
Laurence Sigler and published in [2002] was based on this edition,’ and Ji Zhigang’s
Chinese translation on that of Sigler. [Germano & Rozza 2019] is the first volume of an
intended complete critical edition with accompanying Italian translation (so far containing
only 5% of the complete text), while [Giusti 2020] (published when most of the draft
for the present chapter was written) is a full critical edition. In what follows, if no other
information is given, references to the Liber abbaci indicate the page numbers in
[Boncompagni 1857] and [Giusti 2020] in the format [Bm;Gn ], as already explained in
note 32.

The Liber abbaci is usually taken to have been written in 1202, and then revised in
1228. All manuscripts containing the beginning of the work give the date 1202 for the
first edition, which can therefore be relied upon.®” The precision of 1228 is subject
to more doubt.'”® In any case, for my present purpose it is not important whether the

5 Now Florence, BNC, ms. Conv. Soppr. C. I. 2616. One other manuscript is judged by Giuseppe
Germano [Germano & Rozza 2019: 72, 79, 81] as well as Giusti [2020: xxix, xxxi] to be certainly
from the 13th century, and two others from the 13th—14th century.

About one of the latter (Vatican, Pal. Lat. 1343) I have wrongly claimed at several occasions
that it is incomplete, misled both by the electronic version I used in the Vatican Library reading
room and the CD which I bought from the Vatical Library later. Apart from a few lacunae, it is
actually complete — only the scan was incomplete. In the meantime the Vatican library has put
a full high-quality scan on the web (which I have used when needed), at the address

https://digi.ub.uni-heidelberg.de/diglit/bav_pal_lat_1343?ui_lang=ger
(last accessed 12 May 2023). Boncompagni, living in Rome in the Papal State, had studied this
manuscript [1852: 32]; he did not betray why instead he used a Florentine manuscript for his
edition — possible explanations are the lacunae in the Vatican manuscript, or the omission of many
of the marginal schemes and the sketchy character of many others.

When referring to this manuscript (henceforth V), I shall make use of the most recent foliation.

% Unfortunately, Sigler died in 1997, leaving his work on floppy disks which were kept so long
by the intended publisher without being used that their format was out of date when his widow
Judith Sigler Fell claimed them back, one even being lost. What was published was thus the fruit
of a recovered incomplete electronic text combined with immense work by Fell on Sigler’s
preliminary notes for the lost part and the formatting — see [Devlin 2017: 106—114]. Readers of
Heinz Liineburg’s ungenerous review [2003] should take this into account (and also be aware that
Liineburg commits blunders more serious than anything he can reproach Sigler).

 With a minor doubt: in medieval Pisa, the year was counted from the Incarnation, meaning that
Pisa’s year 1202 — likely to be the one Fibonacci thought of — began at Julian 25 March 1201 and
ended at Julian 24 March 1202. “1202” is thus quite likely to be 1201. But he could have thought
of some other calendar, maybe even one whose “2002” went from our Easter 2002 to our Easter
2003. Similar doubts concern the dating of all Fibonacci’s works. Cf. [Ulivi 2011: 250f7].

5 Two of the manuscripts of certain or possible 13th-century origin (and one more) state that “here
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year is precisely 1228, so I shall henceforth speak of the second edition as being from
1228.

All known manuscripts descend from the 1228 edition — with one exception. Giusti
[2017] has discovered that in the manuscript Florence, Biblioteca Medicea Laurenziana,
Ms. Gaddi 36 (henceforth L; containing only chapters 12—-15), chapter 12 is quite different
from the corresponding chapter in the other manuscripts. According to strong internal
evidence, it is older (part of the evidence is presented further on in the present chapter).
As argued by Giusti, it is likely to represent the original 1202 version; I shall henceforth
speak of it as such; as with the “1228 version” with a proviso — namely, that we cannot
exclude that L. was actually the result of an intermediate revision of which we know
nothing (but see below, p. 83, on an observation that speaks against this possibility). In
any case, the copyist of L appears to have used at first a manuscript of this early version
and then, getting access to the revised version (a misfortune for historians!) switched to
that.

According to Giusti [2020: Ixxxiii], all surviving manuscripts except chapter 12 of
L seem to derive from a single archetype m, since all “show a series of omissions and
errors that cannot reasonable be attributed to the author”. Comparison of the two versions
of chapter 12 (taking into account the critical apparatus of both editions) reveals, however,
that the large majority of the w-errors in chapter 12 are also found in L.” This leads
to a different conclusion: Fibonacci conserved a master copy of the 1202 version, and
inserted new material into it while removing what had become redundant or what he did
not like at second thoughts (we shall encounter an example below on p. 72) without
engaging in a complete rewriting. All manuscripts were made from this evolving master
copy.l’™

In the introduction to the Liber abbaci (following a dedication to Michael Scotus,
and thus probably the original prologue from 1202) we read the following:"""

begins the Liber abbaci composed by Leonardo the Pisan of the sons of Bonaccio in the year 1202
[M°CC’II° respectively 1202 ] and corrected by the same 28 [XXVIII respectively 2817, while the
last manuscript of possible 13th-century date has “... corrected by the same in the year 1228” [Giusti
2020: xvii], which could be a copyist’s interpretation of the shorter variant. No other manuscript
gives discordant information, but indicating a year by XXVIII or 28 alone would be quite unusual;
on the other hand, the indication stands in parallel to the year of the original composition.

% Leaving out the 32 cases where the passage in question in the 1228 version has no counterpart
in L, there are 71 agreements or near-agreement between L and ® and only 19 agreements of L
with the corrected 1228-text (many of which could be produced by an alert copyist discovering
the mistake in his original).

70 As we shall see in note 481, even Fibonacci’s Flos and Liber quadratorum appear to have existed
as master copies from which further copies (dedicated to different patrons) were made.

' [B1;G4] — but Boncompagni, following his manuscript (which diverges from the others on this
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When my father, appointed by his homeland, held the post of public scriba (notary or
representative) in the custom-house of Bejaia for the Pisan merchants frequenting it, he
arranged for me to come to him when I was a boy and, because he thought it would be
useful and appropriate for me, he wanted me to spend a few days there in the abbaco
school,”™ and to be taught there. Here I was introduced to that art (the abbaco) by a
wonderful kind of teaching that used the nine figures of the Indians. Getting to know the
abbaco pleased me far beyond all else and I set my mind to it, to such an extent that I
learnt, through much study and the cut and thrust of disputation, whatever study was
devoted to it in Egypt, Syria, Greece, Sicily and Provence, together with their different
methods, in the course of my subsequent journeys to these places for the sake of trade.
But I reckoned all this, as well as the algorism and the arcs of Pythagoras, as a kind of
error in comparison to the method of the Indians (modus indorum).

From this, two things may be derived. Firstly, that Fibonacci cannot have been born much
later than 1170 — he must have had time to be active before 1202 as a widely travelling
merchant. Secondly, that he learned his mathematics not only in Bejaia in present-day
Algeria but also in Syria, Egypt and Sicily (strongly connected to the Arabic world), and
further in Constantinople (“Greece”) and Provence.

From the incipit (see note 68) we learn that a fuller version of the surname
“Fibonacci”, namely “of the Bonaccio family”, was already in use in the 13th century
(“Leonardo Pisano” could obviously only be used to identify him outside Pisa). We also
learn that the book was already supposed by then to deal with “abbacus”. Fibonacci himself
thought so too — in his Pratica geometrie [ed. Boncompagni 1862: 9, 24, 81, 148] he
speaks about it as “the abbacus book in a larger manner”, “our book on abbacus”, and
the “abbacus book” We cannot be sure, however, that the word meant the same to
Fibonacci as to writers of the generations where the abbacus school had been established.
We have no traces of the terms abacus/abbacus except as referring to the reckoning board
before Fibonacci, so he may well have grabbed it for his own specific purpose.” The

account), gives a text that only refers to Egypt etc. as “places of business”, missing that Fibonacci
had gone there as a merchant. The pure mathematician Georg Enestrom, wishing Fibonacci to belong
to his own kind, in [1906] used this as the basis for another brutal attack on Moritz Cantor.
The translation is due to Charles Burnett [2003: 87], who made a critical edition of the passage
and offers an extensive commentary. Passages in round brackets are Burnett’s explanatory additions.

72“Abbacus school” renders studio abbaci, which may as well mean “study of the abbacus”, It cannot
be concluded from Fibonacci’s words that he frequented something like the later “abbacus school”.
We have indeed no information about how this kind of practical arithmetic was taught in the Arabic
world — be it then that Ibn Stna’s father “sent me to a vegetable seller who used Indian calculation”
[trans. Gohlmann 1974: 21] (but that was 200 years earlier and some 5000 kilometres to the East).

3 To be precise, at least not in Italy. Two manuscripts of a commentary to Elements X, probably
due to Gerard of Cremona, characterize it as abbacus [Busard 1997: 31]. The manuscripts are from
the 13th and 14th centuries, but they may repeat a 12th-century term. There is evidently no reason
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next time it occurs seems indeed to be in a document from 1241 or slightly earlier stating
that the Pisa authorities had assigned a pension to Fibonacci because of his “abbacus
estimations and accounting” (abbacandes aestimationes et rationibus ) in the service of
the city and its authorities [Bonaini 1857: 241].74 It is quite likely that the authorities
had taken over Fibonacci’s word — perhaps already interpreting it in their own way.

The Liber abbaci does not help much, but it gives some hints. Firstly, chapter 13
is stated [B318;G499] to deal with “the elchatain rule [the double false position], by which
almost all abbacus questions will be solved”. The phrase “abbacus questions” points back
to [B166;G285], where it describes the contents of chapter 12: mixed, largely recreational
problems (see below, p. 77) — similar in genre to Jacopo’s collection of mixed problems
(certainly in neither details nor level).

Secondly, a root extraction “in the abbacus way” is explained on pp. 53f as a
combination of an algorithm for finding the integer part of the root of a multi-digit number
(seemingly a transfer to paper of an algorithm developed for a dustboard where deletion
and rewriting is possible) with the method for finding what later abbacus books speak
of as “the closest root”. The example is V743, and the result is 27 "227,- Here, “abbacus
way” clearly refers to a specific method and not to practical computation in general; the
two methods were well known in the Maghreb — they are described together in al-
Qalasadr’s Kasf [ed., trans. Souissi 1988: 57-60] (of later date, but an exposition of
inherited knowledge). The best guess is therefore that Fibonacci’s “abbacus” was meant
as an equivalent of Arabic mu 'amalat.” That semantic equivalence, if ever known
by anybody except Fibonacci himself (and if true), was soon to be forgotten in Italy; but
abbacus mathematics remained a close relative of mu 'amalat mathematics.

to connect this to Fibonacci’s very different usage.

™ The precise formulation should kill the hypothesis that he got it for holding an abbacus school.
The title magister given to him in the document proves nothing, it was used too widely about anyone
who was the “master” of others, whether of students, of serfs, of subordinate officials, artisans of
a craft, etc. See [Du Cange 1883: V, 168—173] and [Niermeyer 1976: 624f]. If instead of dictionaries
we trust Fibonacci’s own use of the term magistraliter (see imminently), it may simply designate
him as a learned man, which he certainly was.

Evidently, aestimationes cannot refer to teaching. It should rather make us think of urban
surveying for the city, which a number of 14th—15th-century abbacus masters are also known to
have practised — three examples are mentioned by Ulivi [2004: 52f, 58]. Rationes is probably
“accounting”, cf. present-day Italian ragioneria [also ragioneria di stato ].

7 In general usage “mutual, business, social relations”, whence “mu ‘amaldt calculation” designates
the mathematics of practical life — my thanks to Ulrich Rebstock for suggesting a more elaborate
explanation than I had originally offered.



Some general characteristics of Fibonacci’s project

If “abbacus” is really meant to render mu 'amalat, then Fibonacci’s Liber abbaci is
not only an indubitable parallel to the Liber mahameleth probably written in al-Andalus
before the mid-12th-century and more or less freely translated into Latin by Domingo
Gundisalvi or in his environment around 1260:" even the title will then in a certain
sense be the same.

The parallel, however, does not depend on whether Fibonacci really meant “abbacus”
to translate mu ‘amalat. Both the Liber mahameleth and the Liber abbaci had as their
aim to apply a theoretical perspective on practical arithmetic — representing, in Felix
Klein’s words and title [1908], Elementarmathematik vom hoheren Standpunkte aus
(“Elementary mathematics from a higher vantage point”). At times, this aim shines clearly
through Fibonacci’s language, which distinguishes between doing something secundum
vulgi modus (“according to the way of common people” — for brevity “in the vernacular
way”"") and similarly, contrasted to doing it secundum artem, “according to the art”
or magistraliter. At times, “the art” is specified as “the art of abbacus”, in a way that
points in the same way as the above-mentioned “abbacus way” to determine a square root,
toward numerical methods used in the Maghreb. At one point [B215;G359], “magistraliter
according to the same art” follows a few lines after a reference to nostrum magisterium,
“our teaching” — namely of a numerical method of the same kind. But this instance is
clearly not to be generalized, and the regular meaning is different.

Four examples will suffice (there are more). Firstly, on pp. 63f, the vernacular way
of adding ', and Y, is to find a reference magnitude whose '/; and '/, are integers, and

76 The prevailing opinion is that this Latin version is an original compilation. It is argued persuasively
by Jacques Sesiano [2014: xviii], however, that the work must have been produced in an Arabic
environment, and that the language of the original must have been Arabic, not Latin. Sesiano
suggests tentatively that it could be written by Johannes Hispalensis, John from Seville, before he
went to Toledo — namely because an indirect 15th-century quotation refers to him as hispanus and
of passages shared with John of Spain’s Liber algorismi. Serious arguments speak against this
suggestion. Some are formulated by Sesiano himself on the next page; to these comes that the
“Toledan Regule” (a second part of the Liber algorismi, ed. [Burnett, Zhao & Lampe 2007] has
a wholly different algebraic terminology than the Liber mahameleth — see [Hgyrup 2021: 42—44].

That the text contains a reference to what is normally done by “the Arabs” does not disprove
an original Arabic authorship. It agrees with Gundisalvi’s free translation style — in his translation
of al-Farabi’s Catalogue of the Sciences [ed. Gonzales Palencia 1953: 98] we thus find the
explanation that “the science of depths and heights, or of finding distances and many other things
of this kind, are contained in full in a book that is with the Arabs”. Combining this with the
discussion in [Burnett 2002b] of the identity/non-idenetity of John of Seville and John of Spain
it seems fairly safe conclusion that an Arabic original was written in al-Andalus and a free translation
produced around 1260, if not by Gundisalvi then by somebody close to him.

""n the Pratica geometrie [ed. Boncompagni 1862: 1] Fibonacci himself indeed explains vulgaris
as being quasi laicali more, “so to speak as laymen do”. The counterpart there is represented by
“geometrical demonstrations”.
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then measure the sum by this same magnitude (that is what is taught in Jacopo’s Tractatus,
cf. above, p. 16; cf. also Fibonacci’s tree-example, above p. 26). The alternative (here
not given a name) is to find the sum as '**',,. Secondly [B115;G198], the vernacular
way to multiply 5 B 6%, & by 13 is to multiply the B and the & separately. Thirdly
[B127:G219], a composite exchange of money can be done stepwise (the vernacular way)
or by means of a scheme for composition of ratios (by art). Fourthly [B364;G563], 4+\V10
is found first secundum vulgarem modum, specified to be secundum propinquitatem, “by
approximation”, VY10 being approximated as “less than 1% ") Magistraliter, instead,

410 = 16w/i0 810 = 16+/10 wa0960

The latter argument is accompanied by a line diagram, in which a line abc is divided into
ab = 4, be = \W10. Since nothing is done with this diagram, it seems to be there just
because it belongs with the magisterial way.

8 Most likely, V10 is found to be approximately equal to 3+ Y%, = 3% = "¥,. Next, V114 will
have been found to be approximately 10+, = 10'%,. Therefore, VN10 will be approximately
equal to 1%, slightly less than 1°%,,, = 1%.



Chapter 1 - introducing the Hindu-Arabic numerals

Fibonacci was not the first to teach Latin Europe about the Hindu-Arabic numerals;
as we have seen, even abbacus writers like Jacopo were to draw on Sacrobosco, who
continued a tradition inaugurated by the Latin translation of al-Khwarizm1’s treatise on
the topic. However, the foundation for this ascription of honour is obvious, namely that
Fibonacci starts by introducing the reader to them, first showing them and then indicating
(like Jacopo, cf. p. 12) their meaning in terms of what the reader would understand as
numbers proper — that is, numbers written with Roman numerals. This is supplemented
by a description of the system of finger-reckoning, followed by a corresponding depiction
(absent from some manuscripts). At the end of the first chapter comes tables for addition
and multiplication.



Chapter 2 — multiplication of integers

Chapter 2 [B7;G13] teaches the multiplication of integers with two or more digits;
here, the preceding instruction in finger reckoning comes to serve when intermediate partial
products are to be remembered. At the end comes, first, explanation of a purely mental
method, and then [B.19;G31] a presentation of another method, “very praiseworthy in
particular for the multiplication of large numbers”" This latter method was to be
known in abbacus writings as multiplication a scacchiera, “in chess-board”, and even
Fibonacci refers to a chess-board. The method is close to what was known also in the
Maghreb, and asks for addition in diagonal (apart from that, the basic principle is the one
we use today). It is a paper algorithm, different from those inspired by the use of a dust-
or clayboard, and as such the only thing in this chapter recalling later abbacus writings
(but as we see a method which Fibonacci speaks of as already existing, and which for
instance Giovanni de’ Danti [ed. Arrighi 1985: 14] was to speak of in 1370 as arte vecchia,
“old art”.

79 . . . . . . . . oy
This passage is misplaced in Boncompagni’s manuscript and hence also in his edition.



Chapters 3—4 — addition and subtraction

Chapter 3 [B18;G33] teaches the addition of multi-digit integers — including numbers
of libri, soldi and denari arranged in columns. The ultrashort chapter 4 [B22;G39] teaches
subtraction of a smaller from a larger integer (this time without monetary or metrological
applications).



Chapter 5 - division

Chapter 5 [B23;G43] is stated to deal with division involving integers, but also covers
auxiliary matters we would not automatically include under that heading — first of all the
writing of fractions by means of a fraction line, and the “aslc%nding continued fractions”,
like “four seventh, and one half of a seventh”, written 5—."" The fraction line is a
12th-century invention of Maghreb mathematicians, already used in the Liber mahameleth;
the notation for ascending continued fractions, also a Maghreb invention, is later and not
yet used in the Liber mahameleth, which instead uses words to render these composite
fractions, characteristic of Arabic mathematics.®!! Fractions of this kind can be continued
ad libitum — Fibonacci elsewhere goes until 10 levels.

Ascending continued fractions are used throughout the Liber abbaci as well as in
Fibonacci’s other writings. At the present point[B23;G44], Fibonacci introduces several
other notations (whether his own inventions or not is not clear):®?

2468 . 8 6 8 4

757 90 Meaning 5+5'g+35'5'5+3°5°5'3

2 4 68 . 2 4 8

03575 meaning 3'3°3°g

1115 . 5 01 1 1 1

5755 meaning 5+5(5+7+3)
None of these seems very useful, and Fibonacci agrees in practice (using them very
rarely™),

Tabulated divisions follow [B25f;G45-47], with divisors from i = 2 to 13 and
dividends 1 to 10i — for i<4 with indicated remainder, for higher i with omission of
dividends that do not divide. Next it is explained how this serves for divisions of larger

dividends by single-digit and then two-digit divisors. “With enough of division by two-digit

% Fibonacci takes over the Arabic right-to-left writing direction for numbers. In mixed numbers
he also systematically writes the fraction to the left (in all his works). In order to facilitate the
reading, in my translations I shall follow current habits, thus changing Fibonacci’s %2 into 2, —
and in order to distinguish fractions from ratios I shall write fractions with a slash, as stated above
in note ?. Within ascending continued fractions, for which no current habit exists, I shall follow
Fibonacci.

8 Explained for example by al-Qalasadi in the Kasf [ed., trans. Souissi 1988: 48f]. The appearance
of ascending continued fractions in various mathematical cultures until Fibonacci is described in
[Hgyrup 1990a], the story from Fibonacci until Christopher Clavius is told in [Vogel 1982].

% In the Boncompagni edition, the small circle is spoken of but actually omitted in the second line;
Vi (fol. 11%) inverts the positions of the circles in the two first lines, but they seem to have been
forgotten at first by the scribe and then pressed in afterwards. Later on, V; (e.g., fol. 115") agrees
with the other manuscripts [B312;G491].

831 have observed the first type on p. [B61;G101] (which teaches how to multiply such fractions),
the second on p. [B312;G491], [B313;G491] and [B339;G531]. [B77;G130], explaining how to
add and subtract such numbers, speaks about both types. By mistake they are not written in
Boncompagni’s manuscript; in the others they are.
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numbers” [B36;G62], the way to divide by composite numbers by means of factorization
follows.*4 Here the ascending cor}tir(l)ued fractions come to serve. For instance, on p.
[B38£:G65], Yys; is shown to be 557 (317 being prime — Fibonacci shows it has no
adequate divisors, trying all prunes below \317). When 749 has to be divided by 75 [B41;
G70], at first 5 is expressed as W Division of 749 by 3 yields 249, with remainder
2; division of 249 by 5 yields 49 2remamder 4; division of 49 by 5 yields 9, remainder
4. Therefore, the total result is 5559." This use of factorization was also familiar
in the Maghreb — the same procedure is shown by al-Qalasadi in the Kasf [ed., trans.
Souissi 1988: 42].

The chapter ends with a procedure for division by three-digit prime numbers that
cannot be factorized — still numeri hasam.

% The factorization of a composite number is spoken of as its “rule” (regula ). Correspondingly
it is explained [B30;G53] that non-composite numbers in Arabic are called hasam. This is indeed
the technical-mathematical meaning of asamm, “deaf” in the Maghreb, though mostly not elsewhere
in the Arabic world [Souissi 1968: 220f; Saidan 1974: 368]; for a 12th-century exception from
Baghdad that suggests the Maghreb usage may have been more widespread than we know, see
[Rebstock 1992: 130 n. 194]. In “Greek” (apparently contemporary, Byzantine Greek) they are coris
canonos (which must stand for ywpig kovavog), “We however call it ‘without rules [sine
regulis |’ — an evident calque on the Greek expression, which according to Fibonacci was already
current within an environment which he here characterized as “we” (when introducing a new term
Fibonacci uses the future tense, “we shall call it”). The following lines show that Fibonacci also
knows the Euclidean terms for prime as well as composite numbers.

244
% Boncompagni, and no doubt his manuscript, writes =559 » Without the necessary spaces. His text

errs regularly on this account, the 14th-century copyist was obviously not too familiar with the
notation for ascending continued fractions, and also did not follow the computations systematically.
V; (fol. 17") is correct.



Chapter 6 — multiplication of mixed numbers

Chapter 6 [B47;G79] deals with the multiplication of mixed numbers. ‘“Mixed
numbers” may contain an integer and one or several fractions — and here a fraction may
be simple or an ascending continued fraction, or even the first type “with circle” (above,
p. 66); for our present purpose there is no need to go into detail, since there is no specific
connection to what can be found in abbacus books.



Chapter 7 - addition, subtraction and division of mixed numbers

Chapter 7 [B63;G107] takes up the addition, subtraction and division of mixed
numbers, and the reduction of several fractions to one. On the whole, there is once again
no reason to go into details — yet with one exception.

This exception concerns part 7 of the chapter, dealing with the disgregation of fractions
into aliquot parts (also known as “unit fractions”). As well known, aliquot parts, including
%,, had been the standard way to express fractional quantities in Pharaonic Egyptian
mathematics, and they were taken over in ancient Greek practical arithmetic, and hence
also in the administration of the Byzantine Empire. For a while, the administration of
Syria and Egypt was continued in Greek after the Islamic conquest, and after the switch
to Arabic as administrative language in the outgoing seventh century [Robinson 2010:
209], accounting techniques including the writing of fractions may well have survived.
Then, around 1100, the Norman rulers of Sicily adopted Egyptian administrative practices
[Johns 2002]. So, among the places where Fibonacci states to have learned, at least Egypt
and Sicily are possible sources for his interest in aliquot parts. Much more likely, however,
is “Greece” (i.e., Byzantium). Six problems in the Liber abbaci either deal with something
supposed to have taken place in Constantinople, or they are stated to have been presented
to Fibonacci there. In three if them, the data contain no fractions [B190,274,276;
G324,440,443]. On p. [B188;G319], the data contain these fractions: %, ', — % ', —
'Y, — Y, Y%,. On p. [B203;G340], the data make use of the fractions % — Y. On p.
[B249;G405], finally, we find "5 % — Yoo Y %5 = Yess N s — Yo ' Tl = Yo 'y
"o %. If we remember that %, belonged since Pharaonic times to the category, this is
quite striking. All in all, Byzantium is thus most likely to be the location where Fibonacci
learned to find aliquot parts interesting. However that may be, Egyptian-style fractions
play no role in abbacus writings, and there is no reason to pursue the matter.



Chapter 8 — the rule of three

Chapter 8 is told to deal with “finding the price of goods in the major way” (per
maiorem guisam ). In abbacus terminology, that way would be spoken of as the “rule of
three”, but Fibonacci does not use this expression. Instead he explains [B83;G141] that

In all business, four proportional numbers are always found, of which three are known,
and the last one unknown: the first of these three known numbers is the number in which
any merchandise is sold, be it a number, a weight or a measure. A number may be a
hundred hides, a hundred goatskins, and similarly; weight, either cantari,® or quintals,
or pounds, or ounces and such; measures, metri® of oil [...]. The second is the price
of that sale, that is, its first numbers, whether it be any quantity of denari, of bezants,
of tareni, or some other current coin. The third how much is the quantity of merchandise
sold, whose price, that is, the fourth number, is unknown.

Fibonacci goes on with the possibility that it is the quantity sold that is unknown while
the price is known. He then explains how to insert the numbers in a rectangular scheme
and perform a cross-multiplication followed by a division.

For comparison, we may look at how al-Karaji deals with the same matter in al-Kafi
[ed. Hochheim 1878: 1II, 16] (my translation from Adolf Hochheim’s German):

Know that in questions about commercial transactions you must have four magnitudes,
which are pairwise similar, the price, the measure, the purchase amount and the quantity.
The price is the value of a measuring unit that is used in trade [...].
[...] Of these four magnitudes, three are always known, and one is unknown. [...].

As we see, the reference to four, not three magnitudes is shared. But that is as far as the
similarity goes, al-Karaj1 is obviously not Fibonacci’s source (he also does not refer to
a scheme). Other Arabic scholarly authors are just as different from what we see in the
Liber abbaci. Not least the scheme, emulating the writing on a dust- or clayboard, suggests
that Fibonacci describes in his own terms what he has seen in practical use, and does
not copy from a book.

After this introduction follow a large number of examples, sometimes complicated
by the need to perform a preliminary conversion of units (in the present context made
separately). First merchandise versus money is dealt with, then exchange of one coin (or
weight of non-coined silver) into another one (involving the subdivision of both in £,
and 8®%). Length (specified [B111;G191], as could be expected, to concern cloth) and

% Borrowed from the Arabic unit gintar, equal to 100 ratl, whence often translated “hundredweight”
In Italy varying between 100 and 250 pounds; the ratl, on its part, was borrowed as a rotulo.

¥ From the Greek metron, a capacity measure used in the Southern and Central Italy (which were
under strong Byzantine influence); depending on the locality between 10 and 30 litres.

% For example [B105;G180],
A Pisan £, that is B 20, is worth £ 1 Bolognese, and further 54 Bolognese [meaning 54 6 =
4'f, B], that is, B 20 Pisan are worth B 24"/, Bolognese. Therefore [B] 20 Pisan are worth
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other particular measures are dealt with in a number of problems, followed by a short
section about partnership (the “partnership rule” for proportional sharing being indeed,
as we remember, an application of the rule of three “in parallel”). The last part of the
chapter deals with difficult metrological conversions — first from romuli®™ of Pisan
cantari to light pounds, given that one cantaro equals 100 rotuli but also 158 pounds.

[B] 24", Bolognese, and £ 20 Pisan are worth £ 24", Bolognese. And it is asked how
many Bolognese are to be had for 117, Pisan. [...]

8 Cf. above, note 86.



Chapter 9 - barter

In the Boncompagni edition and in most manuscripts, chapter 9 begins [B118;G205]
with the words Incipit capitulum nonum de baractis mercium atque earum similium, “The
ninth chapter about barter and similar matters begins”. Before that, however, manuscript
Vi (fol. 47") has the words Hic incipit magister castellanus, “Here begins the Castilian
master”. Already Boncompagni [1852: 38], who noticed this passage, stated that no other
manuscript of the Liber abbaci known to him contains this passage, which remains true.
It is hardly imaginable, however, that a copyist should insert this reference to a Castilian
master on his own initiative.

An observation made by Giusti [2020: xlif] shows what has happened. The last part
of chapter 9 and the beginning of chapter 10 in V is copied from a different manuscript
than the rest, which must have had a lacuna here. The copyist is likely to have taken the
information about the Castilian master from this source (which, like the original for L
chapter 12, presumably represents the 1202 version).””!

There are thus fair reasons to accept the claim that this chapter (or its initial part)
is copied from an older Castilian treatise; that Fibonacci should have deleted the reference
during further work on the manuscript fits his habit of hiding his sources even he copies
verbatim.®"!

The topic of the chapter is thus barter, together with mathematically analogous
questions. Barter was not uncommon in late medieval trade. Cash currency was often in
short supply, and banks could not step in in all places and in all kinds of trade with
alternative financial instruments. A seller might therefore have to accept that a buyer paid
in kind. Obviously, that could be inconvenient, and therefore the value of the merchandise
serving as payment might be reduced compared to what it would be in cash trade. How
much lower, however, would be a question of commercial power, of transport costs if
the payment had to be realized in a different market, etc. Such questions, however, could
and cannot be dealt with in the abstract, and Fibonacci (as many abbacus writers) would
not mention them.”” Instead, they give rules for “just” barter, justice being tacitly

% Comparison with the other manuscripts shows that this plausible 1202 text (from [B130;G225]
onward) does not differ significantly from the 1228 text. No surprise, since the commercial topic
was not one that called for revision.

1 The only exceptions to this rule are Euclid (often mentioned, cf. [Folkerts 2004]) and a single
reference to Ptolemy and Ahmad ibn Yasuf when the compositin of ratios is dealt with [B119;G206].
As to verbatim copying, which can only be proved when we happen to possess and to recognize
the source, see [Hgyrup 2001: 93] on the use of the Liber mensurationum in the Pratica geometrie,
and note 148 below.

%2 Others do; the method is then that the seller, instead of accepting the merchandise of the buyer
at reduced price, augments that of his own if payment in kind is offered — cf. [Pacioli 1494:
1617%f] and, in general, [Tropfke/Vogel et al 1980: 521]. There is no guarantee that this corresponded
better to what real merchants would do: after all, the inconvenience of receiving payment in kind
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determined by the values of the respective merchandises in the actual trading situation.

The method is the one known elsewhere as the “rule of five”. Fibonacci, not giving
a name to the rule of three, obviously gives none here. Instead, he offers a “universal
rule” [B118;G205] for how to expand the calculational scheme so as to cover this more
complicated case. It is illustrated by an example: 20 cubits of cloth are worth 3 £, and
42 rotuli of cotton are worth 5 £ (both kinds of £ specified as Pisan). What then is to
be given for 50 cubits of cloth? The numbers are inscribed within a rectangular frame
as shown in the diagram, and it is explained that the ratio of the cubits of cloth to that
of rotuli of cotton is composed from the ratios 20 : 3 and 5 : 42. 520 cubits of cloth
are indeed worth 53 £, and 342 rotuli of cotton are worth 3-5 £. In consequence
520 = 100 cubits are worth 342 = 126 rotuli. By the rule of three we get that 50 cubits
are worth %9, rotuli. Following backwards the
calculation we see that 50 cubits are worth
034, = 63 rotuli, which is what is expressed in the & £

63 3 20
scheme. At the end, Fibonacci points out that this 5 / E\ubl e
composition of ratios is taught in the Almagest and by 42 5 50
“Ametus filius” (Ahmad ibn Yiasuf), and inverts the
calculation, finding that 126 rotuli of cotton are worth 50
cubits of cloth. A number of examples follow, some of which concern the exchange of
two coins, both of which are known with respect to the same third coin, and a final
example concerning five different coins “in cascade”. This is explained [B127;G219] to
be made “in the vernacular way” by stepwise calculation, and according to art by
composition of ratios (with extension of the preceding scheme).

A second part of the chapter deals with the exchange of bullions of different fineness,
which leads to analogous calculations, and a third with seemingly recreational problems
with the same mathematical structure and dealt with by means of similar schemes — for
example [B132;G228], a horses eat b sextarii of grain in ¢ days; in how many days will
p horses eat g sextarii? This latter problem is used as the basis for a theoretical
investigation of changes in what is given within composite ratios.

cubits

depended on the merchandise received. Medieval trade corresponded no better than its modern
counterpart to the frictionless idealizations of neoclassical economics.

Antonio de’ Mazzinghi (presented below, p. 226) shows in his Fioretti [ed. Arrighi 1967a:
31, 33] how this could be used to construct intriguing mathematical problems of the second degree:
for instance, two merchants exchange wool and cloth, both augmenting the price of their
merchandise.



Chapter 10 — partnership

Chapter 10 is dedicated to partnerships. Proportional sharing (within a partnership
or any similar structure) asks for nothing but addition of all shares followed by application
of the rule of three “in parallel”, and Fibonacci teaches how to organize even this
calculation within a scheme, first [B135;G235] for partnerships with two participants,
then [B139;G242] three, then [B142;G246] four. At the end comes a problem (1/3 and
'/, and Y5 and '/, of something add up to 60), where the partnership structure is used
explicitly as an abstract model (cf. note 27 and preceding text). Such explicit use of
familiar structures (either commercial or recreational) as general models recurs repeatedly
in the Liber abbaci.



Chapter 11 — alloying

Chapter 11 deals with alloying, and starts [B143;G249] by explaining the meaning
of the expression “I have coin at so and so many ounces, let us say at two”, namely that
“in a pound of that coin we understand ounces 2 of silver to be contained”. We have
already encountered this use of the first person singular in problems about money exchange
and alloying in Jacopo’s Tractatus above (pp. 28 and 51), and the usage turns up not only
in many other abbacus books [Hgyrup 2019a: 787f] but also in a Castilian merchants’
manual,” and further in a Byzantine arithmetic book from the early 14th (¥n¢ndpopikd.
Intipoto kol TpoPAfuarte, “Calculation Questions and Problems”, [ed. Vogel 1968:
21-27]), which appears not to be much influenced by the nascent Italian tradition. In this
Byzantine book, the first person singular is also used for other problem types — mostly
but not exclusively such as have to do with payment in gold coin. Fabio Acerbi (personal
communication, 7 January 2019) tells me that other Byzantine practical arithmetics do
as much. It seems most likely that the habit goes back to Byzantine money changers.

In his alloying problems Fibonacci does not use it, but at a later moment [B160;295],
when he reduces a problem of type “lazy worker” to an alloying problem, he introduces
the latter by the words habeo monetam ad 26 et ad 37 [...], “I have bullion at 26 and at
37 [...]I". As we shall see in a moment he also uses it when applying the model of simple
alloying in sub-procedures within more complicated alloying problems. He thus expects
the reader to recognize through this phrase the use of the alligation model — implying
that the phrase was already in use.

Fibonacci divides the exposition in seven differentiae. In the first [B144;G250] it is
asked how much coin of a given fineness can be produced from a given amount of pure
silver or copper by addition of copper respectively pure silver. In the second, for example
[B145;G251], 7 pounds at 5 ounces is to be brought to 2 ounces by addition of how much
copper? In the third, for example [B147;G255], how much pure silver has to be added
to 9 pounds of silver at 2 ounces in order to bring it to 5 ounces per pound? In the fourth,
for example [B148;G257], how much silver at 5 ounces has to be mixed with how much
copper so as to produce 30 pounds at 2 ounces? And also [B149;G259], what results if
several monies of given fineness are mixed in given proportion? In the fifth [B150;G260],
how to obtain a given quantity of silver of, say, 7 ounces, from equal quantities of silvers
of 4 and 3 ounces, respectively, by adding pure silver.

The sixth differentia deals with the problem type discussed in note 4: first [B151;G261]
how to obtain silver at 5 ounces from silvers at 2 and 9 ounces, respectively, then going
on with mixings of three, four and seven kinds of silver; these are obviously indeterminate
problems, which allows Fibonacci to make one or more free choices, for instance as done
in Jacopo’s “general alloying” (above, p. 53). All of these indeterminate problems make
use of the “I have” clause when a partial procedure is performed as a simple alloying.

% “And if they should say to you, I have three kinds of silver ...”. Real Academia Espafiola, Ms.
155, De arismetica fol. 151" [ed. Caunedo del Potro 2004: 45].
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The seventh differentia, finally, shows 11 examples of how the alloying model can
be used in other situations. With two exceptions (regarding simple numerical variations),
all use “I have” to signal the application of the alloying model.



Chapter 12 — mixed “abbacus questions”

As quoted above (p. 60), chapter 12 is presented [B166;G285] as containing “abbacus
questions”. The initial table of contents [B2;G5] instead says “on the solution of many
problems that have been posed and which we call rambling”. The collection of mixed
problems is, however, made less rambling by being organized in nine parts, insofar as
possible collecting structurally similar problems. Since it informs us about what Fibonacci
may have meant by “abbacus”, it deserves fairly close attention.

12.1, summation of series

Part 12.1 [B166;G285] deals with “collections of numbers”, that is, with the
summation of arithmetical series or of ascending squares.” First the principles are
set forth abstractly, then they are applied in problems of pursuit (one traveller moving
uniformly, the other with arithmetically increasing speed).

12.2, “proportions of numbers”

Part 12.2 [B169;G290] is about “proportions of numbers”, where proportio mainly
stands for ratio in the strict sense of a relation between two numbers a and b (written
in the following either a : b or %), thus not for the fraction ¢/, ; at times is stands instead
for what we would call a proportion, that is, the identity of two ratios, but often Fibonacci
here speaks about “proportional numbers”, numeri proportionales.®® At first, the naming
of ratios by the outcome of the corresponding division is explained, then [B170;G290]
the finding of a fourth proportional — “if it is asked about 6, to which number it has the
same ratio as 3 to 5”. The result is stated to be (5:6)+3. This is Fibonacci’s basic way,
unnamed but magisterial. Then follows:

In our vernacular usage it is in fact habitual to state this same question in a different way:
namely, if 3 were 5, what would then 6 be. And when it is stated like this, 5 is similarly
multiplied by 6, and the outcome is divided by 3.

After this “counterfactual” formulation of the rule of three follows, as “another way about
proportions thus”, a counterfactual calculation of the kind we encountered in Jacopo’s
Tractatus (above, p. 19):

* erraticas. Sigler [2002: 16] translates “On the solutions to many posed problems that we call
false position”, but in the chapter itself erraticus is only to be found in the heading of part 7, which
makes no use of a false position. Erraticus is thus no name for the single false position which,
as we have seen on p. 26, Fibonacci does not really like (however much he makes use of it).

% The latter topic [B167;G286] is absent from the early version in L.

*On one occasion [B171;G292] Fibonacci explains that “such a proportion is called
proportionalitas”, and twice [B171,222;G293,368] he refers to a continued proportion as
proportionalitas continua. This usage agrees with Boethius’s De institutione arithmetica 11.40 [ed.
Friedlein 1867: 137].
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If it were proposed to you that 7 were the half of 12, how much would be the half of
10? This can in fact be understood in two ways, namely, when if it is said, if 7 were the
half of 12; one may understand, either that the half of 12, which is 6, grows to 7; or that
7 is diminished to the half of 12, that is, to 6. Therefore, if 6, which are the half of 12,
grows to 7; therefore also the half of 10 grows: and then you will need this rule: you shall
multiply 7 by 10, and you divide by 12, 57 result for the half of 10. And if you want
to understand that 7 is diminished to 6, that is, to the half of 12. In consequence the half
of 10 is also diminished. And then you multiply the already mentioned 6 by the half of
10, that is by 5, they will be 30. Which you divide by 7, 4%, result; and so much must
then the half of 10 be. And in this way you can solve similar questions by which method
you like, of the two methods described. However, we are accustomed to always answering
those who ask according to the first method.

We observe, firstly, that Fibonacci presents the counterfactual calculation far away from
the rule of three (introduced in chapter 8, we remember from p. 70, as the “major way”),
not just as a secondary example. Secondly, his exposition of two different interpretations
of the question and his ensuing acknowledgment that “we” only use the first of them makes
it obvious that he refers to something familiar in his background environment (or, rather,
a segment of his background environment”®”), which he then exposes critically.

On p. [B170;G291] the text goes on with another critical reinterpretation of the habitual
(but here of a simple counterfactual statement), pointing out the connection to the rule
of three:

If ', were ',, how much would "; be? This question is as if it was said,

& B
', of a rotulo for Y, of a bezant. How much are worth 5 of a rotulo? : :
Therefore it should be written in the way of a commercial transaction, L.
and done according to what was done in similar cases in chapter 8, 2 10 5

accompanied by the apposite Ir}arginal scheme showing the organization
within a rectangular frame (5—7, we remember, stands for g+, = ).

From this critique of counterfactual statements and calculations Fibonacci moves to
purely (unnamed) “magisterial” matters, apparently added in the 1228 edition (they are
absent from L): How to construct a set of four integers in proportion — easy, since no
constraints are imposed; similarly, with six numbers,a : b =c : d =e : f; and [B171;G292]
how to divide 10 into four proportional parts (which is where the term proportionalitas
is mentioned, so as to distinguish it from a continued proportion); how to construct a
continued proportion with as many members as wanted. And finally, with several examples,
how to find numbers a and b such that fa = gb, f and g being given simple or composite

°7 Hypothetically it could seem that his basic exposition of the rule of three, with its suggested use
of a lawha, was based on what he knew from Maghreb trade; the counterfactual formulation, on
the other hand, appears to refer to an Iberian environment, cf. below. p. 176 onward. This would

explain that the two ways are presented at a distance. In general, when Fibonacci’s “we” can be
located, it appears to point to the Iberian environment.
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fractions (e.g., % and %, or Y+, and 's+',), with extension to three or four
numbers."®

12.3, “questions of trees ...”

Part 12.3 [B173;G296] is said to deal with “questions of trees and similar things,
in what way they are solved”. The beginning, about “a tree, of which '/; Y, is underground.
And they are 21 palms”, was already quoted above (p. 26); as we remember, Fibonacci
introduces both his own explanation and the one habitually used by practical reckoners —
namely the single false position. This double approach probably explains the slightly
awkward heading.

Next comes another problem about a tree, and then three more “about a tree or a
number, to which was added” some fraction of itself. Thereby it should be clear that a
method of general validity is taught — a method which is afterwards spoken of as the “rule
of the tree”.

The single false position (even when rationalized as done by Fibonacci) works
primarily for problems of the first degree.”” In the next
problem [B175;G298] Fibonacci shows how to use it in a specific b d
problem of the second degree: '/, + ", + "%+ (= 7'/g,) of a number
equals the (square) root of that number — in symbols, */,n = \n. 10X
This evidently leads to (*/,)*n* = n, and further to n = (°%;)*
Fibonacci does not indicate the intermediate calculations, but this
is exactly his solution; what he does (forgetting his previous
reinterpretation of the false position, which would indeed be
cumbersome here) is to posit that the number be 60. Since the
present fraction is unwieldy, he takes advantage of the fact that 2 T z
o = “hy » whence "“hyn = \n, and now gives a geometric

% In the case % a = %b, Fibonacci multiplies in cross by the denominators. This entails that 16a =
21b, an evident solution to which is a = 21, b = 16. Fibonacci has a more complex argument,
referring to proportion theory. Of course a = %, b = %, would already be a solution — but in context
like this, Fibonacci prefers to understand “numbers” as (obviously positive) integers if possible
(when 10 is be divided [B171;G292] to into 4 parts in proportion it is not).

%1t should be remembered that the degree of a problem is intrinsic and does not depend on the
tool used to solve it, which can be by guessing; by stepwise numerical approximation; algebraic;
or geometric.
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argument."”! ab represents n, while at is 1; therefore the area ad is also n. ae = az
represents '%,,n — and since ae is also \n, ak must equal n and therefore ad. Subtracting
ai from both, we see that ib = rk. This gives the proportion #i : id = ei : ik, whence
ti : (ti+id) = ei : (ei+ik). But ei = 1,1i = ae, and ti+id = ab, whence fi : (ti+id) =19 : 20,
while ei+ik = ae =n. Therefore 19 : 20 =1 : Vn,Vn = *,,. Fibonacci stops here, without
finding n itself.

This geometric argument, with its appeal to proportion theory (the first of many of
its kind in the Liber abbaci) is absent from L where it should be expected [ed. Giusti
2017: 34]; it seems to reflect an effort to raise the theoretical/magisterial level of the work.

A number of related problems follow, none of them provided with a geometric proof.
Then come (sometimes quite tangled) first-degree problems solved by means of the single
false position, now formulated in the vernacular way; problems about combined works
(about travellers meeting, emptying of casks, etc.; cf. above, p. 24). Even problems of
type leo in puteo (above, note 46) are dealt with here, which is only adequate because
Fibonacci (as later Jacopo and many others) misses the prank.

For one of these first-degree problems [B190;G324], a “give-and-take” question, an
alternative method by means of regula recta is introduced. A first man (A) asks from
a second (B) 7 0, saying that then he shall have five times as much as the second has.
The second asks for 5 9, and then he shall have seven times as much as the first. Reducing
it to a form where the “rule of the tree” can be applied is slightly intricate. In the 1228
version the argument is supported by a line representation (functioning much as an
algebraic argument),!'*"

1% Difficult to follow in the Boncompagni text, since the copyist has read c instead of ¢ (the two
letters may indeed be quite similar) in the lettering of the diagram, and also sometimes in the text.
The letter sequence a-b-t-d-... is unique in the work, and one may suppose that Fibonacci’s original
sequence in the master copy was a-b-c-d-..., some copyists systematically misreading (at least the
one who produced V) ¢ as ¢t (which suggests understanding of the argument), others instead
misreading inconsistently (note should be taken that this is the first lettered diagram in the book,

so copyists will have encountered it unprepared). As we shall see, a letter sequence a-b-c-d-... would

be firm evidence that Fibonacci constructed the proof himself. His introduction of the proof, “which

I shall also show by means of a geometric figure” (quod etiam demonstrabo cum figura geometyica
also intimates a personal explanatory commentary.

191 The use of the letter sequence a-b-g-d-... indicates that Fibonacci has taken over the argument
from an Arabic source; in principle, a Greek source would be possible, but as we shall see all
diagrams with this letter sequence where an origin can be tentatively established appear to be of
Arabic origin, while those which Fibonacci appears to have constructed himself have the sequence
a-b-c-... (reasons that we can really trust the lettering as indicator of origin are presented below,
p- 136). Since the method is used in an addition from 1228 to a problem already present in the
1202 version, Fibonacci may have adapted a borrowed diagram to the actual numbers; it is quite
possible, however, that his source had a problem with the same set of “interesting” parameters (5-7,
7-5).

In one respect, a line-based argument differs from rhetorical or symbolic algebra: It allows
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a e g d b
where ab represents the shared possession, and ag the possession of A, gb that of B. gd
is7,and eg 5. If B gives 7 to A, he shall be left with db, while A shall have ad. Therefore,
if ad is divided into 5 parts, each of these shall equal db, for which reason db is Y of
ab. Similarly, ae is ', of ab. That is, if "+ of ab is removed, we are left with 5+7 =
12 — which is solved by “the rule of a tree”. L instead gives a purely verbal argument

running along the same lines. The line diagram represents a tool which Fibonacci did
not use in 1202, and perhaps did not yet know.

For us, the alternative by regula recta definitely looks as a piece of equation algebra:
B is posited to possess a thing (res) and 7 8. After having received 7 , A therefore has
5 things, originally thus 5 things less 7 8. If instead B gets 5 & from A, he shall have
athing and 12 3, while A shall have 5 rhings less 12 . Therefore, a thing and 12 § equals
7 times 5 things less 12 & — etc.

Fibonacci explains that the regula recta is used by the Arabs, and is very praiseworthy.
He clearly does not think of it as belonging with the art of algebra; as in the Arabic
tradition and in the Liber Mahameleth, Fibonacci’s algebra (algebra et almuchabala) is
fundamentally a second-degree technique."%”

Fibonacci is not alone in the Latin world to speak about this rule. Under the name
regula it is made profusely use of in the 12th-century Liber augmenti et diminutionis [ed.
Libri 1838: I, 304-371] as an alternative to the double false position; in that work, the
unknown is called census, from Arabic mal, “possession” or “amount of money”. """
In the later 15th century, Benedetto da Firenze was to speak of it as modo
recpto/repto/recto (naming the unknown quantita instead of res); two encyclopedic
anonymous manuscripts from the same years do as much."® The changing names

ratio-taking between lengths, but does not (insofar as I have noticed) make use of coefficients beyond
the rudiments we see here — we find nothing like “4 times ac”. However, simple coefficients like
“twice” and “thrice” (bis, ter) do turn up (e.g., [B212;G355] and [B213;G356]) in verbal problem
solutions that could well be reformulations of line-based arguments. Below (p. 108) we shall
encounter a use of line diagrams where products of segments (not regarded as rectangles) play a
central role.

12 One element of the characteristic al-jabr terminology does turn up at times in regula recta
operations, namely restaurare, the operation that restores something subtracted on one side of the
equation — for example on p. [B260;G421]. Mostly, however (as here), Fibonacci argues that “when
equals are added to equals, the totals are equal” and “if equals are removed from equals, what remain
will be equal”.

19 Regula is also used in the manuscript Paris, BN, Latin 15120, a small 13th-century collection
of mathematical problems — see [Sesiano 2000: 78-82]. Since much of that text is borrowed verbatim
from the Liber augmenti et diminutionis, this tells nothing new.

1% Florence, BNC, Palatino 573; Vatican, Ottobon. lat. 3307. All three are discussed in detail below,
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for the technique as well as for the unknown seem to indicate that Fibonacci did not
borrow from the Liber augmenti, while Benedetto’s deviating terminology could suggest
that it had been handed down through a teaching tradition rather than in writing — fresh
borrowings from the Arabic after 1450 seem unlikely.

Instead of coming from the algebra tradition, the method may well go back to classical
Antiquity. Diophantos’s Arithmetica 1.15 [ed. trans. Tannery 1893: I, 36f] has exactly
the same structure as the present problem — A and B are numbers, and if A receives 30
units it will be twice what remains of B; if B receives 50 units from A, it will be thrice
what remains of A. Diophantos’s method also has the same structure: he posits B to be
1 arithmés plus 30, etc. This does not mean that Fibonacci had read Diophantos; book
I of the Arithmetic consists of (widely circulating) recreational problems or mathematical
riddles deprived of their concrete dress.'™ Even the use of the arithmds, “number”,
as name for the unknown was not invented by Diophantos, see [Vogel 1930].1'%!

The problem for which Fibonacci introduces the regula recta is said by him to have
been proposed to him by some master in Constantinople. However, since the solution
by regular recta was only added in the 1228 edition, there is no reason to doubt
Fibonacci’s words that his own direct source for it was Arabic. We should also remember
that problems were presented as challenges, and that it was up to the receiver to find the
solution — cf. Fibonacci’s reference to having learned the “cut and thrust of disputation”
on his travels (above, p. 59).

A number of similar but often more complicated problems follow which make use
of the same techniques; often they are provided with metamathematical commentaries,
for example about the existence of infinitely many solutions [B197;G332]. One [B203;
G340], about somebody selling three pearls in Constantinople for bezants (thus likely also
to have been encountered in Byzantium™®"), is similarly solved first by a false position,

p. 245 onward.

19 [ Tropfke/Vogel et al 1980: 610f] lists variants of the present structure, from first- and fifth-century

China, from Bhaskara II, from the Greek Anthology, etc.

1% The names for higher powers were also traditional (¢8oxiuéio®n, “it has been approved”), as
Diophantos tell himself [ed. Tannery 1893: I, 4]. That does not concern us here, but see [Hgyrup
1990b: 211f]

" When Fibonacci says that a particular problem was presented to him by a Byzantine master
[B188,190,249;G319,324,405], prices are mostly indicated in bezants — only one example [B190;
G324] deals with unspecific “money”; when problems tell stories taking place in Constantinople
[B161,203,274,296;G277,340,440,276,443], bezants are always used.

We cannot conclude with certainty that all problems referring to bezants are connected to
Byzantium, however. Firstly, we have evidently no guarantee Fibonacci would always connect
currency and locality in this way (cf. below, note 252); secondly, as mentioned on p. 49, bezants
were also minted in Arabic and crusader countries, and we cannot be sure that Fibonacci would
always specify when such variants are meant, as he does twice on p. [B137;G238] (hyperperi or
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next by the regula recta. This time the second solution is also present in L [ed. Giusti
2017: 78], yet without introductory words. It appears that Fibonacci already knew the
regula recta in 1202 but by then used it accidentally without noticing the need for an
explanation. Since any systematic revision would naturally lead to the discovery that an
explanation would be adequate, this observation (to which several parallels can be given)
supports the assumption that L really reflects the 1202 version, and does not descend from
an intermediate revision (cf. above, p. 58).

In 1228, the regula-recta solution stops after having found the thing, standing for
the price of the first pearl. L instead finds the complete solution. The 1228 version,
moreover, introduces yet another method [B203;G341], the regula versa, the “reverted
rule”, which here is nothing but a stepwise backward calculation.

At the end of part 3 come a large number of pure-number problems involving the
principle discussed at the end of part 12.2, numbers a and b where fia =f,b, f, and f, being
given simple or composite fractions. Often, the false position is not made explicit but
remains implicit in the numerical calculations that are performed.

12.4, finding a purse

Part 12.4 [B212;G355] is dedicated to a particular recreational problem type, “the
finding of a purse”. The first problem runs

Two men, who have denari, find a purse containing denari. When they have found it,
the first says to the second, “if I get the denari in the purse together with the denari 1
have, then I shall have three times as much as you”. Against which the other answered,
“and if I get the denari of the purse together with my denari, I shall have four times as
much as you”.

The argument runs as follows — A stands for the possession of the first man, B for that
of the second, and p for the contents of the purse (which is indeed spoken of in the
argument simply as bursa, “the purse”):

A+p =3B
whence
A+B+p = 4B
and thus
A+p = Y, (A+B+p)

This part of the argument makes use of a false position: if A+p = 3, then A+B+p = 4.
The next part, in which the corresponding calculation is made for B+p, does without a
false position and shows directly that

Saracen; and garbi, from the Arabic “West”). Still, the appearance of bezants may be counted as
circumstantial evidence.
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B+p = Y (A+B+p) .
Now a new false position is made, namely that A+B+p is a number of which ¥, and
4/5 can be found, for which 20 is chosen. Then A+p = 15, B+p = 16, and therefore
(A+p)+(B+p) = (A+B+p)+p = #31, whence p = 11, A = 4, B = 5. Alternatively, with
the same position, B = '/, (A+B+p) =5,A =", (A+B+p) = 4, p = 204-5 = 11.

So far Fibonacci has not observed that this is just one of many possible solutions.
However, a third solution by regula recta (not named here, and not to be found in L)
finds the ratios between A, B and p, and thus implies it."® It identifies A with the
thing, and then operates with the thing and the purse on an equal footing, that is, with
two unknowns." Since thing+purse is thrice B, B must be '/, (thing+purse ). Therefore,
if he gets the purse, he will have purse + ',purse + ';thing, which will be 4 things.
Therefore 4 purse = 11 thing. In consequence, p : A = 11 : 4.

A number of variations follow, where the men may be three, four or five, and where
they may find one, two, three or four purses (with given linear relations between their
contents). The principles serving the solution are the same, but obviously the calculations
sometimes become much more tangled. In others, the sum of possessions comes into play;
all of these are absent from L and thus added in the 1228 edition; they are even more

"% If anybody should doubt it, Fibonacci is thus fully aware that this indeterminate problem has
as many solutions as requested. That he does not say so shows that here and on this account at
least he obeyed the norm system of the recreational culture of mathematical challenges, where all
that was asked for was the ability to find a solution. This certainly disagrees with the norms of
present-day mathematics, and also with those norms which made AbtG Kamil ask for the complete
set of solution to the “problem of 100 fowls” in the Book on Fowls [ed. trans. Rashed 2012].

We shall soon (p. 89) encounter a more complicated problem solution where Fibonacci finds
the complete set of solutions.

1% To my knowledge, this use of two indubitably algebraic unknowns (according to the criteria
proposed in [Heeffer 2010: 61]) in the Liber abbaci has not been noticed so far. Heinz Liineburg
[1993], it is true, speaks much about equations with several variables, but does not observe the
difference between his own equations and those which Fibonacci occasionally produces by means
of the regula recta. In a note, Laurence Sigler [2002: 626] comes closer, but the final words of
the note shows him not to distinguish between unknown entities and algebraic unknowns.

It is no sensation, however: in the Flos [ed. Boncompagni 1862: 236], Fibonacci was already
known to have made use of the two unknowns res and causa. Neither there nor in the present or
following cases in the Liber abbaci is there any hint that Fibonacci believed to have introduced
something remarkable.

In Arabic (post-al-Khwarizmian) first-degree algebra, it was customary to use thing (Say ")
for the first unknown and coin names for the following ones — in Abii Kamil’s Book on Fowls [ed.
trans. Rashed 2012: 736-755] dinar, fels, and khatem. This method was not totally unknown in
the Latin world: a couple of times, the Liber Mahameleth [ed. Vlasschaert 2010: 209f] uses res
and dragma. Having learned the regula recta somewhere in the Arabic world Fibonacci may also
have learned about the variant with two unknowns there; we cannot know for sure, but below (p.
90) we shall encounter corroborating evidence.
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difficult. One about four men [B225;G372] will serve us later (below, p. 294), and may
conveniently serve as example:

The first and the second with the purse have the double of the denarii of the third; and
the second and the third the triple of the fourth, and then the third and the fourth the
quadruple of the first, while the fourth and the first with the purse similarly have the
quintuple of the second. The solution to this problem you will find by finding the ratio
of the denarii of the purse to the denarii of the first in this way. Because the first and
second with the purse have the double of the third, half of the denarii of the first and
second and the purse is as much as the denarii of the third man. Similarly from the other
propositions you will have that Y, of the second and third man and of the purse is as much
as the denarii of the fourth man, and Y, of the third and fourth man and of the purse is
the quantity of the denarii of the first, and Y of the denarii of the fourth and first man
and of the purse is the quantity of the denarii of the second. And because Y, of the first
and second and of the purse is the quantity of the third, the third part of the first and
second and purse, that is % of them, is Y, of the third man. Commonly are joined Y; of
the denarii of the second and purse: then will Y, of the first and Y, of the second and
of the purse be as much as ' of the second and third and of the purse. But ' of the
second and third and of the purse is the quantity of the denarii of the fourth man; hence
% of the first and Y, of the second and of the purse are the quantity of the denarii of
the fourth man. Therefore ', of Y, of the denarii of the first, that is, %,, and Y, of ',
thus ; of the denarii of the second and of the purse, are Y, of the denarii of the fourth
man. Commonly are added Y, of the third and of the purse: then ', of the first with
"% of the second and with Y/, of the third and % of the purse will be as much as '/, of
the denarii of the third and fourth and of the purse. But Y, of the third man and the fourth
and of the purse is the quantity of the first. Therefore ', of the first and ' of the second
and Y, of the third and ¥ of the purse are as much as the denarii of the first. Then their
fifth part, that is ,, of the first and Y,, of the second and ', of the third and ¥,, purse,
are Y, of the denarii of the first. Commonly are added ; of the fourth man and the purse:
then Y, of the first and Y, of the second and ', of the third and Y; of the fourth and
1/, of the purse will be as much as ' of the fourth man and the first and of the purse.

[.]
The final omission [...] is as long as the part that was translated. It leads to

Hence ", and Y, of the first, that is %%, of the same, with ' of the purse, are
00 OF the purse. Commonly are taken away ‘s of the purse. Remain *%, of the first,
as much as 2%, of the purse. Then two numbers should be found so that %%, of the first
are %, of the second, they will be 63 and 83. Then if the first man has 63, the purse
is 83. [...].

If we admit the identity of “the denari of the first/first man”, “the quantity of the
denari of the first man”, “the quantity of the first man” and “the first man”, this is
rhetorical algebra with five unknowns: we observe the additions and subtractions performed
“commonly”, that is, from both sides of an equation, and the complicated substitutions.

It is difficult for us to follow the argument without making algebraic notes. There

are also traces in the text that Fibonacci described a procedure performed by other means.
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Several errors are of the type that might occur when such a procedure is transferred:
”Y,” instead of “Y, primi” and “denariis secondi” instead of “denariis primi”. Both
are m-errors (above, p. 58), that is, they belong to Fibonacci’s evolving master copy. So,
when Fibonacci describes the procedure in rhetorical algebra he appears to copy from
somewhere, and with high probability from his own calculation. This could be a solution
by rhetorical algebra made separately, but it could also be (might rather be) an argument
by means of line diagrams of the type which was discussed on p. 80n. These delivered
a tool which Fibonacci introduced in the 1228 version and may have used even when
no diagram is drawn.!'!"

One problem [B227;G374] is shown to be impossible, and another one [B216;G359]
to be so unless one of the men has a debt; the latter is already in L [ed. Giusti 2017: 97],
implying that Fibonacci was already familiar with this embryonic concept of negativity
in 1202. In one [B222;G368], where the contents of four purses is stated to be in continued
proportion, this proportion can be chosen freely, thus adding no particular difficulty.

12.5, buying a horse

Part 12.5 [B228;G375] deals with another illustrious recreational problem type, the
“purchase of a horse”. Normally at least three buyers are involved, but Fibonacci’s first
example runs like this:

Two men having bezants found a horse for sale. Wanting to buy it, the first said to the
second, “if you give me Y, of your bezants, I shall have the price of the horse”. The other
asked him for '/, of his bezants, and then he would similarly have the suggested price.
The price of the horse is asked for, and the bezants of each.

At first a unargued rule is given:

Write in order Y, ‘/3, and detract 1 which is above 3 from these same 3, 2 remain; which
you multiply by 4, they will be 8 bezants; and as much had the first. Similarly when 1
which is above 4 is detracted from these same 4, 3 will remain; which, when multiplied
by 3, give back 9 bezants; and as much had the other. Again, multiply 3 by 4, they will
be 12; from which take away 1, which results from the multiplication of the 1 which is
above 3 by the one which is above 4, 11 bezants remain for the price of the horse.

Then comes the explanation:

This rule indeed follows from the rule of proportions, namely from the finding of
proportion of the bezants of the one to the bezants of the other. Which proportion is found
thus: Since the first with ' of the bezants of the second has as much as the second with
'/, of the bezants of the first, if in common Y, of the bezants of the second is removed

"0Where they appear, these diagrams are invariably lettered a—b—g ..., meaning that the problem
solutions where they appear are faithfully taken over from an Arabic source (cf. above, note 101).
Knowing the technique Fibonacci may well have used it privately without feeling the need to show
the diagrams when calculating on his own.
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will remain the first equal to %, of the bezants of the second, and Y, of his own bezants.
Likewise, if in common is removed Y, of the bezants of the first, will remain ¥, of the
bezants of the first as much as % of the bezants of the second.

Thereby Fibonacci has reached a situation he has dealt with before in part 12.2, about
“proportions of numbers” — see note 98 and preceding text. The method taught there leads
to the solution that the first has (3—1)4 bezants, the second (4-1)-3 bezants, as stated
in the present rule. Alternatively, solution by means of the regula recta is taught, here
spoken of not as a rule but as “the Arabic way” (per modum arabum).!"'"

In the case that the price of the horse is given, the (unnamed) partnership rule is
applied.

Most problems about the “purchase of a horse” involve three or more buyers. They
are obviously more intricate. In Fibonacci’s first example of this, the first of three men
asks the second for '/; of the possession in order to be able to buy the horse, the second
asks for 1/4 of what the third has, and the third asks for 1/5 of the possession of the first —
summarized in symbols thus

a+'hb = b+',c = c+'a .

From this it is concluded that

a="hb+'lc, b=Yc+'ha, c="Na+'lb
(the expression in words obviously takes much more space, but the calculations are the
same). From the last equation follows that
e = Ysa+'l,b ,

and when this is inserted in the first equation we find that

a = hb+'lsa+',b = Y, b+'lsa
whence

sa=b

once more the situation dealt with in note 98, which shows thatthe a : b =15 : 16. Similar
arguments lead to b : ¢ =48 : 52, and thus a : b : ¢ =45 : 48 : 52.

A rather large number of similar problems follow. The number of men varies, and
may go until 7, while the number of horses may go until 4; when several horses are
involved, the differences between their values are given. Each man may ask cyclically
from a neighbour (as in the examples we have looked at), from two successors in the
cycle, or from all the others; at times, several men together (in the usual cyclical order)
make the question. The fractions obviously vary, and in one case the purchase of a horse
is replaced by the renting of a ship; except for the single initial regula-recta example,
all solutions are built on the same basic ideas (which are also those that are normally

"' Neither the explanation nor the “Arabic” alternative are in L. They are thus added in the 1228
version.
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applied to give-and-take and purse problems).

12.6, repeated travels with gain and expenses

Part 12.6, on its part, introduces not only a new problem type (the repeated travel
with gain and expenses) but also a new method. At first comes this [B258;G417]:

Somebody proceeding to Lucca made double there, and disbursed 12 8. Going out from
there he went on to Florence; and made double there, and disbursed 12 8. As he got back
to Pisa, and doubled there, and disbursed 12 8, nothing is said to remain for him. It is
asked how much he had in the beginning.

Whoever is familiar with earlier medieval recreational mathematics will recognize the
type. Because the traditional versions do not speak of costs but of religiously imposed
gifts, I have elsewhere called it the “pre-Modern merchant’s nightmare”. The earliest
known instance is found in Ananias of Shirak’s arithmetical collection [ed. Kokian 1919:
126]:

A man entered three churches, and asked God, firstly, give me as much as I have, and
I shall give you 25 dahekan. Similarly, the second time he gave 25; and similarly the third
time. And he was left with nothing. Now find out how much he had at first!

In Fibonacci’s world, as we see, nobody would believe merchants to be so respectful of
their religious duties, but they would still incur costs and risk bankruptcy.

Whether formulated about costs or about gifts to God or the poor, such problems were
mostly solved step by step backwards. Fibonacci’s question would then be solved in this
way: before disbursing 12 & in Pisa, the merchant had 12 8, that is, coming to Pisa he
must have had 6 9, which have been left over in Florence after he disbursed 12 & there.
Before disbursing 12 § in Florence he therefore had 18 8, and coming to Florence hence
9 d. Etc.

Fibonacci chooses as different way, which will also serve him in the sophisticated
variants which he is going to present. He makes the tacit false position that the initial
capital is 1. He prescribes a sequence of unargued numerical steps, whose underlying
explanation is this: Without disbursements, an initial capital of 1 & would grow to a “Pisa
value” of 222 8 = 8 8. However, it should grow to equal the Pisa value of rhe
disbursements, which — also doubled at each change of city — is (22+2+1):12 8 =
84 3. The basic ideas behind these two calculations are those of compound interest and
discounting, both familiar in the commercial ambience. Since the Pisa value of the initial
capital should equal the Pisa value of the expenses, the initial capital itself must be
((142+22)°12 §)/8 & = 10¥2 4.

Then follow sophisticated variations: the rate of gain or the disbursements may vary;
instead of the initial capital, the disbursement may be unknown though constant; etc.
Sometimes solutions by regula recta are given. The basic idea underlying the solutions
remains the same.

However, on p. [B264;G426] comes a problem where this will not suffice:
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Again, in a first travel somebody made double; in the second, of two, three; in the third,
of three, 4; in the fourth, of 4, 5. And in the first travel he expended I do not known how
much; in the second, he expended 3 more than in the first; in the third, 2 more than in
the second; in the fourth, 2 more than in the third; and it is said that in the end nothing
remained for him. And let the expenditures and his capital be given in integers. We
therefore posit by regula recta that his capital was an amount [summa ], and the first
expenditure a thing.

Applying the technique used in the preceding problems, we would have had to reduce
the initial capital as well as the expenditures to final value, which insofar as expenditures
are concerned becomes somewhat arduous and at any rate involves the first unknown
expenditure. So, this time Fibonacci applies the regula recta (mentioned by name) with
two unknowns, positing explicitly amount and thing as algebraic unknowns and making
a stepwise calculation. Knowing the problem to be indeterminate, Fibonacci asks for a
solution in integers.

After the first travel, our merchant is seen to possess 2amount —thing; after the second,
he has 3amount-2 '/, thing-38; after the third, 4amount—4 '/, thing—98; and after the fourth,
Samount—67,,thing—18",8. In this way we end up with the indeterminate equation

Samount—67,,thing—18",8 = 0
or, “if all-over 67%,thing and 18,8 are added”,
Samount = 6%,,thing+18,8
with the request that amount and thing have to be integers. With an astute stepwise
procedure Fibonacci finds as possible solution the amount to be 46, and the thing to be

33. At the end (since the equation can be transformed into 60amount = 77thing +219 3), he
points out that other solutions can be found by adding

as many times as you will 60 to the first expenditure, that is, to 33, and as many times
77 to the capital that was found, that is to 46, and you will have what was asked for in
ways without end.

Some variants follow, the last of which states the traveller to have a net profit of 12,
that is, that he ends up with his initial capital and 12 more. Here, Fibonacci uses the
opportunity to show how the regula versa may be applied in this complex case, using
the same two algebraic unknowns: being left in the end with 1amount + 12, after disbursing
1thing +7, he must have had before disbursing lamount + 1thing + 19; in the fourth travel
he must therefore carried ¥ of this, that is % amount+;thing+15 /5, etc. Out of this comes
the equation lamount = ‘lyamount+ "'/ thing+6 ', (both express the initial capital).

Whereas the solution of the purse problem by means of two algebraic unknowns (see
note 109 and surrounding text) is absent from L (as is the presentation of the regula
recta ), the present use of two algebraic unknowns (in regula recta as well as regula versa
version) is already in L [ed. Giusti 2017: 134—137]. The way it is introduced — “let us
therefore posit by the regula recta that the capital was an amount and the expenditure
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a thing” — looks as if the technique was quite familiar. Fibonacci does not seem to be
aware that he is proposing something new, and we may conclude that he was not.

In the last travel problem [B266;G429], the number of travels the traveller undertakes
before going bankrupt is unknown. But it is known that initially he has 139, that at each
travel he doubles his capital and expends 14 3. Calculating stepwise Fibonacci finds that
the traveller’s net loss grows geometrically (the term is not used), as 1 & after the first
travel, 2 § after the second, 4 § after the third, and 8 § after the fourth, where only 6 are
available. That is (tacitly supposing the profit and the expenditure to have linear growth
within the last travel), the number of travels must be 37%,. Observing that this is
incongruous, Fibonacci adjust the expenditure so as to produce an integer number of
travels.

Last in part 12.6 come problems that are “similar” to the travel problems — namely
similar in mathematical structure. Most of them deal with a loan with interest that is
amortized by the rent of a house. As Fibonacci explains [B267;G430], the annual growth
of the debt corresponds to the gain in a travel, and the rent that is discounted from it each
year to the expenses incurring during the travel.

12.7, “rambling problems”

Part 12.7 is said to contain “rambling” problems (erraticas, cf. note 94). First [B276;
G442] comes an analogue of Jacopo’s problem about freight of wool paid in kind (above,
p- 27), solved in the same way. After a couple of variations on this principle comes [B278;
G445] a recreational classic. Somebody enters a garden with 7 gates and picks apples.
When leaving he has to give at each gate to the guardian half of the apples he carries,
and one more. At the end he leaves with one apple. From a modern mathematical point
of view, this is a strict analogue of the repeated travels with gain and expenses, only with
the “gain factor” being smaller than 1. This time, however, Fibonacci offers the stepwise
backward calculation as his first method. Alternatively, he shows how the problem can
be solved by means of the regula recta (with a single unknown).

After two problems about operations with mixed numbers [B279;G446] comes what
Leonhard Euler [1774: 489] (who knew the problem not from the Liber abbaci but from
the later tradition) was to characterize as a “question of a quite particular nature”, and
which I shall speak of in the following as the “unknown heritage”:

Somebody coming to his end instructed the oldest of his sons, saying: Divide my
possessions among yourself in this manner. You take one bezant, and the seventh of what
is left; but to the next one of the sons he said, and you take 2 bezants, and the seventh
of what is left. But to the next one, that he should take 3 bezants, and take control of
'/, of what was left. And in this way he called all his sons in order, giving each one more
than the others; and afterwards always l/7 of what was left; the last however had the rest.
It turned out, however, that all had equally of the possessions of the father on the said
condition. It is asked, how many were the sons; and how much he owned. Indeed you
do like this: for the seventh, which he gave to each, you retain 7; from which you extract
1, 6 remain. And so many were the sons; which 6 you multiplied in itself; and so many
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were his bezants. And if the first of the sons had had Y of the possessions of the father,
and afterwards 1 bezant; and the second had had 1/7 of the rest, and two bezants; and in
this way it would have gone on for the other sons, adding for each one in order 1 bezant;
then the sons would similarly be 6, and the bezants 6 seven times, that is 42. And if in
each question the first should have 3 bezants, the second 6, and the rest similarly their
bezants in ternary ascension; then the sons would similarly be 6, and the amount of the
bezants would be the triple of the said amounts, that is, of 36 and of 42.

Fibonacci is the first known source for the problem. It appears to have been unknown
in the Arabic tradition, and there are strong reasons to believe it came from Byzantium
or late Greek Antiquity — see the complete analysis in [Hgyrup 2008], to which may be
added that the appearance of the bezant as monetary unit suggests that Fibonacci
encountered the problem in Byzantium.

Euler, in his elementary treatise on algebra, gives an algebraic solution, which however
presupposes that the strongly overdetermined problem does have a solution. As we see,
Fibonacci so far gives no arguments for his solutions.!'*!

However, he does not stop here; in the sequel he avoids the absurdity of fractional
sons by asking instead about the division of a number in shares under various conditions.
At first he just takes the fraction to be %,, and gives a solution corresponding to the
transformation of this into Y, which yields 4 shares and a half-share, and totals
414-4Y5 respectively 4Y2:5% (the fraction of the remainder being taken after respectively
before the absolute 1, 2, ...) — still without explaining why this is the solution, and even
without checking. Then, however, he jumps to more sophisticated variants: first with
absolute contributions 2, 5, 8, ... and fraction %, (absolute contribution before respectively
after the fraction); next with absolute contributions 3, 5, 7, ... and fraction 5/19.

For the first of these, Fibonacci produces a solution by means of regula recta [B280;
G447], taking as thing the number to be divided. He then calculates the first and the second
share and equates these, which gives him a correct solution (provided there is a
solution!"); next he claims to extract from this calculation a rule.

Comparison of the calculation with the rule shows that it is not extracted — see [Hgyrup
2008: 618f] for the full analysis. If T is the number to be divided, the fraction */,, and
the absolute contributions o, 0.+ €, 0.+ 2€, etc., then Fibonacci’s rule expressed as a letter
formula is

"2 The reader may see why the solution is possible and correct by drawing a 7x7-square or arranging
7x7 small objects in square. This is what I did spontaneously myself when encountering the problem
for the first time in the Vatican manuscript of Jacopo’s Tractatus, and seems also to be Planudes’s
[ed., trans. Allard 1981: 191-194] underlying structure for his arithmetical arguments — see [Hgyrup
2008: 621].

'3 Fibonacci may have been aware that what he obtains from the regula recta is only a possible
solution (according to his calculation, the only possible solution). In any case he makes a complete
calculation, showing that his solution is really one.
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(*) T = [(e-0) g+(g-p) o] (g—p) _
2
p
Instead, Fibonacci’s calculation would lead to
) 7= 4°(0+€)—(g-p)go—(g-p)po—(o+e)pg
2
p

Since both are correct, they are obviously algebraically equivalent, but that is not easily
seen without symbolic algebra and with tools at Fibonacci’s disposal. We must presume
that Fibonacci borrowed his rule from elsewhere, even though he was able to produce
his own solution.

That is confirmed by the following three variants. For these Fibonacci only offers
rules, no calculation of his own. His rule for the second of these (the one with absolute
contributions 3, 5, 7, ... and fraction %) is

(%) T= [(q—p)a—(oc—f)q]'(q—p) ,

p

which would be the same as (*) if only negative numbers were within the horizon; since
they were not, the formula to be used has to depend on whether o <€ or o> €.

However, this makes no difference in (}). If Fibonacci had transformed his own
calculation into a rule, why should he have reduced it to a form that cannot be used
universally?

Whereas the simple variants of the problem appear to have been created in the late
ancient Greek or the Byzantine world and to have spread from there,"'* the most likely
point of origin of the sophisticated versions is al-Andalus — and since they appear never
to have reached the broader Islamic world, to be creations of the 12th century, the time
of Ibn Rusd, who also had great influence on Latin and Hebrew but very little in Islamic
philosophy. Even for this, the reasons are too complex to be recapitulated here, but see
[Hgyrup 2021: 34-42]. Fibonacci obviously does not know how the rules were originally
derived and proved to work; a possibility is the use of line diagrams — see [Hgyrup 2008:
627f].

After this only partially understood visit to the area of higher arithmetic follows an
interlude dealing with simpler matters, and then something more advanced, having to do
with the “Chinese remainder theorem” — presented, obviously, not as a theorem but as
a sequence of 3 problems. The first of these [B281;G450] asks for a number which leaves
1 as remainder if divided by 2, 3, 4, 5 and 6, and 0 if divided by 7. Fibonacci determines
the least common multiple of 2, 3, 4, 5 and 6 to be 60, and argues that p60+ 1 leaves
the requested remainders with 2, 3, 4, 5 and 6, and then tries successive p-values until
7 divides, finding p = 5 to fulfil the condition; the requested number is thus 560+ 1 =

""“Not generally through Fibonacci, for reasons it would lead to far to list here.
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301. Next come two problem§ where division by n leaves n—1 for n = 2, 3, 4, 5, 6
respectively 2, 3,4, 5, 6, 7, 8]9, 10 while 7 respectively 11 divide. Here, he subtracts
1 from successive multiples of 60 respectively 420. The methods used cannot serve for
other, less particular values of the remainders, and it is thus mistaken to state that this
“is” what is known in modernypamber theory as “the Chinese Remainder Theorem” [Manin
& Panchichkin 2005: 14]; the same can be said, however, about all the earlier instances
analyzed in Ulrich Libbrecht’s “monograph” on the theorem [1973: 214413, pertinent
214-243]. Fibonacci most certainly borrowed at least the first problem from Arabic
mathematics — Ibn al-Haytham’s On the Solution of a Number Problem, also deals with
it [ed. trans. Rashed 1984: 238-241]. However, when using the same approach as Fibonacci
(which he refers to as “canonical”), Ibn al-Haytham takes the product instead of the least
common multiple, and therefore does not find the smallest solution;""”! whether
Fibonacci devised his shrewder way himself or learned it from later Arabic mathematics
is difficult to know.!"'® At least it is clear from his exposition that he understood it
to the full.

After another elementary interlude [B283;G452] illustrating and exposing a temptation
to apply the partnership rule mistakenly'” follows yet another bit of theoretical
arithmetic [B283;G452]: an explanation of what perfect numbers are and a rule for how
to construct them stepwise. The rule that is given is that of Elements 1X.36, but its
terminology is the one which Fibonacci has borrowed from contemporary Byzantine Greek
(prime numbers being numbers “without rule” — see above, note 84). A Byzantine
inspiration is thus likely (more evidence for this is discused on p. 98).

Next [B283;G453] comes a question which undeservedly has become the most famous

'S Rashed [1984: 228f] reads into Ibn al-Haytham’s text a reference to Wilson’s theorem, according
to which (n—1)!+1 is divisible by # if and only if n is prime. Unfortunately, Rashed’s own translation
contradicts him: having found 720 as 2-3-4-5-6 Ibn al-Haytham concludes (p. 238) that “if
one divides seven hundred and twenty-one by each of these numbers, one always remains, and
seven hundred and twenty-one is divided by seven because it has a seventh* — not “because seven
is a prime number”, and seven being prime has not even been mentioned. That seven hundred and
twenty-one has a seventh can be stated as obvious (as it is), since seven hundred as well as twenty-
one have it.

After giving this canonical solution (a term that shows that Ibn al-Haytham did not invent the
problem nor this procedure) Ibn Al-Haytham gives a different, less elegant and more laborious
calculation, which yields the smallest solution and shows that the problem possesses an infinity
of solutions (which Fibonacci does not state explicitly but shows to know).

16 Nothing like Fibonacci’s second and third problem seems to be in known Arabic texts (Ahmed
Djebbar, personal communication). Unless Fibonacci invented these himself (which nothing
excludes), my guess (nothing but a guess) is that they were developed in al-Andalus, not least
because of the vicinity in the Liber abbaci of this topic to the sophisticated versions of the unknown
heritage.

"7 See below, p. 261.
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piece of the work. A pair of rabbits is supposed to engender another pair each month,
which on its part conceives after one month and gives birth after another month. An initial
pair thus becomes two in the next month; after three months, both of these produce. This
evidently gives the “Fibonacci sequence” 1 —2 —3 — 5 — ..., characterized by the growth
formula n,,, = n,+n,,,. Fibonacci makes a painstaking step-by-step calculation for 12
months, and gives a commentary to a marginal diagram that corresponds to the growth
formula. At the end he states that one may go on in this way for an unlimited number
of months. But there is nothing about the convergence of the ratio between successive
members of the sequence, nor a fortiori about the “golden section”!® If [if!] there
was any theory behind the rabbit problem, Fibonacci did not know.!""!

After this overvalued piece of arithmetical fun we find [B284-286;G454-456] a
sequence of four problems superficially related to the same extended family as the give-
and-take and purse problems (etc.) — we may speak of them as “all-less-each
problems”. The first of them runs:

There are four men, the first and second and third of whom have & 27. Similarly, the
second, the third and the fourth have & 31; the third, the fourth and the first have & 34.
However, the fourth, and the first and the second have 6 37. It is asked how much each
one had. Add these 4 numbers into one, they will be 129; which number is the triple of
the whole sum of the J of these 4 men. Namely because in this amount each of them has
been counted thrice. Therefore, if it is divided by 3 it gives 43 for their sum; from which,
if you detract the 8 of the first, the second and the third man, that is 34, remains for the
fourth man § 16. ....

The next problems from the sequence have similar cyclical conditions, and the solutions
follow from similar considerations. In the case [B284;G454] where the total possessions
of two neighbours in circle with four participants (say, a+b, b+c, c+d and d+a ) are given,
it is pointed out that this problem has no solution unless (a+b )+(c+d) = (b+c)+(d+a).
An impossible and a solvable instance are then shown.

Other problems follow that are less easy but still solved by similar methods (the
methods that also served for the give-and-take and purse problems).

'8 This section Fibonacci will only have known as division in extreme and mean ratio — the notion
of a “golden section” belongs to the 19th century [Herz-Fischler 1987: 168f]. Late is also the belief
in its importance in architecture, pictorial arts and mysticism.

"9 ]dealized calculations of breeding animals have an old history — whether they constitute an
unbroken tradition is so far undecidable. The earliest known example (dealing with cattle, finding
also the quantity and monetary value of the milk fat the cows produce) goes back to the 21st century
BCE [Nissen, Damerow & Englund 1993: 100-102]. It is dressed up as a genuine piece of accounting,
but the animals never die, the reproduction and the sex ratio of calves is constant, and so is the
productivity of each cow. These complex calculations could obviously only be devised and
transmitted in a literate school; the simplicity of the rabbit problem would allow it to be devised
and to survive in a less literate environment.
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Particularly intriguing (but ultimately to be solved by the same techniques as the
others) is this [B293;G465] (henceforth, I shall refer to this problem type as the “grasping
problem”):

Three men had I do not know how many pounds of sterlings,"* of which the half
belonged to the first, the third to the second, and the sixth to the third. When they wanted
to have them in a safe place, each of them grasped some quantity of these sterlings; and
of the quantity he got the first put in common the half; and of what he got the second
put the third part; and of what he got the third put the sixth part; and of what they put
in common each received the third part; and in this way each had his share.

A first solution starts in this way:

Since the first put in common Y, of that which he got; of which ', he got back the third
part, that is, ' of all he got: then remained for him from that which he took ', ,, that
is, % and from that which the second put the first got ,, since the second put the third
of what he took, and of this ' the first got ', that is, Y ; and of that which the third
put he got the third of the sixth part which this third put, that is, Y. Therefore the half
of the amount of all the sterlings, that is, the share of the first man, was 2/3 of what the
first took and ', of that which the second took, and ', of that which the third took.
In letter symbols:
', (A+B+C) = %,A +")B +",4C .
Similarly it is calculated that
'fy (A+B+C) = '[A +"l,B +',4C .
The latter equation (expressed in words, and without algebraic position) is transformed
by addition of ', of all members into
110
', (A+B+C) = [, A+55B+"/,,C,
whence
110
YA +"1B +"3C = "1,A+5—5B+",C .
“Detracting on both sides” (de utraque parte — the equation thinking is indubitable)
'/,A+"lyB+",, C, Fibonacci arrives at
YA = YgB+ ' C .
Application of the perspective of the third man yields
Yo (A+B+C) = YA +',B +%,C,
transformed by means of another proto-algebraic operation into
', (A+B+C) = LA +'L,B +¥,C .

Combining this with the first equation,

"0 Silver coins in use in Italy as well as England, valued as bullion; we already encountered them
in Jacopo’s coin list (above, p. 49).
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', (A+B+C) = 1A +'l,B +',4C ,
and performing another proto-algebraic subtraction on both sides Fibonacci gets
1A = TB+Y,,C .

Applying the rule of the fourth proportional (we would prefer, multiplying by 2',) he
transforms this into

A = Yy B+ C .
But he already had

YA = Yy B+' C .
Therefore,

Y ¢B+'sC = B+ C .
Subtracting on both sides again and reducing the resulting fractions, Fibonacci finds
"B =6'C,
whence
B=13C and A =6(%B +"/,C)=33C.

Since the problem is indeterminate, Fibonacci chooses C = 1, and gets A = 33 and a total
of 47.

Apart from the lack of position of distinct representatives of what each of the three
has grasped, this must be characterized as a perfect algebraic procedure, and thus as a
demonstration that the border between arithmetical and algebraic solution at least of first-
degree problems is far from sharp.

A second solution starts midway in the preceding one, but builds on the same
principles. A third procedure by double false position is proposed in chapter 13, cf. below,
note 141. In chapter 12, some variants with different numerical parameters follow (one
with four men); they teach us nothing new.

The whole sequence is also in L [ed. Giusti 2017: 176—183], in practically the same
words. Its first problem is also found in the Flos [ed. Boncompagni 1862: 234-236], with
a slightly different formulation of the statement. Here Fibonacci tells that the problem
was presented to him by Giovanni di Palermo in the presence of Emperor Frederick II —
which can hardly have been at any other occasion than Frederick’s visit to Pisa, which
took place in July 1226 [Stiirner 1992: 11, 386f]. The presence of the problem in L appears
to show that Fibonacci was well prepared, having already solved the problem in writing.

There is no reason to wonder, the problem was familiar in the Arab world. Al-Karajt
[ed. trans. Woepcke 1853: 141] solves it in the Fakhri (with the same numerical
parameters) by means of two algebraic unknowns representing what I have designated
A and B, taking advantage of the indeterminate character of the problem to identify C
with 1 ditham. The order of operations is not precisely the same as that of Fibonacci,
but on the whole Fibonacci’s procedure might be a translation into words of al-Karaji’s
procedure or something similar — and since we have no other indications that Fibonacci
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knew the Fakhri directly (cf. below, p. 144), the best guess seems to be that he had
encountered it in an Arabic source descending from or related to al-Karajt.

The Flos tells the reader that Fibonacci had already given three solutions to the
problem in “the book I put together on numbers” (that is, the Liber abbaci ); here, however,
he wants to present an “extremely beautiful way”, which he presents to the Emperor. This
way is a regula recta procedure, where the thing is posited as '/, (A+B+C). There is
no reason to elaborate.

A group of two problems follows which, in mathematical future perfect, represent
the first steps in partition theory.

The first of them [B297;G471] is “Bachet’s weight problem” (see [Knobloch 1973]),
first known from Mohammad ibn Ayyiub al-Tabari’s Miftah al-mu 'amalat from c.
1100:"2"

Somebody had 4 weight pieces,” by which he weighed whole pounds of his
merchandise from one pound until 40 pounds. The weight of each of these weight pieces
is asked for. Then it is necessary that the first be of one pound; so that by it one pound
can be measured. The second must be its double, with one added, or the triple of the same
first; with these two weight pieces can be weighed from one pound until 4. But the weight
of the third is one more than the double of both the others, that is, the triple of the second,
namely 9; but the weight of the fourth is 1 more than the weight of the other three, that
is, the triple of the third, namely 27; the weights of which joined together make 40. So,
if you want to know how you may weigh with these weight pieces any number of pounds
from one pound to 40 pound, let us say 14, then the fourth weight piece is put into one
scale pan, and the rest is put in the other; and if you put the same fourth weight piece
together with the first, and if you put in the other the rest, namely 9 and 3, then 16 pounds
may be weighed [...]. And if you add a fifth weight piece, whose weight is the triple of
that of the fourth, namely 81, with these five weight pieces may be weighed any number
of pounds from one pound until 121 pounds; and thus in the same order weight pieces
may be added without end.

The final clause is very close to that of the rabbit problem!*! — closer than can
plausibly be explained as an accident. The decisive difference is that in the rabbit problem
the possibility to continue additions n,+n,,, is a triviality, since nothing is said about the
properties of the resulting sequence. In the present case, instead, it is obvious from
Fibonacci’s intuitive argument by induction that what results is the optimal partition (with
subtraction) of integers.

! [Tropfke/Vogel et al 1980: 634], date according to [Hockey, Trimble & Williams 2007: 1149].

122In English it is unfortunately impossible to distinguish elegantly Fibonacci’s peso (borrowed
from Italian), here translated “weight pieces”, from his pondus, their weight as quantity.

123 «et sic posses facere per ordinem de infinitis numeris mensibus” respectively “et sic eodem ordine

possunt addi pesones in infinitum”.
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Theoretically seen, the other problem in the cluster ([B298;G471] — rather an
instantiation of a theorem than a problem) is the purely additive counterpart:

Somebody gave somebody for his daily work 1 mark of silver, which he paid by means
of five cups that he had, so that none of them was broken; and this he did for 30 days.
The weight of the first cup was 1, whose double, namely 2 mark, was the weight of the
second. The weight of the third was 4, namely the double of the second. But the weight
of the fourth was the double of the third, namely 8. When the weight of these 4 cups are
joined together, they make 15 mark. When these are extracted from 30 mark, 15 mark
remain for the weight of the fifth cup. On the first day he gave him the first vase. On
the second he received from him this same first, and gave him the second. On the third
the lord gave the worker this same first. On the fourth the lord received from the worker
the first and the second, and gave him the third. And thus in the said order he paid him
daily, until 30 days.

The underlying theorem is evidently that any integer can be expressed unequivocally as
a sum of powers of 2 (the final 15 instead of 16 being chosen as a pragmatic shortcut
allowing the worker to leave with all the cups). This is no deep insight, it had already
been used in the Pharaonic standard multiplication algorithm."*! Most interesting —
not least because of the vicinity to the weight problem — is the term used for the cup.
In Boncompagni’s manuscript it is sisphos and ciphus, in L [ed. Giusti 2017: 184] it is
sciphos and scifis. This is not Latin, nor a borrowing from any Romance language. It
renders spoken Byzantine Greek, namely the way 6x0¢og was pronounced (better in L
than in the later manuscripts, where the spelling is further influenced by Tuscan
pronunciation). That is, Fibonacci encountered the problem in oral interaction in
Byzantium.'"” Since he sees it as belonging together with the preceding, more
sophisticated problem, we may presume that both came from the same source; and since
they share the essentials of the closing formula with the rabbit problem,"* on its part
close to the rule for production of perfect numbers with its Byzantine terminology, even

" In order to see it we only need to notice that division by 2 leaves either remainder 0 or remainder
1 (given the familiar laws of associativity and distributivity).

12 This would agree well with the appearance of a closely related problem in a Byzantine problem
collection from the early 14th century [ed. trans. Vogel 1968: 112f], which seems not to be
influenced by Italian material.

126 The cup problem ends “et sic predicto ordine persoluit eum cotidie, usque in diebus 30”, related

to but since no unlimited procedure is promised not the same as the closing phrase of the rabbit

problem — cf. note 123. Only two other problems have somewhat similar closing formulae:

—  [B340;G529]: “denarios vero tercii hominis reperies ordine suprascripto”.

—  [B384;G590]: “eademque via et ordine poteris operari in reperiendis radicibus cubicis
numerorum decem vel plurium figurarum”

Though no definitive proof, the similarity between the closing formulae of the rabbit and the weight

problem is a strong suggestion.
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this may be assumed to have been borrowed from Byzantium.

A group of problems about the sale of apples follows — and since apples are supposed
to be sold whole, and the prices are also, gua numbers of d, supposed to be integer, these
are Diophantine problems. The first [B298;G472] begins in this way:

One of two men had 10 apples, the other 30; and as they were in a market, each sold from
his apples I do not know how many; but the prices were the same. And when they came
to another market, they sold the rest, similarly at the same price; and that which the first
had for his 10 apples was as much as that which the second had. The price of the apples
in each market is asked for, and also how many were the apples each of them sold in
each market. Divide in two parts the apples of the first man, namely 10, so that, when
the first part is detracted from the number of apples of the other, namely from 30, remains
a number that is divided integrally by the second part; and what comes out of the division
is the price of each apple sold in the second market. [...]

If a, designates the number of apples sold in the first market by the first man, a, those
sold by him in the second market, b, and b, correspondingly for the second man, and
fand s the price of an apple in the first respectively the last market, then we have

a+a, =10, b+b, =30,

fa,+sa, = fb+sb, .

This is obviously strongly underdetermined — there are six unknowns but only three
conditions. The latter condition can be re-expressed

sa, = fb+sb,—fa, .
Fibonacci’s first choice is to take a, so that
b +b,-a,

a

=
that is, 2

sa,=b+b,a, .
There is no hint of why this choice is made; the problem (and those that follow) have
no pedagogical purpose, they show (and are almost certainly intended to show) the
brilliance of the author. There is no reason in the present context to pursue the analysis.

Last in part 7 [B302;G477] comes a problem somewhat similar in mathematical

structure to the “purchase of a horse”, formulated however as dealing with 5 numbers.
In letter symbols:

a+b+c = (1+',)d

at+c+d = (2+',)e

a+d+e = (3+')b

a+e+b = (4+ 1/6)0
The problem is indeterminate, and Fibonacci starts by positing a+b+c = 1Y,, whence d =
1. He goes on with linear operations of the same nature as those used in the horse-, purse-
and give-and-take problems.
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12.8, divinations

12.8 [B303;G478] deals with “certain divinations”. What this means can be illustrated
by the beginning of the first problem:

When however somebody has put a number in his memory and want you to find it: instruct
him that he put the half of the number above the same number. And if some broken half
occurs, instruct him to make it whole. The half of which total number you put above that
same number; and if some broken half occurs, let him again make it whole. [...].

Afterwards, the trick is to ask for the subtraction of 9 as many times as possible, and
to combine this with knowledge of when fractions had been repaired, and thus to
reconstruct the number. Other similar problems follow, some of them with a method which
presupposes an upper bound for the number, together with one where questioning allows
finding out the points on three dice that have been thrown, and a few others. Some of
them might as well have been presented as number problems elsewhere, without any
imaginary partner — evidence of the lack of a strict boundary between mathematical
problems, mathematical amusement, and riddles.

12.9, chess-board and other geometric series

Part 12.9 [B309;G486] deals with “the duplication of the chess-board, and some other
rules”.

The chess-board problem is one of the few recreational problems we can trace back
to the early second millennium BCE. Originally the doublings were “until 30”, then, after
the invention and diffusion of chess, 30 was outcompeted by 64.

The oldest representative of the family we know is from Old Babylonian Mari, in
north-eastern Syria [Soubeyran 1984: 30-35]; it doubles barley grains, and when their
number becomes large it interprets the grain as a weight unit and uses larger measures.
The next we know about is a Greco-Egyptian papyrus, perhaps to be dated to the Roman
epoch. It starts from 5 shekel of silver, also goes until 30, and also expresses the higher
multiples in adequate weight units. In the Latin collection Propositiones ad acuendos
iuvenes ascribed to Alcuin of York [ed. Folkerts 1978: 51f], a king sends a servant
successively to 30 manors, from each taking as many new men as he brought — here,
obviously, metrology does not come into play. A few decades later (if we trust the
ascription to Alcuin), al-Khwarizmi wrote a mathematical analysis of the problem in chess-
board version, which we know from an extract or (rather) a paraphrase in Abii Kamil’s
Algebra [ed. trans. Rashed 2012: 724-728], to which we shall return presently.

All of these have a simple doubling in each step. However, as in the interpretation
of the counterfactual calculation (above, p. 78), Fibonacci suggests two different ways
to understand the problem — and the present-tense passive proponitur suggests both already
existed, Fibonacci did not share the modern way to signal or feign objectivity by hiding
behind a grammatical passive (cf. below, text before note 142):
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The doubling of the chess-board is proposed in two ways, of which one is that the
following square is double its antecedent; the other, when the following square is the
double of all its antecedents.

Both possibilities are explored with details and perspective. The first begins in this way:

The first doubling can be made in two ways, namely if we operate by doubling from square
to square until the last square. The other way is that you double as much as the first square,
and you have two; which two multiply in itself, they will be 4; which 4 are 1 more than
the number of the doublings'?” of the two squares. For example: In the first square
put 1. In the second 2; which joined, make 3; the above-written 4 are 1 more than these
three; when these 4 are multiplied in themselves, they make 16; which number is one
more than the doublings of the double of the first two doublings, that is, of 4 squares.
For example: In the first there is 1. In the second 2. In the third, 4. In the fourth 8; which,
joined together, make 15; which is 1 less than 16. Further multiply 16 in itself, they make
256; which are 1 more than the number of doublings of the double of the above-written
squares, that is, of 8 squares which occupy the first row of the chess-board. For example,
in the first there is one. In the second 2. In the third 4. In the fourth 8. In the fifth 16.
In the sixth 32. In the seventh 64. In the eighth 128; which joined together make 255;
which the above-written 256 exceed by 1, as we have said: therefore multiply 256 in itself,
they make 65536, one more than the doublings of the first two rows, namely of 16 squares.

Fibonacci then finds “one more than the doublings™ of the first four rows, then of all eight
lines of the chess-board, and then of two chess-boards. “And multiplying thus we can
go on until infinity”.

So far so good. All this depends on well-known properties of continued proportions
(not referred to here by Fibonacci, it is true).

Next, unfortunately, he goes on with a pedagogical explanation because the resulting
huge numbers may be difficult to grasp. He suggests to fill a chest with the contents of
the first two rows (augmented by 1, he forgets), that is, 65536 bezants. Then the first
square of the third row contains 2 chests, he claims; it should obviously be 1 chest, even
according to his own preceding text. Going on with doublings he claims that the second
contains 4 instead of 2 chests, etc., until the last square of the fourth row, supposed to
contain 65536 chests, reinterpreted as a house. Further, 65536 houses make up a city.
The last square of the last row is then supposed — the same error persisting — to contain
65536 cities.

Another pedagogical illustration of the immensity of the number follows: if each unit
represents a grain of wheat, identified with the weight unit grain, how many standard
ships can be filled? The outcome, 1525028445"% ships plus a fraction, is rightly said

"7 From square 2 onward, the contents of a square legitimately can be spoken of as a “doubling”
(duplicatio ); Fibonacci extends the usage to the first square.

'8 All manuscripts including L actually write 1725028445 [Giusti 2020: 488, apparatus; Giusti 2017:
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to be “like infinite, and uncountable”.
A comparison with Abil Kamil’s paraphrase of al-Khwarizmi1 explains the mistake
in Fibonacci’s chest-explication. Abti Kamil [ed. trans. Rashed 2012: 726f] relates that

Muhammad ibn Miisa [al-Khwarizm1] — may God be satisfied with him — has made this
easy and accessible by saying: you put down the first, two, he put down the first as two
in order to liberate himself from adding one; if he multiplies it with itself, one has four,
which is the second. And if one multiplies four by itself, one has sixteen, which is the
fourth. [...] If you want to double and add the squares of the chess-board, multiply the
eighth, which is two hundred fifty-six, by itself. What you obtain is the 16th. Multiply
the 16th square by itself, what you obtain is the thirty-second square. [...].

There are no chests here, but we find the idea of using 16 squares, that is, two rows, as
a basis for simplified calculation. Fibonacci, when borrowing either from Aba Kamil or
some later writing depending on him (or possibly some other source depending directly
on al-Khwarizmi),'"* has obviously not only overlooked that his source starts with
2 in the first case but also not discovered that the consequences he draws from it are wrong
and contradict what he has said just before. The mistakes are also in L, showing that
Fibonacci did not make a complete critical reading of his master-copy when preparing
the final edition in 1228.

Is the first part of the “other explanation” then Fibonacci’s own?

Almost certainly not. As we see, its basic trick is also in Abti Kamil’s text. Moreover,
it was discussed in much more detail as a “practical way other than what most people
are accustomed to do” in Damascus in 952 by al-UqlidisT [ed., trans. Saidan 1978: 338];
in 1449, al-Qalasadi [ed. trans. Souissi 1988: 75f] also described it — with the further
observation that

the number placed in the 9th [square] is equal to the sum of the numbers of the first 8
squares plus 1. [...] taking the square of the number in the 9th one gets the one in the
17th; taking the square of the latter one gets the one in the 33rd; doing the same with
the latter one gets the number of the 65th, that is, the sum of the first 64 numbers plus
1, which is the first term.

So, the approach was widespread among Arabic mathematicians, and too close in the
details to make us believe that Fibonacci made an independent exposition.

It is tempting to see the ship calculation, with its grains and conversion to higher
metrological units, as pointing to the Mari and the silver problem; but this temptation
is probably better resisted until, possibly but unlikely, an intermediate text should be dug
up in some library.

206, apparatus].

'2In any case, there can be no doubt that this time Fibonacci depends on a written source — the
details that connect him to Abi Kamil are not of the kind that would survive oral transmission.
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The alternative interpretation of the doubling problem (“the following square is the

double of all its antecedents™) determines this sequence by stepwise calculation:
1-2-6-18-54—-162 - 486 — 1458 — 4374
Fibonacci does not point out that the step factor from 2 onward is constantly 3, as follows
from inspection, and as can also easily be argued: if square » holds C,, the sequence being
determined from
C,=2(1+.+4C, ),
then
C

n+l

=2(+.+C,) =2C+2(1+..+C, ) =2C+C,=3C, .

It would not be difficult to formulate this in words instead of symbols, just more lengthy.
Instead Fibonacci observes that

(14246)* = 81 = 14+2+6+18+54
while
(142+6+18454)* = 6561 = 142+6+16+54+162+486+1458+4374 .

This rule is claimed with no hint of an argument to go on corresponding to squares no.
5,9, 17,33 and 65. It is obviously a parallel to what was used in the “first interpretation”,
and would be evident if we knew the sums (not just the contents of the single squares)
to be in geometric progression. In symbols, and if we take into account that C,,, = 23",
it is easily established that they are: from

Cn=2)"C,
(n=2) follows

yrco=3".

Further, for n taking on the values 5, 9, 17, 33 and 65, n—1 equals successive powers of
two. A skilled medieval arithmetician would probably be able to establish it using words,
perhaps (as in Elements VII-IX) supported by letter-carrying line segments. However,
Fibonacci seems not to posses the building blocks for the argument, and therefore offers
none.

Instead, he merely uses the rule to find

ZTS C = 3,433,683,820,292,512,484,657,849,089,281 ,
from which he concludes that
Y0C, = 1030 C, = 1,144,561,273,430,837,494,885,949,696,427
Even the latter result is correct — namely (since C,,, = 3C, for n=2) because
YU C, =142+4) 7 C =3+3) 0 C, =3)Y " C, .

However, Fibonacci’s argument (should his words be meant as an argument) is quite
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opaque.

Given the absence of genuine arguments, even this second interpretation of the chess-
board problem and the way to deal with it are almost certainly borrowings — seemingly
made with little understanding. The similarity of the 5-9-17-33-65-argument with what
we saw in the treatment of the “first interpretation” indicates that Fibonacci took both
from the same source — which would exclude that he borrowed directly from Abi Kamil.

From where he borrowed is a guess, but since we know that Abii Kamil’s Algebra
circulated in al-Andalus in the 12th century, and since the sophisticated version of the
“unknown heritage” seems to have come from there (together with the secondary stratum
of chapter 14 and the bulk of part 15.1, as we shall see), the best guess would be al-
Andalus.

A further number of problems about geometric growth or decrease follows:

—  [B311;G489] One 9 lent at compound interest becoming 2 § in five years, followed
over five-year periods until 50 years, and then squared to give the outcome of 100
years; with the variant that 20 hides are sold, the first for 1 8, the second for 2 §,
the third for 4 §, etc.

— [B311;G489] Seven old women go to Rome, each carrying 7 pilgrim’s staffs, each
staff carrying 7 small sacks, each sack containing 7 breads, each bread with 7 knives,
each knife provided with 7 sheaths. The sum is found by stepwise calculation, showing
that if Fibonacci knew the sum formula for geometric series, he did not think of it
in this connection. There is no reason to doubt a connection to the similar problem
in the “inventory of a household” in the Rhind Mathematical Papyrus [ed. trans. Peet
1923: 121]: 7 houses, 49 cats, 343 mice, 2301 [miswritten for 2801] spelt. As said
by T. Eric Peet, “evidently based on a nursery problem [...] seven houses, in each
7 cats, [...]"

— [B312;G490] A tree with 100 branches, on each 100 nests, in each nest 100 eggs,
in each egg 100 birds.

—  [B312;G490] 100 £, each 4 growing with profit to 5 in a year, followed over 18 years.

— [B313;G491] Somebody originally possessing 100 bezants travels through 12 cities,
in each spending Y, of his money.

— [B316;G495] From a cask containing 100 measures of wine, each month '/,O is drawn;
explained to be a parallel to the preceding question, for which reason the remainder
after ten months can be taken over from there.

Finally comes a problem of a different kind [B316;G495], namely a variant of the garden

problem (above, p. 27), where somebody leaves a city with 10 gates, paying at the first

%, of his bezants plus % of a bezant; at the second ", of what he has left, plus ', of

a bezant; at the third '/, of what he has left, plus ', of a bezant; ... ; at the tenth, ,, of

what he has left, and Y,, of a bezant. After which he is left with 1 bezant. Two procedures

are explained: firstly, stepwise backward calculation, which because of the specific
numerical parameters is fairly easy — going backwards gate by gate, what he had left was

"o, Y, VL, etc.; secondly, the method introduced with the repeated travels (above, p.
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88), reduction of all disbursements to final value.

The appearance of bezants does not demonstrate that Fibonacci knew the problem
from Byzantium, even though it suggests so (cf. note 107); the use of the sequence of
aliquot parts including %, however, points in the same direction (cf. p. 69). Combined,
the two observations makes it highly plausible that the problem (in this specific form and
with these parameters) had been presented to Fibonacci in Byzantium — the challenger
(if the problem was presented as a challenge) probably knowing that it could be solved
in the first way, since it fits the sequence of aliquot parts so nicely. The second method,
close to what Fibonacci has used before and not fitted to the specific parameters, is likely
to be his own contribution.



Chapter 13 - elchatayn rule

Chapter 13 deals with “the elchatayn rule, and how by means of it almost all abbacus
questions can be solved”, where elchatayn is the Arabic term for the double false position
(as explained in the very beginning of the chapter),!*” and “abbacus questions” are
such as are presented in chapter 12. (On the rule itself, see note 4.)

After this terminological clarification follows a presentation. It does not refer to the
connection to the alligation rule; this is not exceptional, nobody seems to do so.!'*!!
Instead it is said [B318;G499] that the solution

is found according to the proportion of the difference from one position to the other, that
is that it falls under the rule for the fourth proportional, in which three numbers are known;
by which the fourth unknown number, that is, the truth of the solution, is found; of which
the first number is the difference between the number of one false position and the other.
The other is how one gets closer to the truth by that same difference. The third is what
is lacking in the approximation to the truth.

Unfortunately Fibonacci does not tell what the fourth proportional represents (namely,
how much one has to go beyond the second position before reaching the correct
value™) but leaves that to the ensuing example, which also shows how to proceed
if one error is in deficit, the other in excess.

The question is, 100 rotuli are worth 13 £, what is 1 rotulo worth? The two positions
made are that the value is 1 B, and 2 B. With the former position, 100 rotuli would be
worth 5£, with the latter 10 £. That is, increasing the position from 1 5 to 2 , we
approximate the truth by 5 £. But from the second position we still have to approximate
it by 3 £ more, whence the proportion spoken of in the quotation.

Afterwards, two positions are proposed that both lead to an excess (7 £ and 3£), and
two where one leads to a deficit and one to an excess (3 £ and 2 £). The principles of
these calculations are similar. We observe that none of this has to do with the proper
method of two false positions — they make linear extra- or interpolations from one of the
two positions. However, on p. [B319;G501] comes an observation that

there is another way for the elchataym; which is called the rule of augmentation and
diminution. And the first error is multiplied by the second position; and the second error
by the first position. And if the errors are both diminished, or both added, the smaller
outcome of the aforementioned multiplication is subtracted from the major, and the
remainder is divided by the difference between the errors; and in this way the solution

" Namely the genitive dual khata 'ani of khata’, “error, mistake” — thus “of two errors”. The
not uncommon derivations from Khitai, Central-Asiatic Turkish for China, can be safely disregarded,
cf. the explanation in [Needham 1959: 118 n. b].

3 However, cf. below, p- 108, on Liu Hui, and note 137 about a reverse linking.

132 The precise words presuppose that both guesses err by deficit, and that the larger position gives
the better value — otherwise some formulations have to be twisted.
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to the question is found. And if one of the errors be added, and the other diminished, then
both multiplications are added together, and the outcome is divided by the errors joined.

This is then applied to the same example, after which follows proofs by means of line
diagrams. In the first [B320;G502], for both errors being in deficit, this diagram is used:

a g d b
e i Z

Here, ag represents the first position (for our convenience P,), ad the second position
(P,), ez the first error (E)), iz the second error (E,). The solution “according to the
proportion of the difference from one position to the other” can then be expressed

E,(P,-P) P o iz-gd
E-E, 727 &

ad

Fibonacci speaks about multiplication and division, that is, he deals with the segments
as numbers.

More interesting is the proof of the solution by means of “augmentation and
diminution”,

in terms of the line segments

ez-ad-iz-ag (ei +iz)-ad -iz-ag (ei +iz)-ad -iz-ag

el el el

Now, adiz = (ag+gd)‘iz = agiz+gdiz. Moreover, since increase in the position is
proportional to decrease in the error,

ei _ gd

iz db

>

whence iz'gd = eidb. Therefore adiz = agiz+gdiz = (ag+gd)iz = agiz+eidb.
Inserting this we get

ez+ad-iz-ag ad-ei +ag-iz tei*db -ag ‘iz

(ad +db)-ei ab-ei
el ei el ei
Fibonacci can therefore conclude that
E -P,-E, P, — ab
E -E, -

“as was to be shown” (quod opportebat ostendere ).
This Euclidean phrase (used regularly in the Latin translation made directly from the
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Greek [ed. Busard 1987]"*)) is quite fitting. The demonstration € 1 z
is, in Euclidean style, a piece of synthesis, showing that the rule
is correct, but giving the reader no idea about how it was devised.
The tools made use of are very close to being algebraic (cf. also

note 101). The reference to products of segments is noteworthy.
In classical mathematics, these would have been dealt with as
rectangles, as shown here, and the final division as the finding
of a side of a rectangle from its application to the other side;

Fibonacci makes no attempt to respect this canon, even though
it would have been easy to do so (and even though he uses
procedures elsewhere which do respect them — we may assume b
that his choice of style depended on his source!**): since the
two black rectangles are equal, the difference between the rectangles ezxad and izxag
is seen immediately to equal the rectangle eixab. Easier, one would say, than the quasi-
algebraic proof actually given.

Quasi-algebraic proofs based on line segments are also given for both errors being

in excess, or for one being in deficit, the other in excess.

Before we address what Fibonacci does with this when dealing with problems, it may
be fitting to look at some elements of the earlier history of the method of the double false
position.

The earliest appearance of the rule in known sources is in the seventh chapter of the
Chinese Nine Chapters [ed., trans. Chemla & Guo 2004: 549-597], to be dated to the
first century CE. The chapter deals with the method of “excess and deficit”; the text only
gives a numerical prescription explaining how the numbers are to be placed on the counting
board, not very different from the marginal schemes used by Fibonacci (also reflecting
the used of a board, probably a clayboard). A commentary by Liu Hui from 267 CE then
explains how the errors are to be balanced, not referring to alloying but following exactly
the same principle [Chemla & Guo 2004: 549f].

' That Fibonacci knew this translation is nothing new, see [Folkerts 2004: 109f] and [Busard 1987:
18f].

13 We notice the letter sequence a-b-g-d-..., pointing to the use of an Arabic source. Other arguments
which similarly seem to be of Arabic origin follow the classical canon; but there is evidently no
reason to assume that Fibonacci drew on a single Arabic source for all arguments involving lettered
diagrams.
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The Nine Chapters make more advanced use of the method than done elsewhere;!"*”’
that does not concern us at this point. Let us instead turn to the earliest known Arabic
presentation of the rule — actually a proof of its validity, no mere presentation, the rule
itself is supposed to be already familiar. It was written by Qusta ibn Liiqa in the second
half of the ninth century. A first sketched proof [ed. trans. Suter 1908: 113f] is similar
to Fibonacci’s first proof, though formulated without reference to proportions and not
using a line diagram: the positions are supposed to be P, =4 and P, = 8§, and the respective
errors E\= 7, E,= 4; increasing the position by 4 therefore reduces the error by 3, and
therefore increasing the position by 1 decreases the error by ¥,. In order to eliminate the
error we must therefore increase the position from 8 to 8+4+7%, = 13',. The rule is then
argued to agree with this calculation.

Qusta does not leave the matter there, however, but m z g o
gives a strict proof, based on diagrams (lost in the i 1 . )
o . . . Fag
surviving manuscript, but reconstructible from the text —
here after Heinrich Suter). ab and ag represent P, and P,, ]
u|

17

od the true value, and Az and ts, respectively E, and E,
(in the best Euclidean style, Qusta performs a
construction). Then & yo T d

ad : do=ag : gt=ab : bh.

Then, E,'P, = =2mu, E,'P, = =aml, for which reason E,'P,—FE,'P, equals the gnomon
nuszlc. But according to Elements 1 [prop. 43], =3zt = ==ti, for which reason the gnomon
equals ==ci. But cn = E|—E,, whence

E,; P\ -E P,

ni=cati + cch= ———F—
E-E,

For the other cases (both errors in excess, and one in excess and one in deficit), similar
rigorous proofs are given.!'*®

%5 For example [ed., trans. Chemla & Guo 2004: 559],

Let us assume that something is bought in common and that, if each one pays 8, there
is an excess of 3, and if each one pays 7, there is a deficit of 4. It is asked how much
is the quantity of persons and the price of the thing.

138 Rigorous only, as it stands, in the situation where a position 0 would give an outcome 0; however,
if od represents the excess between the requested outcome over the outcome for position 0, the
argument remains valid. In the language of analytic geometry, the argument as given holds only
for problems y = owx (where a single false position would suffice); the reinterpretation of od allows
the argument to hold for the general first-degree equation, y = ox+f.

Rigorous moreover, as Qusta points out, only in problems where no square and cube roots
appear. Qusta translated Diophantos into the language of Arabic al-jabr and also here speaks of
the unknown number as a mal, a “possession”; that is, for him, problems of the second and third
degree deal with the mal and its square or cube root.
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This, obviously, does not present us with the invention, it is a justification of a method
that is already known. The initial proof-sketch appears to reverberate in Fibonacci’s first
proof, but obviously is not Fibonacci’s direct source.

From the Maghreb, where we might believe Fibonacci to have picked up his direct
inspiration, we know a different approach — exemplified by Ibn al-Banna'’s Talkhis (a
highly appreciated summary of calculation techniques from the decades around 1300).
Ibn al-Banna’ [ed. trans. Souissi 1969: 88] speaks of the method of ‘“scale pans”,
illustrated by this drawing (in the edition of the Arabic text, no words are written into
the diagram):

Axis

Scale pan Scale pan

You put the known number of the hypothesis on the axis; you take for one of the scale
pans whatever number you like; you submit it to the operations indicated in the hypothesis,
addition, reduction, or otherwise; then you compare the result with the number put on
the axis. If you find it exactly, then this scale pan is the unknown number. If the result
is wrong, write the error above the scale pan if it is in excess, and below if it is in deficit.
Then take for the other scale pan what even number you like, except the first one; operate
in the same way as with the first one. [...].

In the Maghreb, this remained a favourite way to arrange the calculation. In 1449, al-
Qalasadi [ed. trans. Souissi 1988: 68] would still explain it, filling in numbers for clarity,

21

24 12

7 14

representing the solution of the problem “to find a number such that the sum of its third
and it fourth is 217, with positions 24 and 12.*"

It should be obvious that Fibonacci did not borrow this, in spite of his reference to
the method by an Arabic name. Is it possible to go beyond this negative conclusion?

Firstly, as noticed, Qusta’s first calculation might seem to reverberate in Fibonacci’s
text. That is not impossible, the manuscript used by Suter was copied in India in 1722,
so Qusta’s ideas may have circulated well and inspired widely. The proof by means of
line segments is also a borrowing — proofs constructed by Fibonacci himself use the Latin
lettering sequence a-b-c-..., as pointed out in note 101 and elsewhere. The sequence
a-b-g-... must be based on either Greek or Arabic material. From Byzantium, however,

7 Interestingly, a treatise written in ca 1575 by a Morisco and combining a Castilian treatise with
material drawn from the Maghreb tradition uses the scala-pan diagram for an alligation problem
[Ageron & Hedfi 2020: 40f]; there must then have been some awareness in the Maghreb (the
diagram is not in the Castilian treatise) that the double false and alligation calculation are analogous.
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we do not know of a similar use of line diagrams (nor in material in the Liber abbaci
which for other reasons can be linked to Byzantium); in the Liber mahameleth, on the
other hand, they abound (always with sequence a-b-g ). Since Fibonacci’s proofs for double
false position are not to be seen in what we know from the Maghreb, the best guess is
therefore that Fibonacci took over his line proofs from al-Andalus.

The rule itself is likely to have spread over the whole region between China and the
Mediterranean among traders and similar groups of practical calculators, and to have been
taken up by “mathematicians”, that is, those engaged more centrally with mathematics
and mathematics teaching: those in China approaching it with their conceptual and practical
tools, those in Arabic and Mediterranean areas with theirs — the Arabic world not learning
from the Chinese teaching of officials, nor (already for obvious reasons of chronology)
the Chinese teachers learning from Qusta and his kin. That was already proposed by
Randy Schwarz [2006: 292]. The way “mathematicians” East and West justified solutions
to problems belonging to the family “purchase of a horse” is a parallel example — see
[Hgyrup 2016: 465-469] — evidence that this kind of diffusion cum local justification is
possible.

13.1, problems already dealt with

Let us return to the Liber abbaci. After the proofs ([B322;G505] onward) come
applications of the rule to select problems solved (sometimes with different numerical
parameters) in the preceding chapters by other methods. At first it is asked how to mix
silver at 3 ounces with silver at 6 ounces in order to get silver at 5 ounces. Strikingly,
instead of using the double-false procedure, after having made two positions and found
the corresponding errors, Fibonacci makes a detailed calculation along the lines of his
first proof — yet without reference to proportions, using instead the rule of three (as usually
not identified by any name). A parallel example [B323;G506] instead applies the standard
procedure referred to earlier as “augmentation and diminution”.

After this [B323;G5+7] comes what Fibonacci himself calls a “noteworthy question”
of type “lazy worker” (cf. above, p. 26):

Some worker should receive 7 bezants in a month if he works; and if not, he should give
back to the master of the undertaking 4 bezants at monthly rate. And sometimes he worked,
and sometimes not. So that, finished the month, he was to receive from the master 1 bezant.

Exactly the same problem is solved in the seventh differentia of chapter 11 ([B160;G275];
cf. above, p. 76), as one of the examples of how the alloying model can be applied to
other questions.!"* Here, the problem is solved by the standard procedure, complicated
only by the need to convert the monthly rates into payment per day.

¥ At a first glance, that solution seems suspicious, since it adds the 30 days to the 1 bezant.
Actually, what Fibonacci does is blameless, apart from the excuse to add 30; all he does is to shift
the zero so as to avoid coin of —4 ounces per mark.
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The following problem [B324;G508] is a slight numerical variation on a tree problem
from [B174;G298]: Y, '/ of a tree is under the ground, and 20 ells instead of 21 palms
are above. Again, the standard procedure is followed, and Fibonacci teaches how to make
convenient positions that eliminate the fractions of the problem statement (P, = 12 ells,
P, =24 ells). Then [B324;G508] comes an exact repetition of a complicated wage problem
first solved [B186;G317] by means of the technique for combined works, and then an
equally exact repetition of the give-and-take problem [B190;G324] which already served
to introduced the regula recta (above, p. 80). A problem about four men finding a purse
[B326;G511] changes the phrasing but not the numerical parameters of a counterpart from
[B218;G362]. Five men buying a horse [B327;G513] is an exact repetition of a problem
on p. [B234;G384]. The first problem about repeated travels ([B258;G417], cf. above p.
88) is repeated on p. [B329;G515] in slightly more compact words but the same
parameters; similarly, a house-renting problem (see above, p. 90) from [B270;G434] turns
up in changed words but with the same parameters on p. [B329;G516]. The first of the
“rambling” problems ([B276;G442], cf. above, p. 90) is repeated with slightly different
numerical parameters on p. [B330;G517]. On p. [B330;G518], a problem about men having
money changes their number to 6, while a corresponding problem on p. [B285;G455]
speaks of 5 men.!"*"!

The situation of the next problem [B331;G519n] is slightly more puzzling (not present
in all manuscripts). It is the traditional version of the two-tower problem, in which the
two birds arrive at the same moment (see above, p. 46). In the 1228 edition, the same
problem is solved in the “geometric” part of chapter 15 [B398;G611], and thus not where
“abbacus” problems are supposed to be. As it turns out, the early version of chapter 12
in manuscript L actually contains a corresponding problem where it would be expected
[ed. Giusti 2017: 192]. When preparing the final version, Fibonacci must have moved
it while editing it (actually, while borrowing from a different source — see below, p. 133);
since the problem as it looks here and as it turns up in chapter 15 are identical (both
deviating from what is found in L) Fibonacci must have been fully aware of what he was
doing. Giusti suggests the problem to belong “to a first version of chapter 13” [2020:
cvii] — but if so, then to an intermediate version, later than the one represented by L
chapter 12, and thus evidence that the Liber abbaci was an ongoing project that cannot

be reduced just to an original from 1202 and single revision from around 12281

% 1n both cases, the sum of the total possession less that of each of the men is given.

91t can also be imagined, however, and may all in all be more plausible, that Fibonacci at first
simply left out the two-tower problem when preparing what became the 1228-version from chapter
13 part 1 and then, in a second instance, when he had inserted the problem in chapter 15 part 2,
reestablished the problem in chapter 13 part 1, but now with the new words and parameters. We
would still have evidence of an ongoing project, but now the Boncompagni manuscript and its family
end up being the final, not the first variant of the 1228 version. In any case it seems we have positive
evidence that we need to speak of a “1228 family”, not simply of a single “1228 version” represented
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The first part of chapter 13 closes with four more problems that repeat (in one case
with a small numerical variation) problems that have been solved before.!*"! One,
[B334;G522], dealing with four men buying a horse, is noteworthy for the need to
introduce a nested structure and a particular terminology: for each of two “universal
positions”, a second elchataym procedure with “particular” positions is introduced. They
are introduced by the phrase “you will call it”/“it will be called” (appellabis/
appellabitur ), suggesting that this terminology is Fibonacci’s own invention, not something
already existing.!'**
considered with not little care.

1 As Fibonacci points out, these nested procedures are to be
431 T have observed the technique in only one abbacus
text preceding printing (below, p. 286), where I shall return to how it works; the

appearance in two printed books will be mentioned on pp. 321 and 338.

13.2, new problems

Part 2 is announced [B336;G526] as applying the double false position to problems
that are not dealt with elsewhere in the book. The types are not new, however, they still
represent what we have come to know as “abbacus questions”.

The starting point [B336;G526] is a give-and-take problem, solved first by means
of two false positions, afterwards also in the way taught earlier on. Seven more of similar
types follow. Two of them [B340,342;G531,533], both about five men, each of whom
after having received given fractions of the possessions of the other will have a given
amount, make use of nested elchataym procedures (the second of them even in three
levels). Four explain alternative procedures, of the kind taught for similar problems in
chapter 12. Of particular interest is the first of two alternative solutions to the problem
on p. [B338;G529], which in symbols can be expressed

A+',(B+C) =14, B+',(C+A) =17, C+'5(A+B) =19 .
Without referring to the regula recta, Fibonacci posits B+C to be a thing (res), and C

alone to be part of a thing, afterwards spoken of simply as part (pars). This leads him
to the two equations

W, thing—",part = 13", , “part+%,5thing = 16'/; .

by a number of manuscripts with different copying errors, omissions, corrections gone wrong, and
contaminations (and whatever else may happen within a manuscript family descending from a single
archetype). Cf. below, note 159.

141 1B332;G519] repeats [B198;G334] with a minor variation; [B333;G521] repeats [B214;G357];
[B334;G522] repeats [B245;G400]; [B335;G524] repeats [B293;G465].

“21n contrast we encounter on p- [B352;G547] the expression “which are called” (dicuntur),
signalling that a term already exists and has been adopted by Fibonacci (see below, p. 115).

W [...] in hac questione etiam et in similibus plures elchataieym necessarii sunt, in quibus non
modicum considerandum est.
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Multiplying the latter by % he gets the same number at the right-hand side,
Y, thing—",part = 13", , %, part+',thing = 13, ,

which allows him to find thing : part = 51 : 29, whence (thing—part) : part =
(51-29) : 29 =22 : 29, that is, B : C = 22 : 29. Inserting instead the ratio thing : part
into the first equation allows Fibonacci to find that 22 : (thing—part) =56 : 27; etc. Being
much less versed in proportion techniques than Fibonacci, we will probably find the way
the equations are solved clumsy, but the use of these is what allows Fibonacci to speak
of the procedure as “according to an investigation of proportions”, similarly to what he
did in the solution of the first problem about the “purchase of a horse”, cf. above, p. 87.
Once more, Fibonacci obviously sees nothing remarkable in the use of two algebraic
unknowns.

Fibonacci appears indeed to have borrowed not only the general idea of using two
algebraic unknowns but also the name “part” for the second unknown. The two algebraic
unknowns used by al-KarajT when he solves the grasping problem (above, p. 96) are indeed
Sai " (“thing”) and gasm (“part”). In a give-and-take problem [ed. trans. Woepcke 1853:
139], al-Karaji uses sai * and gist, “share”/“measure” as his unknowns; even gist can
thus have given rise to a translation “part” (as we see, here at least al-Karaji does not
follow the habit to use coin names for unknowns beyond the thing ). Since Fibonacci does
not solve the grasping-problem by means of explicit algebra, he is not likely to have known
the Fakhri directly, but al-Karaji’s term may reflect more general ways unknown to us,
or it may have been borrowed from him by later Arabic writers.""*" Fibonacci’s
explanation of part as “part of a thing”, which as no counterpart in al-Karaji’s text, points
in the same direction.

'* Around the mid-13th century, “a portion” is used as the second unknown by the Iranian jurist-
mathematician al-Zanjani in a hundred-fowl problem, see [Sammarchi 2019: 52] (the Arabic term
is not mentioned). The problem is not borrowed from al-Karaji’, but al-Zanjani knew al-KarajT’s
algebraic writings.



Chapter 14 — square and cube roots

Chapter 14 deals with the finding of and operation with square and cube roots, and
with such binomials (binomi ) and apotomes (recisi ) as are dealt with in Elements X (and
a few more).

A puzzling preamble
At first [B352;G547] comes this preamble:

Let it be me permitted to insert in this chapter about roots certain necessary matters, which
are called keys [claves ]; since they are all proved by clear demonstrations in Euclid’s
Second, it will suffice beyond their definitions to proceed by means of numbers. The first
of which is that, when a number is divided into any number of parts, then the
multiplications of these parts in the whole divided number, joined together, are equal to
the square of the divided number, that is, the multiplication of the same number in
itself."*! For example: let 10 be divided into 2, and 3, and 5. I say that the
multiplications of the two, the three, and the five in 10, evidently 20, and 30, and 50,
equal the multiplication of 10 in itself, that is, 100. [Similar versions follow of Elements
I1.1; IL.4; and the corollary 2a-(a+b )+b* = a*+(a+b )*]. Further, if a number is divided
into two equal parts, and also into unequal parts, then the multiplication of the smaller
part by the larger, together with the square of the number which there is from the smaller
part until the half of the whole divided number will be equal to the square of the said
half [Elements 11.5; follows a numerical example and a similar version of I1.6]. To the
latter two definitions are reduced all questions from aliebra et almuchabala, that is, in
the book of contemptio™* and solidatio. Then, finished this, this chapter is divided
into five parts. Of which the first is about the finding of roots; the second about their
multiplication in each other and of binomials."*”" The third about their addition. The
fourth about their mutual detraction. The fifth about the division of roots and of binomials.

As shown by the present tense “are called” (dicuntur), the notion of “keys” is
borrowed, not introduced by Fibonacci himself, who in that case would use the future
tense — see above, p. 113. The reference to aliebra almuchabala that closes the presentation
of the keys leaves no doubt that it is adopted from an Arabic source. However, this use
of “keys” seems not to be known from extant writings — in these, as exemplified by al-
Kast’s Miftah al-hisab, the “key” is that which unlocks a subject. We thus have to think
of a region whose theoretical knowledge did not spread to the rest of the Arabic world,
which once again leads us to al-Andalus; the regular use of the “key”-version of Elements

" Elements 11.1, applied to two equal lines; or, if we prefer, Elements 11.2 generalized to division

into several parts.

146 As pointed out by Enrico Narducci [1858: 1, 23], the word however spelled will certainly be
a mistake for contentio, “comparison/contrast/struggle’.

147 The latter phrase (de multiplicatione earum inter se et binomiorum ) does not correspond precisely
to either of the headings for a designated part 2 but almost to that of “2,” — see imminently.
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I1.5-6 in the Liber mahameleth (and in chapter 15 of the Liber abbaci, parts 1 and 2,
as we shall see) confirms this inference, even though “keys” are never spoken of there.

On the other hand, the translation offered for aliebra almuchabala is puzzling. After
Narducci’s emendation it is quite adequate — but wholly different from what we encounter
elsewhere at the time, and also from the translation given by Fibonacci when he presents
the topic (see below, p. 137). The only plausible explanation is that this translation is part
of the borrowed text, and thus that Fibonacci (at least here, but quite likely also elsewhere
when he borrows from al-Andalus) takes advantage of an existing Latin translation which

has now been lost.'*®! It is perhaps worth noticing that Fibonacci includes no Iberian

'** This is not the only occasion where Fibonacci copies an existing translation rather closely without
betraying his source. One source which we possess is Abti Bakr’s Liber mensurationum as translated
by Gerard of Cremona. An example that illuminates Fibonacci’s way to use a source is this problem
about a rectangle, for which the sum of the two sides and the area is 62, while the difference between
the sides is 2. In Abil Bakr’s formulation [ed. Busard 1968: 94; ed. Moyon 2017: 172] the solution
runs

The way to find this will be that you diminish 62 by 2, and 60 remains, then join 2 to
the half of the number of sides, and 4 results. Join this to 60, and 64 results. Thus take
its root, which is 8. This is indeed the longer side. And if you want the shorter, diminish
8 by 2, and 6 remains, which is the shorter side.

Fibonacci [ed. Boncompagni 1862: 66] prefers that “64 result” and that “6 remain”, seeing numbers
as collections of units and not as single entities; but apart from that his text is word for word the
same (also in Latin).

The identification of 4 as 2 plus half of the number of sides is if not fallacious then at least
misleading. Jean de Murs’ De arte mensurandi [ed. Busard 1998: 187f] betrays the underlying
geometric idea (a reduction to the problem of a square plus its four sides), which corresponds to
this symbolic calculation (a and b being the two sides):

ab+a+b = 62, a = b+2
(b+2)b+b+b = 60
D*+2b+b+b+2+2 = 60+4
b*+4b+4 = 64
(b+2)* = 64
a=b+2=64=8
Fibonacci probably does not understand why this works; indeed it only does because a—b = 2; in
the general case where a = b+n, what should be added in the third line is ("*%,). Probably for this
reason he adds this explanation by means of algebra (explanation of the terminology follows below,
p- 138):

posit the smaller side as a thing, then the larger will be a thing and two dragmas. From the

multiplication of this shorter side by the longer results the area. Therefore multiply the thing,

that is the smaller side, by the thing and by two dragmas, and you will have a possession and

two roots as the expanse; which, if you add to them the two sides, namely 2 roots and 2

dragmas, will be a census and 4 roots and 2 dragmas, which equal 62 dragmas. Remove 2

dragmas in each place, and a census and 4 roots remain, which equal 60, and so on.

That is, at the point where it is clear that what should be added is not 2+2 but (**%,)* Fibonacci
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locations (neither al-Andalus nor Castile) when listing the places where he had learned
after Bejaia — “Egypt, Syria, Greece, Sicily, and Provence”, see above, p. 59. This might
imply that he knew not only the barter treatise (above, p. 72) but also what he had taken
from al-Andalus from written material, not from direct confrontation (cf. also note 171
below).['*

“Keys” of a similar kind return in Pacioli’s Summa [1494: 88'—89"] — see below, p.
333; there, they are statements (theorems not supported by proofs) about numbers in
continued proportion. I know of no intermediate source mentioning them, and it is next
to certain that Pacioli was not inspired by Fibonacci on precisely this point;"*” yet
since Pacioli makes critical observations to some of them, he must have borrowed the
group as a whole from some preceding treatise.!">"!

The copied section ends with the puzzling Latin translation. Indeed, “finished this”,
the description of the contents of the chapter follows.

stops, hiding that he does not understand.

' One barely possible identification of Fibonacci’s source for the “keys” should be mentioned.
The Liber mahameleth refers repeatedly to an algebra chapter that has been lost in all extant
manuscripts but must have been there originally (at least in the Arabic original). If
restauratiolrestaurare or opponereloppositio were used in the standard way in the rest of the book
this would be excluded. But they are not. Opponere occurs in a reader’s marginal commentary [ed.
Sesiano 2014: 146 apparatus], restaurare once in a regula recta solution of a first-degree problem
[ed. Sesiano 2014: 243] and once where it designates a multiplicative completion (a normalization)
[ed. Sesiano 2014: 354], for which it also serves a couple of times in Abl Bakr’s Liber
mensurationum [ed. Busard 1968: 88, 99] but never in al-Khwarizmi’s nor in Aba Kamil’s algebras.
Restauratio and oppositio are wholly absent from those parts of the Liber mahameleth which we
possess; nothing thus excludes that what Fibonacci draws on here could be the lost algebra
presentation from the Liber mahameleth. But positive evidence is completely absent.

130 [Pacioli 1494: 106"-111"] indeed contains a list of no less than 66 conclusiones seu evidentiae
(also theorems not supported by proofs), which starts with close analogues of Fibonacci’s keys
(the first of them, however, closer to Elements 11.1 than Fibonacci). They are not called “keys”.

SUIf we suppose Pacioli’s source to have been written in an Italian vernacular, we may be tempted

to point to Antonio de’ Mazzinghi (presented below, p. 226) since he is the only algebraist know
by name from the preceding centuries whose level would have permitted him to produce this set
of “keys”, and since he was furthermore interested in continued proportions; but care should be
taken, the anonymous author of the manuscript Florence, BNC, fondo princ. I1.V.152 (below, p.
236) was also a brilliant algebraist, as we shall see, and there may well have been others. Any
historian working on matters preceding book-printing should realize that there is much less cheese
than holes.

A reference to Fibonacci’s keys is found in the mid-15th-century “abbacus encyclopedia”
Florence, BNC, Palatino 573, fol. 317" [ed. Arrighi 2004/1967: 188f]; the words leave no doubt
that the author has read Fibonacci’s text.
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14.1, extraction of square roots

After the preamble come examples of the algorithm for extracting square roots,
presented as the “abbacus way” (secundum abaci materiam ) — which turns out to be what
Jacopo and other abbacus authors speak about as the “closest” approximation (above, p.
36); however, Fibonacci knows and shows in his first example [B353;G548] that further
approximation is possible, where the first approximation to V10 is found to be 3 Y,, while
iteration gives 3 '/,—',,; as second approximation. Further [B353;G549], \743 is shown
to be approximately 27 '%,.,, = 277/,,; similarly for V8754, V12345, and V927435. In the
latter case [B355;G551] Fibonacci also describes how to make the second approximation
by iteration of the procedure, without however performing the appurtenant tedious
computations.

Between the finding of V10 and the following examples
Fibonacci inserts an observation concerning the relation between
the quantity of digits in a number and in its square root, and a
geometric construction of a square root, building on either = b 4 c
Elements 11.14 or Elements V1.13; no proof is offered, it is just
said to be “clearly demonstrated in geometry”. The lettering being a-b-c-d-e, it is likely
to have been produced anew by Fibonacci himself."*

After calculating V927435 Fibonacci offers [B355;G552] an explanation of how to
find roots with higher precision by an alternative method based on an insight already
explained in al-Khwarizmi’s algebra [ed. trans. Hughes 1986: 243f]; the example used
is

e

1 1 4975 1 1
V7234 = =5 +/10000-7234 = 5 8505+ 3555 = T 85057 ,

in the end expressed in V as 85 'y, V“PO (in this unusual order). Other manuscripts have
1
. - [153]
various errors, Boncompagni’s thus 555055

"2 Buclid’s corresponding diagram in Elements V1.13 is indeed different [ed. Heiberg 1883: I, 111] —
also in the translation made directly from the Greek, which Fibonacci is known to have used [ed.
Busard 1987: 134] (the latter, by the way, has the lettering a-b-g-d ). Nor does any of the translations
from the Arabic agree with Fibonacci’s diagram.

'3 Since fractions were mostly written with the denominator on the line and the numerator and
the fraction line above, all that is needed for this misunderstanding (apart from the extra 0) is a
fraction line that extends too far to the right.
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14.2,, the multiplication of roots and binomials

On p. [B356;G553] begins a new section, a presentation of matters from Elements
X, to which Fibonacci refers explicitly; but whereas Euclid deals with them in a “book
about geometry”, here they are “shown according to number’’"**

In Boncompagni’s manuscript this section carries the heading pars secunda
quartidecimi capituli de multiplicatione radicuum et de binomiorum, “the second part of
the 14th chapter on the multiplication of roots and of binomials”, which (with slight
approximation) corresponds to what is promised in the introduction to the chapter. The
heading is absent from the other manuscripts, all of which, however, also promise it in
the introduction.* There can therefore be no doubt that it was intended by Fibonacci,
but perhaps at first forgotten. Since another “part 2” starts a little later, I shall refer to
the present one as “part 2,

The terminology suggests that Fibonacci is familiar with the translation made directly
from the Greek [ed. Busard 1987] — riti for Greek pntoc, “rational”, potentia for Greek
duvaet, “in power” meaning “in square”. However, the use of this translation is restricted;
as soon as we come to the presentation of the thirteen kinds of irrational lines dealt with
by Euclid, the language diverges not only from that of the translation made directly from
the Greek but also from all other 12th-century Latin translations [ed. Busard 1967; 1983;
1984; 1992: 2001], and also from the commentary to Elements X probably made by Gerard
of Cremona [ed. Busard 1997]. The whole structure and purpose is also different from
the Euclidean text; either Fibonacci himself makes a very free paraphrasing and
reinterpreting commentary, or he uses an existing work of that kind which we do not know
about, either Arabic or already translated into Latin.

There are indeed good reasons to paraphrase and reinterpret. Fibonacci’s aim is to
discuss operations with roots. Since irrational roots in Fibonacci’s conceptual world are
not numbers (though he shall soon speak about them as such, see imminently), and since
he needs the notion of “commensurability potentia” or “in power”"* he cannot give
up the underlying representation of lines and the squares on them; but everything is

' Readers who are not at least superficially acquainted with Elements X may find the following
pages difficult. Since this part of the Liber abbaci appears to have left modest traces in the abbacus
tradition (even the Florence encyclopedias go their own way), and since an explanation of what
Elements X is about would easily become another book, I shall not try to untangle the knots (knots
untangled, as is well known, become much longer pieces of string).

133 See the critical apparatus in [Giusti 2020: 548, 789f]. I consulted V myself.

15 That two lines are commensurable “in power” (duvGylel) means that the squares constructed
on them are commensurable in area. In agreement with Fibonacci’s ambiguous understanding we
may say that they are “commensurable in square”, thinking either of these geometric squares or
of the arithmetical squares.
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provided with numerical examples, whence rationality becomes absolute and not relatively
to an arbitrarily assigned standard line and its square.

Elements X.21 [ed. trans. Heath 1926: 49] defines the first line that is irrational even
in potentia in this way:

The rectangle contained by rational straight lines commensurable in square only is
irrational, and the side of the square equal to it is irrational. Let the latter be called medial.

Here, in agreement with definition 3, “rational straight lines” are those that are
commensurable in power with a given standard measure. If the length of this standard
is defined as 1, the lengths of the two lines thus become Va and Vb, where not both a
and b can be squares (if they were, they would be commensurable in length too). This
leads to Fibonacci’s transformation, [B356;G553]:

Of the thirteen irrational lines the first is the simple, called medial, whose power is the
irrational called medial surface; because it is the mean proportional between two surfaces
only commensurable in power, it will be understood that the line is the root of the root
of a number, whose power is the root of a non-square number.

Then follow the definitions of the various kinds of binomials. The first two are defined
thus in Elements X (definitions II, 1 and 2) [ed. trans. Heath 1926: III, 101],

1. Given a rational straight line and a binomial, divided into its terms, such that the square
on the greater term is greater than the square on the lesser by the square on a straight
line commensurable in length with the greater, then, if the greater term be commensurable
in length with the rational straight line set out, let the whole be called a first binomial
straight line;

2. but if the lesser term be commensurable in length with the rational straight line set out,
let the whole be called a second binomial.

In Fibonacci’s number version, the first of these looks simpler [B357;G553]:

The first binomial is the conjunction of a number and a root; and the power of the number
exceeds the power of the root according to the quantity of some square number; as if the
first name'®” were 4, the second root of 7; 16 are namely the power of 4, which add
9to 7,

since the binomial has the shape a+\/b, where a and b are rational numbers; what is
commensurable with a is obviously also commensurable with 1. The second [B357;G554],
however, with shape Va+b, looks more opaque than the Euclidean definition, since here
the excess is related to an irrational number:

The second binomial is composed of a root and a number. And the power of the root adds

157 Literally, binomium means “of two names”. The “names” are thus the terms of the expression.
As we shall see (below, p. 212), in abbacus algebra, “names” came to refer to the sequence of
algebraic powers.
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a number similar to itself over the power of the smaller number, that is, over the power
of the number. As if the major name were root of 112, and the minor name were 7. The
power of the root of 112 exceeds indeed 49 by 63; and the number 63 is similar to 112,
since their ratio is as that of the square number 16 to the square number 9.

I shall abstain from making a full analysis of Fibonacci’s transformation of the Euclidean
theory — it will be evident from these excerpts that it would go far beyond the limits of
this book."*® For further use I shall just list Fibonacci’s examples for the six types
of binomials:

Ist: 44V7, 47 =9

2nd: V11247, 112-7> = 63, 63:112 = 3% : 42

3rd: V112+V84, 112-84 = 28, 28:112 = 17 : 4

4th: 4+V10, 4-10 = 6, 6 : 4% not as square number to square number
Sth: \/20+3, 20-3% =11, 20 : 11 not as square number to square number
6th: V20448, 20-8 = 12, 12 : 20 not as square number to square number

After the definition of the six kinds of binomials (now spoken of as numeri,
“numbers”) accompanied by the examples just given Fibonacci shows [B357;G554] that
the square of any of them is a “first binomial” — the counterpart of Elements X.60 [ed.
trans. Heath 1926: 111, 132],

The square on the binomial straight line applied to a rational straight line produces as
breadth the first binomial,

but simpler because Fibonacci speaks of these squares as numbers, not areas to be applied
to a line. Last in this introduction to the intricate world of Elements X come the subtractive
counterparts of the binomials, the apotomes (recisi, seu apothami) [B358;G555], still
identified as numeri. Here, the exposition is more compact — only the first is exemplified,
namely by 4-\7 (as we and the supposed reader see, 4°~7 = 9 = 3%).

14.2,, multiplying roots by roots

On p. [B358;G556] begins another part 2 (henceforth 2,), “about the multiplication
of roots in roots and numbers”. One may assume that part 2, was absent from the 1202
version, and thus that the systematic presentation of some fundamentals from Elements

X was added in the revised version."*” Since binomials and apotomes turn up regularly

% Liineburg [1993: 259-272], though no complete analysis, is a praiseworthy courageous beginning.
In contrast, Moritz Cantor (within what he himself characterizes as an “almost insupportably
detailed description of the Liber abbaci [Cantor 1892: 31; 1900: 34], indeed 28 pages long), only
says [1892: 28; 1900: 28] that Fibonacci “follows the progress [den Gang ] of Book X of Euclid’s
Elements rather closely”; this is simply wrong, Fibonacci borrows some definitions and results but
nothing from the structure or the progress.
Sigler [2002: 631] has absolutely nothing to say about the matter in his notes.

1% This would explain that Fibonacci planned part 2, and promised it in the introduction to the
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here and in the following parts, we seem to be confronted with a parallel to what happened
to the regula recta, which was used occasionally in the 1202 version but taken for granted
by then, not explained (see above, p. 83). When preparing the revised version, Fibonacci
found that even this rule was in need of an introduction and an explanation.

Since we do not possess the 1202 version of chapter 14, it cannot be established with
full certainty that this is what happened; but we may notice that the proof that the square
of any binomial is a first binomial is repeated on p. [B362;G560] within the third part,
this time supported by a line diagram lettered a-b-g-z-e-... — not the proof offered on p.
[B357;G554] (which is purely arithmetical and proceeds case by case), nor however the
proof of the corresponding theorem in the translation of the Elements directly from the
Greek [ed. Busard 1987: 260]. The latter evidently considers segments and areas contained
by segments, while the present proof represents products of segments by segments.

Part 2, thus deals (according to its heading as well as actually) with | 1g 20
the multiplication of roots by roots (the “numbers” of the heading being a b
forgotten). At first it takes the example [B358;G556] V10120 = J d
V(10-20) = V200, provided with a simple but noteworthy proof:

Let a be the root of 10, and b that of 20: and beside g equal to a, d equal to b; therefore
g is root of 10, and d of 20. Therefore, when I multiply g in a, that is, a in itself, result
10; and when I multiply d in b, that is, b in itself, they make 20. Therefore, when I
multiply 10 in 20, then I multiply the product [factum] of g, a in the product of d , b;
therefore the multiplication of the product of g, a in the product of g, b is 200. But the
multiplication of the product of g, a in the product of d, b equals the multiplication of
the product of a, b in the product of g, d; therefore the multiplication of the product of
a, b in the product of g, d is 200. But the product of a in b equals the product of g in
d; therefore the product of a in b by the product of g in d equals the multiplication in
itself of the product of a in b. Therefore the multiplication in itself of the product of a
in b makes 200. In consequence the product of a and b, namely of the root of 10 in the
root of 20, is the root of 200; as was to be demonstrated.

The letters, we observe, do not designate lines as they do in the proofs of Elements
VII-IX!"% _ the proof is as close to being an instance of symbolic algebra as possible

chapter (plausibly also either added or adjusted in 1228), and then at first forgot to provide the
inserted explanation with the corresponding heading.

Alternatively, since the heading for part 2, is present in the same manuscript family as the
revised two-tower problem (above, p. 112), Fibonacci included it in the hypothetical intermediate
version; then, in the ongoing process, he discovered to have two headings for part 2, and eliminated
the first of them (or a copyist, on the way to the remaining manuscripts, did so).

According to note 140, the former possibility seems preferable.

1 Obviously these lines in Elements VII-IX are not geometric entities but simply representatives
of unspecified numbers; the crux is that a letter in itself cannot do that, it can only serve as a name
distinguishing something felt to be more substantial.
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when only the variables (here really variables, not representatives of specific though
unknown numbers) and not the operations are written by symbols. It also moves beyond
the classical limitation that products should consist of no more than three factors.!"®"
We observe that the letter order is a-b-g-d, which indicates that the proof (and presumably
its whole context) is borrowed — with or without lines carrying the letters in the original.
In the following pages, a number of similarly lettered proofs turn up, but none where letters
stand directly for numbers. Should we conclude that in the first proof Fibonacci slips
unwillingly into mathematical modernity without thinking about it but then corrects his
ways?

After an analogous example (V3040) follows an explanation that a product of type
Va~b will be rational if a and b have the ratio of two square numbers (this time the
letters are mine). After that (3V10)+(4V20) is reduced to V(9:10)V(16-20), and a
visualization (si ad oculum deprehendere vis, “if you want to indicate to the eyes”) of
the transformation 420 into V(16-20) is offered, based on a diagram whose lettering
involves ¢, and which can therefore be considered to have been produced by Fibonacci
himself.

The rest of part 2, deals with multiplications involving roots of roots —in part through
numerical examples only, in one case (to find two roots of roots whose product is rational)
supported by another letter-based argument (with sequence a-b-g-d-e).

14.3, addition and subtraction of monomials, binomials and apotomes

Part 3 [B361;G559] is dedicated to “the mutual addition and detraction of roots, and
of the other two simple numbers”, that is, of binomials, apotomes and monomials (roots
of irrational roots are included here under “simple numbers”). That is where it is proved
again that the squares of all types of binomials are first binomials (cf. above, p. 122).
It is shown [B362;G560] that V12+V10 = V(22+V480) (the former expression, however,
being deemed “more beautiful’), while V18+v32 (where the two terms are commensurable)
is better expressed as V98 [B363;G562].

Further it is shown ([B363;G561], with a line-based proof, a-b-g) that the square
on any apotome (number less root, root less number, or root minus root with radicands
that are not commensurable in power) is a first apotome, with application of the argument
to specific examples. It is also in this part ([B364;G563]; cf. above, p. 62) that we find
the calculation of 4+WW10 secundum vulgarem modum, specified to be secundum
propinquitatem (“in the vernacular way, [...] according to approximation”), W10 being
approximated as “less than 1%, The “magisterial” alternative,

' Not absolutely respected in classical mathematics, it is true. In the Dioptra [ed. trans. Schone
1903: 282f], Heron allows himself something very close to what is done here when proving “his”
formula for the area of a triangle; but when he transfers the proof to the Metrica, an attempt to
represent practical geometry “from a higher vantage point”, he has to justify the operations in a
lemma [ed., trans. Schone 1903: 16-19].
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4+\/ﬁ - \/16+M+8\/ﬁ - \/16+M+\/\/40960 ,

is accompanied by a diagram lettered a-b-c, which serves names-giving only.

Addition of two roots of roots is shown (with purely verbal arguments) to yield
sometimes the root of an expression with three “names”, sometimes the root of a binomial
of one or the other kind — in our formalism

Wa b = a+fo2jab |

which under specific conditions can be further transformed.

14.4,, mutual division of monomials

Part 4 ([B365;G565] — henceforth 4,) first explains “the mutual division of three simple
numbers”, that is, number by root, root by number, and root by root, giving the rule to
square the dividend and the divisor, leaving it to the ensuing examples to explain that
afterwards the root is to be taken of the outcome — first 30+V10 = V(900+10). Similar
examples (with similar rules) follow that involve roots of roots.

Next [B367;G567] Fibonacci turns to products of the roots of fourth, fifth and sixth
binomials — or so he says. The actual topic has nothing to do with the heading under which
it is placed, and most likely it represents another addition from 1228 — a kind of
continuation of part 2, inserted here because this seemed the most adequate place. Actually
the topic is restricted to the products of forth, fifth and sixth binomials with their respective
apotomes. First, however, comes the claim that

The root of a fourth binomial is composed of two lines, of which one is the root of a fourth
binomial, and the other is the root of the apotome having the same name. Of which lines
the first is called a major, the second a minor, and the conjunction from them, that is,
the root of the fourth binomial, is similarly a major; and it is called a major because the
major name it has as power is a number.

The concluding explanation of why a certain line is called a major is evidently wrong —
a scholar’s folk etymology."®? The proper definition is found in Elements X.39 [ed.
trans. Heath 1926: 87]

If two straight lines incommensurable in square which make the sum of the squares on
them rational, but the rectangle contained by them medial, be added together, the whole
straight line is irrational: and let it be called major.""®*!

'2 And even wrong, since the square on any binomial is a first binomial, which also fits this
description.

1% Evidently, that does not tell much about the reasons hiding behind the names “minor”” and “major”.
A plausible explanation linking them to the geometry of the regular pentagon was proposed by
Marinus Taisbak [1996].
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What Fibonacci tells corresponds instead to the propositions Elements X.57 and X.94.
X.57 transferred to numbers states indeed that the square root of a fourth binomial is a
major,"'* while X.94 says that the square root of a fourth apotome is a minor. So,
M =(a+\b) is a major and m = V(a—b) the corresponding minor, provided that a’>~b
is no square number. Some calculation then gives

(M+m)* = 2a+2\a*-b
either a first or a fourth binomial. Moreover,

(2a)*-2\(a?-b))* = 4b .
But b is no square number, nor is therefore 4b. In consequence, (M+m )* must be a fourth
binomial, and so M+m is indeed the square root of a fourth binomial.

Fibonacci offers a corresponding line-based proof, lettered a-b-g-d-e-z-i, which ends
up with the (much simpler) statement that the product of any binomial (say, p+q ) with
the corresponding apotome p—g equals p>—¢*, which serves in the following.

The insertion closes with a similar calculation [B368;G568], the determination of
(V40+V5)(N40—V5) and thus concerning a 6th binomial-apotome-couple. This calculation
is supported by a proof based on a subdivided rectangle, still lettered a-b-d-g-... .

After that Fibonacci turns to something much more elementary and in better agreement
with the heading of part 4,. Since he now makes use of a diagram that corresponds to
his habits elsewhere in the book, we may assume that he has now returned to his own
work, probably as it looked already in 1202:

If you want to multiply 4, and root of 7, by 5 and root of 20, put the
number under the number, and the square root under the square root, as <
shown in the margin. And multiply 4 by 5, and root by root, namely 7 by
20, the outcome is 30, and root of 140. And multiply contrariwise 4 by
root of 20, and 5 by root of 7, the outcome is four roots of 20, and five
roots of 7, that is, root of 320, and root of 175. [...].

al

20

Examples of multiplication of binomials consisting of number and root of root follow.
One of them [B369;G571] gives Fibonacci the occasion to formulate the “sign rules™

when something diminished is multiplied by diminished, then this multiplication increases;
and when added are multiplied with each other, then even their product is to be
augmenting; but when added is multiplied by diminished, then their product is to be
diminished, as shall be shown in the following

— namely by means of a meticulous explanation of a rectangle divided by means of

' “If an area be contained by a rational straight line and the fourth binomial, the side of the area
is the irrational straight line called major”. X.63 shows the reverse, “The square on the major straight
line applied to a rational straight line produces as breadth the fourth binomial” [ed. trans, Heath
1926: 111, 125, 63]. Fibonacci’s identification of the major with the square root of a fourth binomial
is thus blameless.
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intersecting lines parallel to the sides.

[B371;G572] shows by means of a line proof (a-b-g-d) that a binomial multiplied
by its apotome yields the difference between the squares on the terms — already shown
in the insertion, we remember, which confirms that the suspected insertion is really one,
and that Fibonacci did not rewrite the subsequent text after having made it.

Next, with a return to the categories of Elements X, it is derived that if the binomial
in question be a third or sixth binomial, the product will be rational; the restriction to
third and sixth binomials is superfluous and puzzling.

14.4,, division of binomials and apotomes

[B372;G575] opens another “part 4, which we may refer to as 4, (this time both
“part-4” headlines are present in all manuscripts'®"), presented as dealing with “the
division of binomials and apotomes by rational and irrational numbers, and the contrary”.
Initially, for the division by rational and irrational numbers, it teaches to perform the
division term by term. The “contrary” operation, the division of a rational number, a root
or a root of a root by a binomial or an apotome, is taught from [B373;G575] onward;
the method, as will be guessed, is to multiply divisor and dividend by the corresponding
apotome respectively binomial, which gives a number as divisor “as has been shown”
(the superfluous restriction to third and sixth binomials and apotomes being forgotten).
The division of 10 by 2+\\3 asks for an iteration of the procedure. [B376;G579] teaches
the division by a trinomial’® — for instance, 10+(2+V3+\5) — again making use of
a procedure in two step. A rather simple line proof is lettered a-b-c-d-e, and is thus likely
to come from Fibonacci’s hand; within the proof there is a correct reference (ut ostensum
est, “as has been shown”), to the fact that the square on any binomial is a first binomial,
with a curious quasi-repetition.

A final part of part 4, deals with the roots of binomials ([B376;G721] onward).
Expressed in modern symbols, v (a+\/b ), where a>\ b, can be reduced if rational numbers
p and ¢ can be found such that p+q = a, pg = ",b. Then, indeed

'% Giusti removes the words Pars quarta, but his critical apparatus shows them to be present in
all manuscripts.

1% This obviously goes beyond Elements X. Including it may have been Fibonacci’s own facile
independent generalization but need not be. That Apollonios had discussed trinomials was well
known in the Arabic world, for example from Pappos’s commentary to Elements X [ed. trans.
Thomson & Junge 1930: 85]:

We should also recognise, however, that not only when we join together two rational lines
commensurable in square, do we obtain a binomial, but three or four such lines produce
the same thing. In the first case a trinomial (¢trinomium ) is produced, since the whole line
is irrational; in the second a quadrinomial (quadrinomium ); and so on indefinitely. The
proof of the irrationality of the line composed of three rational lines commensurable in
square is exactly the same as in the case of the binomial.
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Jarlb = prgr2ipg = olpr+lgreNplg =N+l

To find p and ¢ is a problem of the kind for which the “key” version of Elements 11.5
was traditionally used, and the line proof (a-b-g-d-e-f) actually draws on that (without
mentioning neigther “key” nor Elements 11.5, however). It is observed that if a+\b is a
first binomial, then the line in the diagram corresponding to p—g is rational."®”! Similar
discussions for other classes of binomials follow.

14.5, cube roots

Part 5 [B378;G582] deals, thus its heading, with “the finding of cube roots, their
addition and multiplication, and the extraction or division of the same”.

Initially it explains what cubes and cube roots of numbers are and how to calculate
cubes in the place-value system.

Next it describes an algorithm for extracting approximate cube roots of non-cube
numbers. As a first step it finds (supported by a line diagram a-b-g-d) the difference
between subsequent cube numbers, then the outcome is used to explain the algorithm.

Examples follow [B384;G590] for the multiplication of cube roots or numbers with
cube roots, and similarly; as was also to be the habit concerning square and cube roots
in abbacus mathematics, the outcomes are “reduced to cube root”, that is, for example,
31080 instead of 3°V40.'® Next two (rather trivial) ways to produce two cube roots
whose product is rational, and then [B384;G591] division of cube roots by cube roots
(or by expressions that can be “reduced to cube root”).

Then follows [B384;G591] an explanation that cube roots, just like square roots, can
sometimes be aggregated or detracted one from the other (the term disgregare is also
used), and sometimes not. So, >V16 and V54 can be aggregated because 16 and 54 are
in the ratio of two cube numbers (8:27), while *V32-*V4 = (2-1)*\4. The latter calculation
is supported by an extensive line argument considering the decomposition of the cube
on the line

a b ¢

where ab represents 32 and be *V4; as suggested by the lettering as well as by the
agreement with the explanation of the algorithm for the extraction of cube roots, the
argument is likely to be of Fibonacci’s own making.

The chapter closes by the observation that [cube] roots whose radicands do not

1 Since (p+¢)* = a® and 4pg = b, (p—q)* = a’~b, which is indeed a square if a+\b is a first
binomial.

'8 It may be observed (even though that is hardly the explanation for this choice of mathematical
aesthetics) that this choice improves the precision of approximations if only (as mostly) the rational
multiplier is larger than 1.
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communicate (that is, are not in the ratio of a cube number to a cube number) cannot
be aggregated nor disgregated: 35-V3 “cannot be said more beautifully”.

In the Flos [ed. Boncompagni 1862: 228] Fibonacci explains that a certain question
about a cubic problem inspired him to study Elements X more accurately, and that,
“because it is more difficult than those books that precede or come afterwards, I began
to gloss upon this same Tenth Book, reducing its understanding to number, which in itself
is proved by lines and surfaces” In a mid-15th-century manuscript'® this has
developed into a claim that Fibonacci wrote “a book about the 10th of Euclid”; since
Fibonacci elsewhere refers to “books” of his when we know they existed, we may take
from his words that the 15th-century admirer extrapolated, and that Fibonacci indeed
restricted himself to glossing but did not write a genuine “commentary”.!'™!

The inspiring question, thus it is told by Fibonacci [ed. Boncompagni 1862: 227],
was asked by Giovanni di Palermo in the presence of Frederick II, that is, in 1226 (above,
p- 96). This confirms that the three insertions in the present chapter (the preamble, part
14.2,, and the matter added to part 14.4,), here identified according to internal criteria,
were indeed added in the 1228 version."'”"! Moreover, the constant use of proofs lettered
a-b-g-... in these shows that he drew on borrowed material, while the unorthodox
translation of al-jabr wa’l-muqabalah in the preamble is strong evidence that he used
an existing Latin translation, now lost (at least for the preamble, probably for all the
insertions) — how creatively it is hard to know.

The answer given in the Flos to the problem shows beyond doubt that Fibonacci knew
much more about Elements X than he put into the Liber abbaci.'™

1% The “abbacus encyclopedia” Florence, BNC, Palatino 573, fol. 433—434" [ed. Arrighi 2004/1967:
193].

" In the Summa, Pacioli [1494: 119'—142"] has a much more thorough and systematic exposition
of Elements X in number interpretation, and one might ask whether he based this on Fibonacci’s
supposed book — not least because he seems to have inspected Fibonacci’s chapter 14 or perhaps
a larger treatise from which Fibonacci drew in the Liber abbaci what he found fitting (on fol. 144
he explains that almucabala means oppositio or contemptio, the latter with Fibonacci’s characteristic
mistake).

However, of Pacioli’s numerical illustrations of the binomials (fol. 120"), only one, that for
the first binomial, coincides with that of Fibonacci; given its simplicity, 4+\/7, this cannot be taken
as evidence of inspiration (only 243, 3+V5 and 3+V8 are simpler). As it becomes obvious if the
lettering of Pacioli’s diagrams in the geometric part is compared with their counterparts in
Fibonacci’s Pratica geometrie, Pacioli is no less faithful to his model when he has one than
Fibonacci. It seems most likely that Pacioli, perhaps inspired by what little is found in Fibonacci’s
chapter 14, produced his own numerical interpretation of Elements X.

"I This dating, by the way, supports the assumption that Fibonacci here used written material and
did not draw on what he had learned while travelling.

12 See, apart from the text itself, for example [Woepcke 1854], [Rashed 2003: 57-60] and [Picutti



Chapter 15 - theory of means, rules of geometry, and algebra

Chapter 15 “about pertinent rules of geometry, and about questions of aliebra et
almuchabala”, is explained in the very beginning to consist of three parts — the first dealing
with “proportions of three and four numbers, to which many questions pertaining to
geometry are reduced” (thus elucidating what is meant in the chapter heading); the second
with “the solution of certain geometrical questions”; the third with “the way of algebra
and almuchabala’.

15.1, an investigation of means

As a matter of fact, the contents of part 1 has little to do with geometric questions.
Since I have analyzed it in depth elsewhere, I shall only recapitulate here, leaving
substantiation to [Hgyrup 2011a: 97-100].1'7!

First [B387;G595] come three questions (#1-3 in the numbering I introduced in
[Hgyrup 2011a]) about three numbers in continued proportion P : Q : R, where the sum
of two of them (P+Q, O+R or P+R) is given together with the third. In all cases, line
diagrams lettered a-b-c-... are used for an argument where proportion operations!'’*!
transform the question in such a way that the “key” version of Elements 11.6 can be

applied. For example, in the first question, where P+Q = 10, R = 9,

P 0 P-Q 0-R
6:7:) < - = Q(Q+9)=90

These are followed by two questions (#4-5), still about three numbers in continued
proportion, but now Q—P and R respectively R—P and Q are given. Now, the line diagram

1983: 342-351].
'3 More concisely also in [Hgyrup 2009d: 62-65].

" In the present description of chapter 15 of the Liber abbaci 1 shall use the fraction-like notation

for proportions. Then, the “proportion operations” on % : '7 are

. b d
e contrario: i 2
a c
a b
permutata: L :
c d
. a-b c-d
conjuncta: L2 22
b ]
- L —d
disjuncta: 22 . =2
b d
conversa: L _¢
a-b c-d
eversa: ¢S
a-b c—d
a-c
aequa: L : 2%
b bd

(from the Campanus Elements [ed. Busard 2005: 171f]); to these comes the “product rule” ad =
bc.
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is lettered a-b-g-d-..., but in the ensuing argument even the letter ¢ turns up, indicating
that Fibonacci has used but transformed borrowed material. In the former, the “key”
version of Elements I1.5 is used, in the latter that of I1.6. This first section of part 1 closes
by an aside (#6) explaining that squares or cubes of four numbers in proportion are also
in proportion. It has nothing to do, neither with what precedes or with what follows
immediately. In section 3 of part 1 comes a problem (#50) where it is used, but there
is neither forward nor backward reference, so Fibonacci has not noticed the connection.

Section 2 of part 1 (#7-38) is by far its larger portion, and its central piece. It is indeed
a coherent piece of theory inspired by the ancient doctrine of means.

The concept of means had developed gradually. Plato’s contemporary Archytas''”™!
knew three: the arithmetic, the geometric, and the harmonic mean. In the Early Common
era their number had grown to around ten — Nicomachos (De institutione arithmetica
IL.xii—xxviii, ed. [Hoche 1866: 122—144], trans. [d’Ooge 1926: 266-284]) and Pappos
(Collectio 1I1.xii—xxiii, ed. trans. [Hultsch 1876: I, 70-105]) each have a list of ten, but
only nine coincide. They can all be defined by means of proportions, as shown in this
scheme, which also indicates how Fibonacci’s part 1 section 2 fits in:

Pappos Nicomachos Liber abbaci
R-Q R .
oF =X (arithmet.) P1 N1
R-Q R R-Q Qo
TF=0NF=F P2 N2 #27-29
R-Q R
oF =7 P3 N3 #7-9
R-Q P . .
oF =R P4 N4 (but inverted) #10-12 (inverted)
R-Q P
2F =7 P5 N52 (but inverted) #34-36 (inverted)
R-Q 9]
7 =% P6 N6 (but inverted) #20-22 (inverted)
R-P R
F =7 absent N7 #16-18
R-P R
0= F P9 N8 #13-15
R-P 0
oF =7 P10 N9 #30-32
R-P 0
5 =F P7 N10 #37-38
R-P R
o =0 P8 absent #23-25
R R-P
T =07 absent absent #26

' Fragment 2 (generally accepted as genuine), [ed. trans. Diels 1951: T, 435f1].
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Everywhere, it is assumed that P< Q <R, and only the last line does not presuppose that
P<Q<R. That is indeed the condition that Q can sensibly be considered a mean; it is
therefore not strange that this last case is not included by the ancient writers. The definition
of the arithmetic mean in term of a proportion is evidently a clumsy artifice, the normal
and reasonable definition being R—Q = Q—P.

Having skipped the idea of Q being a mean, its creator has added the case in the last
line for the sake of theoretical completeness and coherence. For similar reasons of
consistency he has left out the frivolous interpretation of the arithmetical mean in terms
of a proportion. For each type of mean (except the pseudo-mean in #26, where Q turns
out to coincide by necessity with R), it is shown how any of the three terms P, Q and
R can be determined from the two others.!"”"!

The creator is certainly not Fibonacci. That is indicated already by the constant use
of line diagrams lettered a-b-g-..., but also by the failure to point out that #27-29 deal
with the geometric mean, which he has already treated himself in #1-5 with line proofs
fully or in part of his own making.

The line proofs of section 2 mostly use proportion-based transformations so as to
make possible the application of Elements 11.5-6, invariably in “key” version, with no
reference to Euclid, against Fibonacci’s normal habit, nor to the notion of “keys”; those
questions that are of the first degree are mostly solved by application of proportion
techniques alone. Fibonacci must have drawn on the source from which he had also taken
over the “keys”, that is, a source located somewhere in the Arabic world. Moreover, line
diagrams and unnamed “keys” are applied in strikingly similar ways in the Liber
mahameleth, which makes it next to certain that this “somewhere” was al-Andalus: the
same as the likely source for the sophisticated versions of the “unknown heritage”, cf.
above, p. 92, and the added components of chapter 14 (above, p. 115).

That the same methods are used in section 1 in connection with diagrams fully or
in part of Fibonacci’s own making does not contradict this conclusion; it only confirms
that here (as mostly) Fibonacci has understood what he borrows and is able to use it
creatively.

Section 3 [B395;G607] deals with four numbers in proportion, % = % #39 shows
that any of the four numbers can be found from the three others. This is evidently not
new to the Liber abbaci, is has been explained and used in connection with (Fibonacci’s
stand-in for) the rule of three — see above, p. 70. #40—45 show that all can be determined
if the sum of two of the numbers is known together with the other two individually —

76 Already Pappos’ Collectio IILxii—xvi shows how to find any of the three terms in a geometric,
harmonic and arithmetical mean when the two others are given. A connection is unlikely, however.
Firstly, this is done before the remaining means are defined; if Pappos had known of anything similar
for these, he would probably have mentioned it. The proofs, moreover, are geometric, not quasi-
algebraic as here. Finally, book VIII of the Collectio was translated into Arabic, but there seem
to be no traces of the first seven books [Sezgin 1974: 174-176].
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all six possibilities are covered. #46-49 do the same for differences (omitting two, but
simple left-right shifting of the proportion reduces them to what was already treated).
In #50, finally, P>+Q? is given together with R and S. The solution makes use of what
was explained in #6 (see above, p. 130), but as already pointed out there is no cross-
reference. All proofs are based on line diagrams lettered a-b-g-d, with ¢ appearing later
in the argument when differences are concerned. This together with the obvious similarity
of the question types shows that the inspiration for this group comes from the same source
as the one which provided section 2, but that the questions concerning differences may
have been added by Fibonacci himself.

15.2, geometric and other questions

The description of part 2 as “the solution of certain geometrical questions” is also
somewhat misleading. It opens, however, [B397;G609] with two classical geometric
recreational problem types: the “pole against a wall” and the two-tower problem (see
above, p. 46).

The pole (here a spear or javelin, asta ) against the wall
deals with a reed, pole or spear of length /, at first standing
against a wall; next the foot slides out a distance s, which
makes the head slide down a distance d. The problem is
known first from an Old Babylonian tablet (BM 85196, 17th
c. CE) in the simple variants where only direct application of
the Pythagorean rule is needed (namely because [ is given
together with either d or s (further references in [Hgyrup
2002b: 13, 15]). In Seleucid and Demotic sources we find
these together with the more intricate question where d and
s are given. Fibonacci discusses the two simple variants only,
with a reference to “the second-last of Euclid’s first book™ (the Pythagorean theorem,
indeed). A diagram lettered a-b-c-... tells us that Fibonacci, though repeating a problem
of venerable old age, argues on his own.'””!

A second problem deals with two spears, at first planted vertically, afterwards one
leaning toward the other. It calls for no further commentary.

The two-tower problem [B398;G611] is more intriguing. The two towers (ab and gd,

""" The problem is also dealt with in the Liber mahameleth [ed. Vlasschaert 2010: 402f; ed. Sesiano
2014: 543f, trans. ibid. 1046f]. There a ladder (scala ) is spoken of; the numerical parameters are
different; the lettering of the diagram is also different; and an extra, algebraic solution is offered.
Fibonacci has certainly not used this work, which in all probability he did not have access to.
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respectively) are 40 and 30 paces high, and their distance is 50 paces.""” The two birds
arrive at the same time to the fountain z, whence az and gz must be equal. At first a
geometric solution is offered: a perpendicular to ag is erected in
its midpoint. It hits the ground bd in z, and since the triangles
aez and gez are both right, ez being shared and ae = eg, even az
and gz must be equal.

This construction does not lead to a numerical value for the
position of z. Therefore, “if you want to proceed by numbers”,
a calculation is offered.

The trick behind this numerical solution is the observation
that gd*+dz* = ab*+bz’, whence ab>—gd” = dz’-bz*. Now dz’-bz* = (dz+zb)(dz—zb ); there
should be no need to reduce the left-hand side of the equation. However, Fibonacci does
not explain this background but presupposes without explanation that

ab+gd ab-gd  dz+zb dz-zb
2 2 T2 2

More precisely, he finds fz (= (db—bz)/2) as
ab - M
ab+gd 2 _dz+zb
2 2 T2

The strange way to express “°#%, is slightly suspicious; it might be a hint that the formula
has been derived in a different way than here. Fibonacci himself offers no explanation
of how he comes to the equation, which suggests that he simply copies; alternatively (less
in accordance with the many pedagogical explanations offered) he takes care not to leave
any clue to the reader.

The geometric solution justifies that the problem is moved from chapter 12 to its
present location. The original version, as shown by manuscript L, had no geometry and
different numerical parameters. The numerical algorithm, on the other hand, is the same
(and even in L without explanation of its basis). The a-b-g-... lettering of the diagram
shows the geometric proof to be borrowed. In 1202 Fibonacci thus had the numerical
solution (and even then apparently did not know why it works). Then, in the revised
version, he adopted a geometric proof from a source where it solves a problem with
different numerical parameters. Taking over even these parameters he had to adjust the
numerical calculation while keeping the algorithm intact.

' The unit passus is used very rarely in the Liber abbaci, which might help identify the source:
in the elchataym version of the same problem [B331;G519n], almost certainly copied from here,
see above, p. 112; on p. [B179£;G306] (a hound pursuing a fox); and on p. [B182;G311], a “lion
in the pit” problem about two ants.
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On p. [B399;G612] begins a sequence of problems about repeated travels, different
in mathematical type from those of part 12.6 (above, p. 88). In the first, somebody starting
with a capital of 100£ makes two travels, earning at the same proportion, and ends up
with 200 £. The possession after the first year is argued to be the mean proportional
between 100 £ and 200 £, approximated as 141 £ 8 B 5% 8.

In the next problem, on the same pages, somebody enters in partnership with 100 £,
and after the second travel the total possession of the partnership is 299 £. This is a mixed
second-degree problem, solved by means of a line diagram and Elements 11.6 in “key”
version (neither Euclid nor the notion of “keys” being mentioned).

The argument of the first of these two problems makes use of three numbers identified
by line segments carrying the letters a, b and g. That of the second is based on a proper
line diagram lettered a-b-g-c-d-e-z. Fibonacci thus seems to have taken inspiration for
the basic diagrams from an Arabic source, but to have elaborated the arguments on his
own.

The third problem [B399;G613] is an obvious extrapolation from the first, replacing
the two travels with three but making no other changes. The argument, based on and
referring to the Elements, is likely to be Fibonacci’s own; at least he ventures rather widely
into the theoretical topic.

In the last problem of the group [B401;G615], with two travels, the initial capital
is unknown, the possession after one year is 80 bezants, and the ratio between the capital
and the final possession is stated to be as 5% to 9. Since the mean proportional between
5% and 9* is 45, an argument by proportionality or by the rule of three (multiplication by
80 and division by 45) leads to the result. The reference to bezants (the previous problems
speak about libre) suggests (does not prove) that Fibonacci was confronted with this
question in Byzantium. When he says that this has happened he usually offers a solution
of his own (so he tells or lets shine through); this could also be the case here. The solution
is followed immediately by the observation that the same rule can be used to find two
numbers (say, a and b) where sa = 1/919, ab = 80 (cf. above, note 98), with further
variations of the numerical parameters. Even this seems to be Fibonacci’s own elaboration
of the answer to the bezant-problem.

More pure-number problems follow, first [B401;G615] about a way to produce
Pythagorean triples — formulated however as “to find two roots in integers, whose squares
joined together make a square number, that is, having a root”. The underlying idea is the
identity

2 2
m*+n?
2
but Fibonacci generalizes by replacing m* and n* by two numbers that are in the ratio
of square numbers (and, in order to get integers, asks that both be even or both be odd).
He offers a proof based on the key version of Elements I1.5, supported by a line diagram

2 2
m2-n
+(mn ) =

s
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carrying no letters but only the numbers belonging with a corresponding numerical
example."” In so far, it might be of Fibonacci’s own making, no borrowing (though of
course not going beyond existing knowledge — see imminently). On the other hand, the
reference to “roots” and not to “numbers” seems suspicious, being far from what Fibonacci
does elsewhere and not very far from the ways of Arabic algebra — once again it seems
possible that Fibonacci borrowed a question and gave his own answer.

Another problem [B402;G617] asks for two “roots” whose “multiplications [each with
itself, that is, their squares], together make 41. Actually, given that 4°45% = 41, what is
asked for is a different pair. The problem is solved by a purely numerical prescription,
followed however by the remark [B403;G618] that ““it is shown by geometry in the booklet
I composed about squares from where these foregoing inventions come” (the Liber
quadratorum"®), where it is indeed found [ed. Boncompagni 1862: 256] with a
geometric proof lettered (like most lettered proofs in that treatise) a-b-g... . The previous
question is dealt with slightly earlier in the Liber quadratorum [ed. Boncompagni 1862:
255], with an a-b-g-d line diagram and a correct reference to Elements X."*!! In both
case, the Liber quadratorum speaks about numbers, not roots. Could this indicate that
the problems were already in the 1202 version of the Liber abbaci and then later adopted
into the Liber quadratorum?

After this excursion into the realm of numbers Fibonacci returns to geometry [B403;
G618], at first with a problem about a piece of cloth long 100 ells and broad 30 ells, from
which linen cloths long 12 ells and broad 5 ells have to be made. The calculation is
simple — multiplication 100-30, division by 5-12. No notice is taken of the difficulty
that some of the resulting 50 cloths will be instead in pieces of 6 by 10 ells and will need
to be cut and sewn.

Next [B403;G618] comes an analogue of Jacopo’s chest problem (above, p. 32), still
with two cubic chests of sides 16 palms and 4 palms respectively, and no explicit hint
of fraud. Fibonacci goes on with the cistern problems already discussed above (p. 41)
in connection with Jacopo’s fallacious solution of a similar problem. They are five in
number, and ask for the determination of the volume of a cube, a cylinder, a cone, a double
cone, and a sphere, and conversion between volume (cube feet, spoken of as pedes
quadrata) and hollow measure (barrels).

The last geometric problem in part 15.2 speaks of a canopy (ciborium) composed
of four (isosceles) triangles, each having the base equal to 30 palms, being high 36 palms
along the side. Three master painters are to share the work, their shares being separated

' Present in Boncompagni’s manuscript, absent from V; Giusti leaves it out from his edition.
1% Discussed in some detail below, p. 312 onward.

8L emma 1, ed. trans. [Heath 1926: III, 63],

To find two square numbers such that their sum is also square.
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by lines parallel to the base. The heights of the one side of the canopy
delimitations of the shares are asked for, and found

(with a generic reference to what “we have

demonstrated above”) to be part

of the
1, 2 2, 2 first
H? 36 and H? 36 s master

the width of the base being irrelevant, as pointed
out by Fibonacci.

of the second

The “geometry” part closes with yet another
number problem having no obvious link to of the third
geometry [B405;G622]: to find three numbers (say,
a, b and c) such that 'ha= "4b, b= sc,
a'b'c = a+b+c. The solution is found by means of a false position, namely (a,b,c) =
(8,12,15). With this position a+b+c = 35, ab'c = 1440. Therefore, the positions have
to be reduced by a factor V*¥,,,, =\, .

Surprisingly, the numerical squares of a, b, and ¢ are spoken of as tetragons
(tetragonus ). This Greek term is used regularly in the Liber abbaci about geometric
squares (once, in a cistern problem, about a cube). It is never used except here about the
square of a number. This could mean that here Fibonacci builds on a Greek, ultimately
Byzantine source (which he might have encountered in Sicily as well as in Byzantium).
On the other hand, a Latin translation from the Arabic might also have used it for
murabba ', which also serves in both functions.

In any case, a borrowing is obvious, whether from the Greek or the Arabic. The way
it is done illustrates how Fibonacci’s deals with adopted material. The treatment of the
problem consists of three sections. In the first of these, the term fetragonus is used 11
times, while quadratus is absent. In the second, which explains why a square root has
to be taken, quadratus is used 5 times, fetragonus never; this is an explanation added
by Fibonacci, and here he uses his own language. In the last section, which verifies the
outcome and which can be presumed also to be part of the borrowing, quadratus
disappears, while tetragonus is used 16 times.!"®* As we see, Fibonacci is highly faithful
to the original when borrowing (cf. also note 148), but he does not emulate its style in
added material or commentaries. What we discern is faithfulness coupled to deliberate
avoidance of imitation — it would have been only too easy to carry over the tetragonus
to the commentary in the middle.

This observation should be taken into account when we interpret the lettering of
diagrams. One might object to use of the sequence a-b-g-... as evidence of borrowing

"2 No sophisticated test is needed to show that this distribution is statistically significant. Using
a simple model (that the probability to choose tetragonus is *”,, and that to choose quadratus is
*%,) we find the probability of the present distribution to be slightly below 107°. A model based
on combinatorics gives a probability of ***"%,,, close to 5-10°.
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that Fibonacci could have tried to emulate the style of translations in constructions he
had made himself. The use of the sequence a-b-c-... in simple cases which are almost
certainly his own (see for example above, p. 117) shows that this objection can be
disregarded. A glance at the diagrams in the beginning of Fibonacci’s Pratica geometrie
[ed. Boncompagni 1862: 2, 5f] supports this inference: at first comes a diagram proving
Elements 1.28 (not identified but following a generic reference to Euclid); it is lettered
a-b-g-d-e-... and is almost certainly borrowed from the version translated directly from
the Greek [ed. Busard 1987: 42]. Somewhat later, when Fibonacci speaks about how to
measure a “quadrilateral and equiangular field”, an illustrating diagram is lettered a-b-c-d-e-
f-g; going on with more complicated divisions of the square similar to what is found in
Arabic treatises, a-b-g-... returns.

We may add that a writer who avoided as carefully as Fibonacci to refer to any sources
beyond Euclid (and once Ptolemy together with what can be regarded as an explanatory
commentary, see above, note 91) would hardly try to intimate by his lettering of diagrams
that his own inventions were borrowed.

On the other hand we should not be misled by the instances of faithful copying which
we can identify (together with the many others that we may suspect, for instance on the
basis of the lettering of diagrams) that Fibonacci did not understand what was in his book.
Faithful copying was rather a strategy making sure that no unintended misunderstanding
crept in. We may think of the explanation offered by Charles Homer Haskins [1924: 152]
of the tendency to translate Greek texts de verbo ad verbum (in part paraphrased from
a 12th-century translator’s preface). It had nothing to do with ignorance. Instead,

Who was Aristippus that he should omit any of the sacred words of Plato? Better carry
over a word like didascalia than run any chance of altering the meaning of Aristotle.
Burgundio might even be in danger of heresy if he put anything of his own instead of
the very words of Chrysostom.

As also observed by Haskins, the translations he discusses are “so slavish that they are
useful for establishing the Greek text”. Once we recognize Fibonacci’s way of working
we also discover that he opens new vistas on forgotten mathematical schools and traditions.

15.3, introduction to algebra

Part 3 — almost 10% of the whole Liber abbaci — states in the heading [B406;G622]
to deal with “the solution of certain questions according to the way of algebra et
almuchabala, that is, of “apposition”®! and restoration”.

'3 Appositionis, probably a miswriting for oppositionis but possibly an alternative translation,
meaning “setting before”. Boncompagni, following his manuscript, has ad proportionem, obviously
an attempt to repair the impossible grammar of two other manuscripts having “a proportionis” [Giusti
2020: 808]. Two rather desperate attempts to make sense of Boncompagni’s ad proportionem
([Hughes 2004: 324 n. 43] and [Hgyrup 2011a: 94f]) can now be happily discarded.
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As we remember, algebra et almuchabala was translated differently in chapter 14,
in connection with the presentation of the “keys”, namely as contentio and solidatio. Apart
from an inverted order and from the miswriting contemptio, this is an adequate translation:
algebra (al-jabr) means “restoration”, “bringing back to normal state”, which may well
be rendered solidatio; in mathematics, it refers to the restoration of what is lacking (which,
in an equation, is accompanied by an addition to the other side — cf. above, note 102);
al-muchabala (al-mugabalah’) means “encounter”, “comparison”, etc., not far from
contentio. We now find the same inversion in chapter 15, “restoration” corresponding
to al-jabr."®" Oppositio for al-muchabala is also a reasonable translation.

The evident starting point for the discussion of how Fibonacci presents the discipline
is al-Khwarizmi’s al-jabr,!"® the core of which is 6 “cases”, equation types — originally
riddles about an a “possession” or amount of money (a mal) and its (square) root, all
provided with numerical examples [ed. Hughes 1986: 233-236] (C stands for census, the
standard Toledo translation of mal, in the following chapters also for Tuscan censo; r
stands for root/radix/radice, N for number, o for an undetermined coefficient signalled
by the use of a plural):!'*

Khl C = ar — first example C = 5r.

Kh2 C = N — first example C = 9.

Kh3 or = N — first example r = 3.

Kh4 C+or = N — first example C+10r = 39.
Kh5 C+N = or — first example C+21 = 10r.
Kh6 ar+N = C — first example 3r+4 = C.

We observe that all cases except Kh3 are presented in normalized form, in agreement

" The inversion might tempt us to doubt the level of Fibonacci’s understanding of Arabic.
(According to [Tangheroni 2002], Pisa merchants would understand Arabic, but at what level is
unknown.) It is striking, however, that the same inversion is found in chapter 14 and chapter 15,
in spite of differing translations. The inversion therefore might also be another instance of
faithfulness to the source. (cf. above, p. 136).

A 13th-century manuscript (Florence, BNC, Conv. soppr. J.V.18) of Gerard of Cremona’s
translation of al-Khwarizmt’s algebra expands in computatione algebre et almuchabale into
computatione oppositionis algebre et responsionis almuchabale [Hughes 1986: 222], which seems
to be a witness of the same misunderstanding, with a further enigmatic responsio (is the idea that
of a university disputation, where an opposite opinion has to be answered and refuted?).

' My references will be to Gerard of Cremona’s Latin translation because it is closer to the Arabic
original than the extant Arabic texts, all later by a small century or more [Hgyrup 1998; Rashed
2007: 83, 86]. When referring to the Arabic text I shall use [Rashed 2007].

18 A mnemotechnic trick that may help to remember the order: in the first three, first the number,
then the root, then the mal is lacking; in the last three, first the number, then the root, then the
mal is isolated. Whether this has anything to do with al-Khwarizm1’s thinking is undecidable but
doubtful.
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with the respective first examples;"'®”! the rule for Kh3 is not normalized (although
the first example is). This shows that al-Khwarizmi thinks of  as the real unknown, since
then the normalized equation is the solution, as indeed shown by the first example.
Additional examples show how to normalize equations where C (or, in Kh3, r) carries
either an integer or a fractional coefficient.

For each case an algorithm for solving it is given. We may look at the one given for
case Kh4, the first of three mixed cases: !

The rule is that you halve the roots, which in this question are 5. Then multiply them
in themselves, and from them comes 25. To which add 39, and they will be 64. Whose
root you take, which is 8. Then diminish from that the half of the roots, which is 5. Hence
3 remains, which is the root of the census. And the census is 9.

Originally, when this was a riddle about an amount of money and its square root,
the amount was evidently the unknown. Seen in this way, the problem translates thus into
modern symbols:

y+10Vy = 39

As al-Khwarizmi presented the technique, the census/mal was still understood as an
unknown to be found, as we observe. But it was no longer the fundamental unknown —
as we shall soon see, the root was identified with the unknown thing which we have
encountered in use in the regula recta. The corresponding reading of the equation is

x2410x = 39,

e

After the rules and the examples showing normalization, al-Khwarizmt gives geometric
proofs for the three mixed cases. For Kh4, two are given, of which this is the first one
[ed. Hughes 1986: 237]: The census is represented by the square ab, each of whose sides

with solution

and the solution becomes

87 The extant Arabic texts define the cases in non-normalized form, but conserve the initial
normalized examples — see [Rashed 2007: 96-107]. The text has evidently developed over the
centuries, but since this did not influence Fibonacci, there is no reason to trace this process. Some
elements are presented in [Hgyrup 1998].

18 Al-Khwarizmi writes all number in full words, and Gerard, always faithful, follows him faithfully.
This canon was not taken over by Fibonacci nor in abbacus algebra. In order to make the argument
stand out more clearly for the modern reader I shall therefore also disregard it.
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is therefore the root. We distribute the 10 roots along the four sides, a h
which gives us four rectangles ghtk with width 2Y2. Together with the 3
square ab they have the area 39. Filling out in the corners the four t | census | g
lacking squares, each 2Y2x2V5, we find the area of the larger square b

de to be 39+4-6/, = 64. Therefore the large square has a side V64 = x e

8; removing the width of two rectangles we get for the root 8-2:2%2 =
85 =3.
Strictly speaking, this proves the solution

S STy

and al-Khwarizmi needs to argue that it gives the same result as the one following from
the algorithm.

The second proof [ed. Hughes 1986: 238] is much a
more adequate, and similar to the diagram used to prove g census
Elements 11.6; since the basic idea is the same as in the .
preceding proof, there should be no need to go through five

it in detail. One may ask why al-Khwarizmi first gave the
less adequate proof since he knew the better one. There
appear two possibilities; either the first one was what first
came to his own mind, or he supposed it would speak
more directly to the mind of his reader.!"*”

As it turns out, there were reasons for this. Since Old
Babylonian times (18th—17th c. BCE), the first diagram had been used to solve the riddle
about “all four sides and the area” of a square, and that riddle was still circulating in al-
Khwarizmi’s (and Fibonacci’s) time.""” Al-Khwarizmi was likely to have known it,
and so were his readers.

In the following sections, al-Khwarizmi teaches the multiplication, addition and
subtraction of algebraic and arithmetical monomials and binomials like “thing” and “10
less a thing”, “square root of 5”, and “square root of 200 less 10”. Here thing times thing
turns out to be a census, which means that the thing and the root are identified (as indeed
stated explicitly [ed. Hughes 1986: 242]). Numbers, moreover, are understood as numbers

9AT]

"% Stylistic changes actually suggest that the second proof may have been added during a later
revision of the text — cf. [Hgyrup 1998: 169, 174].

10 Since al-Khwarizmi is already two steps away from the abbacus school, I shall not offer
documentation for this; but see [Hgyrup 2001].
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of dragmae (dirham in the Arabic original)."'”"!
The identification of root and thing turns out to be fundamental in the section of six
problems illustrating the rules. We may look at the problem that serves as illustration
of Kh5 [ed. Hughes 1986: 249]:

“Divide 10 in two parts, and multiply each of them in itself and aggregate them. And
58 results”. Whose rule is that you multiply 10 less a thing in itself,"*? and 100 and
a census less 20 things result. Next multiply the thing in itself, and it will be a census.
Afterwards aggregate them, and they will be known as 100 and 2 census less 20 things,
which are made equal to 58. Restore therefore the 100 and 2 census by the things that
were diminished, and add them to 58. And say, “100 and 2 census are made equal to 58
and 20 things”. Reduce therefore to one census. You therefore say, “50 and a census are
made equal to 29 and 10 things”. Oppose therefore by it."*! Which is that you throw
out 29 from 50. There remains therefore 21 and a census which is made equal to 10 things.

This is exactly the first example of the case KhS5, and it is solved accordingly.

The illustration of Kh6 [ed. Hughes 1986: 249f] is of interest by showing fluctuation
in the use of census and thing (a phenomenon we shall encounter below in the Liber abbaci
and elsewhere):

“A third of a census is multiplied in its fourth, from which results a census. And let its
augmentation be 24”. Whose rule is, because you know that when you multiply Y, of a
thing in Y/, of a thing, results the Y, of Y, of a census, which is equal to a thing and 24
dragmae. Multiply therefore the Y, of Y in 12 so that the census is completed,"**
and there will be a complete census. And multiply equally the thing and 24 in 12, and
there result for you 288 and 12 roots. [...]

At first census appears in the original sense of a monetary possession understood as an
unspecific quantity. Then, in order to allow its multiplication by itself, it is tacitly
reinterpreted as a thing, whose square now becomes a (different, now algebraic) census,
while the thing in the end appears as a root.

Further examples follow after the six initial illustrations. We shall return to them when

I'Not consistently, however and with no thought about the dimension problem. A dragma times
a dragma is stated to be a dragma [ed. Hughes 1986: 242] — the dragma thus functions exactly
like Diophantos’s monas, “unity”, or a modern x°.

12 Already in the illustration of Kh2, where 10 is also divided into two parts, one of the parts was
posited to be a thing, whence the other had to be 10 less a thing.

193 This is the mugabalah operation, in later times understood as the subtraction from both side of
the equation. As confirmed by the two more or less synonymous translations contentio and oppositio,
what is intended is rather a comparison, which leads to the construction of the reduced equation.

% The verb used here (reintegrare, Arabic kamala) is distinct from the additive completion
restaurarel/jabara.
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needed, but there is no reason to discuss them systematically.

Instead we shall now turn to Fibonacci’s presentation of algebra et almuchabala. Al-
Khwarizmi [ed. Hughes 1986: 233] had stated

to have found that three kinds of numbers were needed [in al-jabr wa’l-mugabalah ]: Roots
and census and simple numbers neither related to a root nor to a census. The root, however,
which is one of them, is something that is multiplied by one, and what is above that in
numbers, or what is beyond that among fractions [that is, which carries a coefficient],
while the census is something resulting from a root multiplied in itself”.

Fibonacci [B406;G622] is obviously inspired, directly or indirectly."'* But he changes
the explanation according to his own understanding (the constructions are somewhat
knotty):

For the composition of algebra et almuchabala, three qualities [proprietates ] that are in

whatever number we consider, which are root, square [quadratus | and simple numbers.

As when some number is multiplied in itself, and something results. A square is thus made

from the multiplication of the multiplied [multiplicati ]; and the multiplied is the root of

its square. As when 3 is multiplied in itself, 9 results. 3 is namely the root of 9; and 9

are the square of the ternary. And when a number has no respect to square nor to root,

then it is called a simple number. These, indeed, are made mutually equal in solutions

of questions in six modes, of which three are simple and three composite. And the first

mode is when a square, called a census, is made equal to roots. [...].

Fibonacci will certainly have known the normal Latin meaning of census: “wealth”,
“property”, “estate valuation”, etc. — quite adequate as a translation of mal. As we see,
however, he chooses to present it as a synonym for square (of a number —in the geometric
proofs he regularly uses fetragon about square configurations).

His list of six cases (F1, F2, ..., F6) is almost the same as that of al-Khwarizmi, the
only difference being an inversion at the end, F5 = Kh6, F6 = Kh5; all cases are also
defined in normalized shape, the reduction of non-normalized equations being taught
separately. In the very first [B406;G623], the term census is introduced as a replacement
for quadratus, “when the square, which is called census, is made equal to roots”.

The numerical example used in connection with the rule and the proof for F4, “census
and roots made equal to number”, coincides with that of al-Khwarizmi; the others not.
Nor are the proofs the same. We may look at that for F4. As in al-Khwarizm1’s treatise,
there are two, but they are different. The first builds on a diagram lettered a-b-c-d-...,

" In the margin in Boncompagni’s manuscript is also written “Maumeht”, an obvious reference
to Muhammad ibn Miisa al-Khwarizmi. However, this reference is absent from V, and can therefore
be supposed to have been added by a later copyist or user (Giusti also does not mention it). It
corresponds to the beginning of Gerard’s translation [ed. Hughes 1986: 233], Liber Maumeti filii
Moysi Alchoarismi de algebra et almuchabala incipit (but might also reflect Guglielmo de Lunis’s
translation, cf. below, p. 273).
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thus apparently of Fibonacci’s own making. Euclid is not 2 £ 5 d
mentioned, but the inspiration seems to be Elements 11.4,
not II.6, and the construction goes “the other way round’: i 5 L

At first, a square abcd is made, where each side is
requested to be larger than 5 ells (the style is thus that of
a synthesis rather than an analysis). Next points s, f, g and 5 5 5
h are made with the distances indicated in the diagram,
and lines eh and fg are drawn, crossing at i. Then the
census can be identified with the square ef — etc. 5 5
1 z The second proof has some similarity

with al-Khwarizm1’s second proof, but there is no cutting and pasting.
It is simply requested that the square ei be the census, that ten roots be
applied to the side de, and that ¢ be the midpoint of he. This has some
family likeness to the proof given by Abii Kamil, but both the Arabic text
t  [ed. trans. Rashed 2012: 254] and the medieval Latin translation [ed.

Sesiano 1993: 328] include a justified reference to Elements II. Given

1 h Fibonacci’s propensity to cite Euclid when he knows it is warranted we

may assume that he was inspired indirectly by Abii Kamil — but we may
be sure that he did not use Abtu Kamil directly. Since even the first proof includes no
reference to Euclid, we can be fairly certain that Fibonacci, though making his own
version, was inspired not by Euclid but by some later source.

The proofs for the cases FS and F6 are very similar — in particular that for F5,
exemplified by the question “census made equal to 10 roots and 39 denarii”. The close
relationship between this and the exemplification and second proof of F4 could be what
caused Fibonacci to change the order of cases (in other words, the idea to do so may well
be his own).

99 questions with interspersed theory

Last in the third part, in chapter 15, and in the whole of the Liber abbaci [B410;G627]
comes a collection of 99 questions,"* with interspersed theoretical explanations. Many
of them coincide with problems from al-Khwarizm1’s algebra in structure, often but far
from always also in the choice of numerical parameters. Many (sometimes the same,
sometimes other ones) coincide with problems from Abi Kamil’s Algebra. Both works
were accessible in the Iberian Peninsula — at least two different manuscripts of al-

"% The precise number depends on to which extent variants are counted as independent questions.
I follow the list in [Hughes 2004: 350-361], which beyond the Boncompagni edition draws on the
edition of chapter 15 in [Libri 1838: II, 307-479], based on a different manuscript of the Liber
abbaci, and on Benedetto da Firenze’s vernacular translation of the questions as rendered in
[Salomone 1984]. A problem referred to as [H#m;G§n ] is number m in Barnabas Hughes’ list and
§XV.n in [Giusti 2020], [G§n ] refers to §XV.n in [Giusti 2020].
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Khwarizmi’s algebra were translated there during the 12th century, and the Liber
mahameleth refers repeatedly and correctly to Abii Kamil. But the overlap and the
occasional use of other numerical parameters shows that those same problems circulated,
and that Fibonacci’s inspiration may well have been indirect. The rather few agreements
with al-Karaji’s Fakhri'"" are also not evidence that Fibonacci knew that work — some
of them are also found in Abu Kamil, and Fibonacci’s numerical parameters often differ
from those of al-Karajt.

An example suggesting that what “may well” be the case seems indeed to be so is
offered by the problem [H#21;G§288]. It is one of 32 problems dealing with a “divided
10”. Expressed in letter formalism:

10 = a+b , (“/,+10)("/,+10) = 1227%,
The same problem is solved by Abd Kamil [ed. trans. Rashed 2012: 410f], while al-Karajt
gives the sum as 143',. According to the paraphrase in [Woepcke 1852: 94], al-Karaji
posits a to be a thing; a straightforward calculation then reduces the problem to an instance
of Kh5, namely C+16 = 10r. Abii Kamil instead posits “, to be a “large thing”
(presupposing a>b ), and ”/, to be a “small thing” (as we see, al-Karaji was not the first
to deviate from the practice of using coins as names for supplementary unknowns). Then
(the “large thing” and “small thing” being designated R respectively r)
(R+10)(r+10) = 1227%, ,

and since 7R = 1,

1+10<(R+r)+100 = 122%, ,
which is reduced to

R+r=2" .

Thereby the problem is reduced to

10=a+b, “I+", =2, ,
which has already been dealt with.

Fibonacci uses a line diagram, lettered a-b-g-d-e-z. Here, 4__ b g
ab =de = 10, while bg = “/,, ez = b/,,. That is, he replaces Abi d € z
Kamil’s two algebraic unknowns by line segments. The
following procedure is parallel to that of Abt Kamil, and also
leads to the same reference to what has already been dealt with — actually, what has been
dealt with by Fibonacci’s source! Fibonacci himself [H#10,243;G§243] has treated the
case where the sum of the two fractions is 3 ', not 2 % (cf. below, note 199). An obvious
trace of copying, though not from Abu Kamil himself.

In the very end Fibonacci says that the reader should know that

when you have two numbers and divide the larger by the smaller and the smaller by the
larger and multiply that which resulted from one division in that which resulted from the

T A few of those identified by Hughes turn out at inspection to be mistaken.
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other, then from their multiplication always 1 is generated, and therefore I said 1 to come
from bg in ez.

As shown by the lettering, we have a perfect parallel to the number problem from [B405;
G622] (above, p. 136): A faithfully borrowed text, supplemented by a personal explanation
coming afterwards, not integrated in what was taken over.

Comparing the three solutions, we notice that al-Karajt presents us with a typical al-
Jjabr solution. Abii Kamil’s reduction makes use of a technique rather belonging with the
regula recta (evidently, the problem to which he reduces the present one is then solved
by al-jabr); Fibonacci, and his source, also removes anything that could make one think
of al-jabr techniques (with the same proviso).

Line diagrams and geometric diagrams are used for other purposes too, a matter to
which we shall return. First, however, we have to observe that there is no indication that
Fibonacci tried to guide the reader systematically from simple to more advanced or difficult
matters. Instead it is evident that groups of problems have been adopted together from
the same source. In some cases, this source can be identified with approximation, in others
not even that.

As the best example of the first category may serve the first eleven problems. Nine
of them have a counterpart in the beginning of al-Khwarizm1’s algebra, five in his list
of six illustrations of the basic cases, four in his collection of varied problems. Internally
in each of these groups, they follow al-Khwarizmi’s order, but the two groups are mixed
up'[198
structure. Only two, however, have coinciding numerical parameters; and only one [H#10;
G§243] has the same initial formulation as Gerard of Cremona’s translation of al-

Khwarizmi, though so simple that the coincidence might well be an accident; but in that
199]

! By definition, the nine that have a counterpart have the same mathematical

case the numerical parameters are different, and the procedure too is quite different.!
According to what we have seen above in note 148, this should exclude that Fibonacci

"% With Q referring to the six illustrating questions, V to the varia, and — indicating absence of
a counterpart, Fibonacci’s order is V1, —, Q2, Q3, —, Q4, Q5, V2, Q6, V4, V5. Using a simple
combinatorial model we find that the odds that the order of borrowings from the two groups should
be conserved by accident is Y5, = Y-

1 The problem is
10 =a+b, “f+", =3"%,

almost the same as the one to which the problem

10 = a+b , (“4,+10)<("/,+10) = 122%,
[H#21;G§288] was reduced (above, p. 144), just with the sum being 2", (which is also the sum
in al-Khwarizmi’s version of the present problem). That problem (coming later in the Liber
abbaci) was reduced, we remember, by means of line segments representing a, b, “/, and %/,
respectively. A similar strategy is used here, just with the four segments being separate and each
designated by a single letter (a, b, g and d). Al-Khwarizmi, in contrast, has no line representation
(he never has).
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used al-Khwarizm’s algebra (in Gerard’s or any other version) directly for this sequence,
but on the other hand show that he used an introductory work descending from that model,
made by a writer who was less faithful than Fibonacci to his sources. The similarity of
the demonstration of [H#10;G§243] to that of [H#21;G§288] observed in note 199 suggests
origin in the same school of thought, while the stylistic difference seems to exclude
inspiration by the same treatise.

Another cluster of problems is characterized by the appearance of an avere, a Romance
(Italian, Catalan, Provencal or Castilian) loanword meaning “possession”. The word
evidently translates mal — but only when this term is used about an unknown quantity,
literally an amount of money, not in its algebraic role. The first time it appears is in [H#62;
G§387]:

Further, I multiplied the root of the sextuple of some avere in the root of its quintuple,
and I added the decuple of the same avere and 20 denarii, and all this was as the
multiplication of the same avere in itself. I shall posit for the same avere a thing, and
I shall multiply the root of its sextuple in the root of its quintuple, that is, the root of 6
things in the root of 5 things. The root of 20 census results, since when a thing is
multiplied in a thing it makes a census, whence when the root of a thing is multiplied
in the root of a thing the root of a census results. Then I shall add above the root of 30
census the decuple of a thing and 20 denarii, and I shall have 10 things and the root of
30 census and 20 denarii, which is made equal to the multiplication of a thing in itself,
that is, a census. In this falls the rule of roots and numbers which are made equal to a
census.

The concluding statement presupposes that V(30C)+10r is understood to be (10+Y30)r,
but this would not be acceptable according to the canon that only integers and, in practice,
rational fractions were accepted as numbers.”®™ We shall return to this.

Avere reappears in 13 further problems.” Sometimes the avere is posited to be
a thing, sometimes to be a census. That can be seen to depend on what will yield a
convenient equation, and does not tell us more than that.

More interesting is that these problems constitute a closed group, adopted from the
same source. The apparent interruptions in the sequence all deal, either with a divided
10 (once 12) or with fwo numbers or quantities, and therefore would not allow the
appearance of any substitute for mal — avere or otherwise. Since no problem after the

20 The force of this canon, from al-Khwarizmi until the European 16th century, is dealt with in
[Oaks 2017]. Since the difficulty was seen to be an obstacle that was to be, and was, circumvented,
the avoidance of irrationals as coefficients was a canon, and not the result of failing understanding
of possibilities, cf. [Hgyrup 2004].

21 [H#66;G§410], [B70;,G439], [H#76;G§531], [H#77;G§539], [H#78;G§543], [H#79;G§546], [H#30;
G§549], [H#81;G§551], [H#82;G§554], [H#83;G§557], [H#84;G§559], [H#85;G§561], [H#87;
G§570].
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2021 would have allowed

last making use of an avere except the very last [H#99;G§682]'
its appearance, the group may well have extended further (as we shall see on p. 152, there
is more evidence for that).

This source, moreover, must already have used the term avere. There is no reason
that Fibonacci should suddenly on his own choose a new translation — earlier problems
use the standard translation census for mal in both roles, or replace an original Arabic
initial mal by numerus. We cannot exclude that this source was already written in a
Romance vernacular (Italian, Catalan, Provencal or Castilian, though Italian seems even
more unlikely than the others); more plausible, however, is a Latin translation prepared
in a Romance-speaking (and thus Iberian) environment and, as Fibonacci does regularly,
borrowing terms from the vernacular. Since we already encountered one source
corresponding to this which also makes use of a non-standard terminology, namely in
the introduction to chapter 14 (above, p. 116), we might suppose it to be the same — but
only if we find it quite improbable that rwo such treatises should have disappeared, or
at least disappeared from view.*

Other clusters can be suspected, but with one exception (to which we shall return
on p. 149) they are not as neatly delimited nor as informative, and there is no reason to
discuss them.”™ Let us instead return to [H#62;G§387] (above, p. 146) and look at
how Fibonacci manages to circumvent the difficulty that he is not allowed to apply the
rule he has seen to be pertinent:

In order to show that, let there be placed hereby an equilateral and equiangular quadrangle
ag, whose side is bg, and posit bg to be a thing. Therefore we cut off from the square
ag a rectangular surface ae, which should be root of 30 census, and from the surface fg
is removed the surface fh, which should be equal to 10 roots of the census ag, wherefore
eh is 10. From the whole square ag remains the surface ig, which will be 20. And because
the surface ae is the root of 30 census and comes from the multiplication of ab in be,
and ab is a thing, it follows by necessity that be must be the root of 30, since from the

202 A simple first-degree problem, “I multiplied the 30-double of a census by 30 and what resulted
was equal to the addition of 30 dragmas and the 30-double of the same census” — noteworthy at
most (but hardly) for the use of additio in the sense of sum, which is unique in the algebra section
though found in the last problem of chapter 15 section 2 and occasionally in chapter 14.

2% Not the same thing! Remember that the Liber mahameleth was not known to have existed until
Jacques Sesiano discovered it in 1974 — see [Sesiano 2014: v]. The best of the three manuscripts
(Paris, BN, ms latin 7377A) had already been inspected by Michel Chasles [1841: 506], who
mentions what has later been identified as the Latin translation of Abii Kamil’s Algebra. Louis
Karpinski [1911], working on the manuscript, described Abt Kamil’s work. But none of these
outstanding scholars noticed the Liber mahameleth.

24 A tempting but false trail is offered by the observation that some problems use denarius as the
unit for pure numbers and some instead dragma. Since the text may alternate between the two within
the same problem solution (e.g., [H#28;G§315] and [H#58;G§372]), no classification can be derived.
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multiplication of a thing in the root of 30 results 30 census. We add
thus be with eh, and the whole b/ will be 10 and root of 30, which is
a fourth binomial; and we divide it in two equals at the point ¢, and
each of the lines bc and ch will be 5 and the root of 7',. And because
the surface ig is 20, that which results from the multiplication of ik in
hg, that is, from bg in hg, if above 20 we add the multiplication from
ch in itself, which is 32", and the root of 750, we shall have 52, and D ©°¢C h 9
the root of 750 for the square on the line cg. Then cg is the root of

52, and the root of 750, and if we add to it the line cb we shall have for the whole bg,
that is, for the requested avere, the root of 52, and the root of 750 and 58 and the root

of 7',8; all of which is according to approximation around 16%.

The argument may be difficult to follow, but makes use of Elements 11.6 or the
corresponding “key” (none of which is mentioned), according to which bh hg+bc bc =
cgcg. bh'hg indeed equals ihhg and therefore 20. As we see, the rule for the case
census equals roots and number does not turn up again, and the (correct but redundant)
observation that 10+Y30 is a fourth binomial points back to the secondary layer of chapter
14. However that may be, we see that the difficulty of irrational coefficients is eschewed
by the application of geometry.

The final approximation is worth observing. Approximation is used nowhere else in
Fibonacci’s algebra, nor anywhere I have noticed in abbacus algebra.

The lettering, including a ¢ entering late in the argument, suggests that Fibonacci has
intervened himself. This is confirmed by a comparison with the preceding problem [H#61;
G§383], V(8n)(3n) (n being here a numerus, no avere). This n is directly identified
with a line bg and n* with the corresponding square, here spoken of as a tetragonus. In
this case, the lettering is b—g—d—f~h — a being left out (probably by Fibonacci and not
by his source) because the corresponding corner of the square is not mentioned, and there
is no use for anything corresponding to the c of the avere problem. In this case a binomial
(here the result) is identified as a sixth binomial, whereas the problem before that [H#60;
G§381], (8Vn)«(3Vn)+20= n* has a fifth binomial (and no diagram, since the problem
reduces to 24n+20 = n?, with no irrational coefficients occurring). Such references to the
classes of Elements X occur nowhere else in the collection of algebraic questions. It
appears that in [H#62;G§387] Fibonacci has borrowed a proof technique and a diagram
from [H#61;G§383], which does not belong to the avere group, but adapted the proof
to the situation where the coefficient is 10+V30 and no simple root, employing also his
own terminology (“an equilateral and equiangular quadrangle” then becoming simply
“square”, quadratus ). As observed on p. 136, Fibonacci shifts to his own language when
he is creative, and avoids imitation. Having no use for the d of the borrowed diagram
he omits it, just as in its first appearance he left out a because it is not referred to in the
proof.1>%!

*% Such omissions of single letters from either of the sequences a-b-c-d and a-b-g-d are extremely
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In the following problem ([H#63;G§392] still belonging to the avere-cluster), a
“divided 10” also leading to an irrational coefficient, a diagram lettered a-b-c-d-g-e is
made use of. Even here, and perhaps more radically, Fibonacci seems to work
independently. Once more, the square is spoken of as quadratum equilaterum et
equiangulum.?*

As we have seen, Fibonacci identifies the first problem of the avere cluster as falling
under the “rule of roots and numbers which are made equal to a census™; after his
geometric circumvention of the taboo against irrational “coefficients” by means of a
procedure he has provided himself, however, he does not return to this insight; not does
he say anything similar in the rest of the avere cluster, although many problems invite
that invitation. The most obvious explanation seems to be that Fibonacci took it from his
source for the cluster; since he had to find himself the way to skirt the difficulty it appears
that the source did not see one — that is, that this source was already “modern” and did
not feel the taboo. As often, “being ahead of one’s time” (as judged by later times) is
no road to success but rather to quick oblivion.

Diagrams also serve the translation of questions into equations. That happens in a
sequence of five problems, the first of which [H#12;G§252] runs like this:

I divided 60 between some men, and something resulted for each; and I added two men
above them, and between all these I divided 60, and for each

resulted 8 2, less than resulted at first. Let the number of the — d )

first men be the line ab, and on it is erected at a right angle the ; 2z N
line bg, which should be that which falls to each of them of the f
mentioned & 60, and draw the line gd equal and parallel to the

line ba, and the straight line da is connected. Then the space of | —t

the quadrangle abgd will be 60, as it is

rare in the Liber abbaci. There are two examples in chapter 14 [B377,378;G581,582], both a-b-g-e-f,
both reduced versions of a preceding diagram (missing in Boncompagni’s manuscript and edition)
lettered a-b-g-d-e-f-..., and two beyond those we discuss here in the algebraic problem collection —
a-b-g-e [B418;G638] and a-b-d [B420;G640] — where no such obvious explanation seems at hand
but may of course escape my fantasy.

2 However, the use of tetragonus versus “equilateral and equiangular quadrangle” is not quite
systematically coupled to diagrams lettered a-b-g-... respectively a-b-c-.... Evidently, Fibonacci
may have sometimes have borrowed a diagram but written his own text, or vice versa — we have
just encountered an example. He may also have changed his preferred terminology over time. We
do not know, indeed, how much of chapter 15 goes back to 1202, and how much was inserted in
1228, even though problems belonging to a particular cluster like the avere-cluster almost certainly
entered the work at the same time.
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contained®” by ab in gb. Then protract the line ab to the point e, and let be be 2,
that is, the number of men to be added. And on the line bg the point f is marked, and
let gf be 2, that is, that each one got less by the addition of two men. And through the
point f the line 4i is protracted equal and parallel to the line ea, and the straight line eh
is connected; the quadrangle heai will be 60, since it is contained by ae in eh, namely
by ae in bf, where bf is that which resulted for each of the men ae from the 603. The
surface ei is thus made equal to the surface bd. The multiplication of gb in ba is thus made
equal to the multiplication of ea in fb. Whence these four lines are proportional. Therefore,
the first gb is to the second fb as the third ea to the fourth ba, whence, by dividing,?*®
as gf'is to fb, so is fb to ba. But the ratio gf to eb is as 5 to 4. Thus fb contains once and
one fourth the number ba.

So, posit for the number ab a thing. bf will thus be 1Y, thing; and multiply ab in
bf, and 1, census results for the surface bi [...].

Nothing similar is to be found in the original version of al-Khwarizm1’s algebra as we
know it from Gerard of Cremona’s translation, nor in the somewhat extended version
translated by Robert of Chester [ed. Hughes 1989]. In the later Arabic manuscripts we
have a version where the amount to be distributed is 1 dirham, only one man is added,
and the difference is Y, [ed. trans. Rashed 2007: 190f]. Even here, the solution consists
of several parts: first a description in general terms, which appears to correspond to a
diagram which however has disappeared; then the same with explicit numerical values;
and finally, as in the Liber abbaci, the solution of the resulting equation. However, this
may have crept into the tradition at any moment before 1222, the date of the earliest Arabic
manuscript [Rashed 2007: 85], and there is no reason to believe it inspired Fibonacci,
neither directly nor indirectly.

On the other hand, a link to Abti Kamil’s algebra [ed. trans. Rashed 2012: 352-355],
is beyond doubt. Here, 50 dirham are shared first among some men, them among 3 more,
the difference between what each one gets in the two situations being 3%, dirhams. The
solution follows the same pattern as that of Fibonacci, but instead of using proportions
the argument about the diagram is arithmetical all the way through.

Next in the Liber abbaci follows a problem [H#13;G§259] where first 20 is divided
between some number of men, next 30 between 3 more, the difference between the shares
in the two situations being 4. The solution is based on a diagram of the same character
though slightly more complicated, lettered a-b-g-d-e-..., and on proportion techniques

27 Colligatur, not the standard terminology, which would be continetur. We observe, moreover,
that this being contained is not formulated as a geometric fact but as a multiplication of “ab in
gb”.

2% That is, we transform 2 = “Linto 27” = “™ whence ¥ = “°. That could, by the way,
fo ba fo ba fo ba
be seen directly in the diagram, just by removal of the shared surface af from both of the surfaces

g2,

en ba

ag and ah. The ensuing “permutation” leads to
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(followed by algebraic solution of the resulting equation). Once again, Abt Kamil offers
four problem of the same structure [ed. trans. Rashed 2012: 358-371], presenting solutions
based on diagrams of similar structure and never referring to proportions.

The following problem in the Liber abbaci [H#14;G§271] has the same mathematical
structure. This time, however, a diagram lettered a-b-c-d-e-... is used, and the algebraic
entities (thing and census ) enter directly in the discussion of the diagram, and proportions
are not referred to. To judge from the lettering of the diagrams, in the first of these two
problems the reformulation of Abii Kamil’s technique in terms of proportion techniques
from the preceding two problems is borrowed, while Fibonacci’s own (more
straightforward) solution in the second two does not mention them.

In the last problem about changing numbers of men sharing money [H#15;G§276],
when 10 are divided between a certain number of men and then 40 between 6 more, they
get the same in the two cases. It would b%}gbvio%s for anybody tending primarily to Eg}f(l)k
in terms of proportions to state this as —— = 5, from which would follow + = ——,
whence 6°10 = 30+4. But Fibonacci working on his own does not appear to have such
preferences on the present occasion. He just observes (thus not using algebra) that the
30 extra monetary units must be the share of the 6 extra men, each of whom therefore
gets 5. Since the first men get the same, their number must be 10+5 = 2.2%!

There can be no doubt that the sequence [H#12-16] is part of a cluster adopted from
the same source (for the last three, however, Fibonacci seems to have presented simpler
solutions of his own making). Since [H#11] belongs to the cluster borrowed indirectly
from al-Khwarizmi’s algebra, [H#12] is the first member of the present cluster; whether
it extends beyond [H#16] seems undecidable (but rather unlikely according to internal
criteria of style).

A final question to address is whether and how Fibonacci deals with higher-degree
problems.

Some of the problems that have been considered biquadratic by earlier workers only
become so because of failure to understand the distinction between the two roles of
census — for instance [H#44;G§344]:

I multiplied the third of a census and 17, in its fourth and 2%, and a census augmented
by 137, resulted. Posit a thing for the census. [...].

If it is not realized that the initial census is of the kind that elsewhere is sometimes spoken
of as an avere or a number, this looks like a biquadratic solved by means of a substitution

2% The same problem is in Abl Kamil’s algebra [ed. trans. Rashed 2012: 370-373]. At first Abi
Kamil gives an unexplained numerical prescription, stating only that “the reason of that is obvious”

(it corresponds to Fibonacci’s solution); next he actually formulates the proportion % = %, and

then identifies the second ratio with the number Y, . Identifying & with a thing he obtains an algebraic
equation.
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of variable. When no positing is needed — for instance, in [H#38;G§340] — the census
in question is indeed considered the solution, its root is not found, which confirms its
meaning as an “amount’. There are more of these, and there is no reason to discuss them
any further.

Others are properly biquadratic or lead to solvable third-degree equations. They are
all found within the “extended avere group” (cf. above, p. 147), confirming the suspicion
that this really is a group.”'” Here, a corresponding terminology is also used (cubus,
cubus cubi, census census, census census census, census census census census, for the
third, the sixth, the fourth, the sixth and the eighth power ), and scattered theoretical obser-
vations can be found — though no systematic presentation of higher-degree techniques.

We shall look at a single example [H#88;G§575], in which Fibonacci appears to have
intervened actively in a justification:

Of three unequal quantities, when the major and the minor are multiplied it is as the middle
in itself,*" and when the major is multiplied in itself results as much as the minor
in itself and the middle in itself joined, and from the multiplication of the minor in the
middle results 10. Posit for the smaller a thing and for the middle 10 divided by a thing,
and multiply 10 divided by a thing by itself, and 100 divided by a census results, which
you divide by a thing: 100 divided by a cube result, and this will be the major quantity.
Then multiply the minor quantity, namely a thing, in itself, and a census results; and
multiply the middle in itself, namely 10 divided by a thing. 100 divided by a census results,
which you shall add with the census, they will be a census and 100 divided by a census,
which is made equal to the multiplication of the major quantity, namely 100 divided by
a cube in itself, from which multiplication result 10000 divided by a cube of cube. Then
multiply everything you have by cube of cube; and to multiply by cube of cube is as
multiplying by census of census of census. Then if we multiply 10000 divided by cube
of cube by census of census of census, 10000 result; and if we multiply a census, namely
the square of the minor quantity, by census of census of census, we shall therefore have
a census of census of census of census; and if we multiply the square of the middle
quantity, namely 100 divided by census, by census of census of census, results 100 census
of census. Therefore a census of census of census of census and 100 census of census are
made equal to 10000 dragmas.

At this point, we might perhaps have expected Fibonacci to posit a (new) thing for the
census of census, or simply to have applied the standard rule for the case “census and
things made equal to number”. Instead, as when application of the standard algorithms
would presuppose the explicit use of irrational coefficients in [H#62;G§387] and [H#63;
G§392] (above, p. 147), Fibonacci uses the geometric configuration that serves to justify

*19 Since this group is found close to the end on the chapter, we may get an impression of theoretical
progression. This impression, however, is an artefact, and the very final trivial first-degree problem
disproves it.

' In other words, they are in continued proportion.
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the rule in question, positing the square ac for the census of 3 d
census of census of census. The lettering as well as the use of

quadratum indicates that the proof was inserted by Fibonacci

himself (the two proofs circumventing irrational coefficients, as b T T e

we remember, were also characterized by the lettering a-b-c-...,

and also used quadratum ). Together, Fibonacci’s need to intervene actively in these three
cases®'? suggests that his source for the avere group had fewer qualms with irrational
coefficients than he had himself and handled higher powers more freely — cf. above, p.
149.

In both cases, Fibonacci’s independent construction of proofs shows that he had no
difficulty in understanding what his source was doing. That seems to hold throughout
the algebra-part, with a single exception, an alternative solution to [H#71;G§448],

I divided 10 into two parts, and divided the larger by the smaller, and the smaller by the
larger; and aggregated that which resulted from the division, and they were 5 9.

The alternative solution [G§461] starts that

you posit one of the two parts a thing, and the other certainly 10 less a thing. And let
from the division of 10 less a thing in a thing a denarius result.

Obviously, Fibonacci here adopts the Arabic use of coin names for supplementary algebraic
unknowns (cf. above, note 109), unfortunately using the same term for the unit of pure
numbers and for the extra unknown (for the former, Abii Kamil would use dirham, for
the latter dinar ). If Fibonacci had understood the principle, he might perhaps have managed
to keep the two functions of the term separate, but he does not (but since he copies, he
evidently ends up with the correct result in spite of intermediate mistakes; cf. [Hgyrup
2019b: 32-35]).

So, as final characterization of part 15.3, Fibonacci’s algebra, we may say that it is
no freatise, no new coherent and systematic presentation of the field. It is an anthology,
a collection of excerpts from other texts (with an introduction and interspersed additional
explanations) — with a single exception well-understood by Fibonacci. Being neither an
elementary introduction nor a methodically progressing guide to advanced methods, it
is no wonder that (as we shall see) it had no influence on the abbacus masters when some
of them eventually took up algebra.

2 Supported by [H#63;G§392], [H#89;G§583], [H#71;G§448] and [H#73;G§497], which share
these characteristics. The last of them has the letter sequence c—d—e—f~g, a and b having been used
already as one-letter line-carried symbols for ">/, and "/,,_,, respectively, similarly to Abii Kamil’s
“large” and “small thing” (above, p. 144).



IV. The real story in select detail

I shall not object to those who see the preceding chapter as an “almost insupportably
detailed description of the Liber abbaci”, to quote Cantor’s characterization [1892: 31]
of his own much shorter analysis. Now, however, we shall turn to the history of abbacus
mathematics proper, divided into periods — the “real story” instead of the “Fibonacci story’.



“Generation 1”’:, Livero de ’abbecho, Pisan Libro di ragioni, “Columbia Algorism”
and Liber habaci

Three abbacus books have, for various reasons, been dated to the late 13th century:
a Livero de I’abbecho [ed. Arrighi 1989; ed. Bocchi 2017],*"' known from an early-
14th-century copy;?'¥ the Pisan Libro di ragioni [ed. Bocchi 2006; ed. Franci 2015];
and the “Columbia algorism” [ed. Vogel 1977]. We may speak of them as a “first
generation”, which does not imply any claim of homogeneity. As we shall see, they are
actually evidence of very mixed inspiration, and do not yet form a mature tradition.

Because of the character of the text, a Liber habaci from ca 1309 [ed. Arrighi 1987]
should probably be counted to the “first generation” together with these — and perhaps
even be seen as a reflection of a “generation zero”, the otherwise lost first beginnings.

The Livero de I’abecho

The Livero (mentioned above, note 20), written in Umbria, plausibly in Perugia [Bocchi
2017: 7 and passim ] offers what superficially looks like confirmation that the abbacus
tradition is based on Fibonacci’s Liber abbaci”' Its initial lines represent it as “the
book on the abbacus according to the opinion of master Leonardo from the house of the
Bonacci sons of Pisa”?' This — apart from the very term abbaco — looks as the only
positive evidence that the abbacus tradition really had Fibonacci and his Liber abbaci
as its starting point. Later abbacus books, indeed, take next to nothing from the Liber
abbaci,”'"" but since they share much with the Livero — see, as an example, the
similarity of the ways the rule of three is formulated in note 20 (Fibonacci, as we
remember from p. 70, has nothing similar, nor any name for the rule). So, through this
double coupling, it seems that the abbacus tradition can really be linked to Fibonacci and
his Liber abbaci.

Precise analysis of the Livero reveals that this conclusion is fallacious — the details
can be found in [Hgyrup 2005]. Here I shall restrict myself to a summary.

213 Henceforth, references [Am;Bn ] to the text stand for [Arrighi 1989: m; Bocchi 2017: n].

24 Florence, Riccardiana, Ms. 2404, Fol. 1'-136" — a beautiful vellum manuscript indicating that
the book was appreciated.

215 Since my earlier analysis of the Livero [Hgyrup 2005] was built on Arrighi’s edition (and a visit
to Florence where I could inspect the manuscript), this edition shall be the main basis for my
references. Recently, the Riccardiana has made the manuscript accessible online, which has served
me for controls
(http://teca.riccardiana.firenze.sbn.it/index.php/it/?view=show&myld=19¢563cd-c6b9-4c10-
aa75-1de14762a212, last accessed 29.6.2022; apparently defunct 12 May 2023).

218 Quisto éne lo livero de I’abbecho secondo la oppenione de maiestro Leonardo de la chasa degli
figluogle Bonagie da Pisa [A9;B163].

7 See below, p. 245 onward, on late and very particular (thus only partial) exceptions.
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It turns out that the Livero moves on two unconnected levels. On the basic level we
find everything that was taught in the abbacus school; nothing on this level comes from
Fibonacci (some complex problems about similar topics do, however).

At first the rule of three is presented, in the formulation that with very small variations
was to become the standard of the abbacus treatises (cf. above, note 20); the basal
presentation is followed by rules for how to eliminate fractions and some examples. Several
chapters present the use of metrological shortcuts, and four the exchange and barter of
monies and the purchase of bullion. The initial parts of the chapters on alloying and on
simple and compound interest also belong on this level, as do the full chapters on
discounting and partnership (details in [Hgyrup 2005: 29-30, 44-53]).

On the other level we find sophisticated material. Most of this is translated from the
Liber abbaci — often with errors revealing that the compiler of the Livero (and his source,
if the translation is borrowed, as it appears®®'®)) did not understand what he translated —
as Andrea Bocchi observes [2017: 16], in contrast to the exquisite quality of the
manuscript, the mathematical substance is characterized by “an impressive series of errors
and lacunae [...], in particular in the part derived from the Liber abbaci”. We may restrict
ourselves to a couple of instances.

A plausible though not fully certain example of this is ﬂsle}ﬁ Fibonacci’s composite
fractions are systematically understood as normal fractions, -z for instance becoming

. 3514 L. . . .
simply 4=."""! In principle that might be due to a misunderstanding on part of the

218 “The vernacularization of Fibonacci does not derive directly from a Latin antigraph: the model
of the Riccardiano [manuscript] was not directly the Liber abbaci but an already profoundly adapted
vernacularization” [Bocchi 2017: 32]: a conclusion based on mistakes that are difficult to explain
unless we presuppose the use of a vernacular intermediary — for example, Fibonacci’s minus
becoming viene through the intermediary meno, whose m is easily read as vi.

29 B110;G190] respectively fol. 17°. In one place, on the other hand, Fibonacci’s simple fraction
%o [B274;G441] becomes % (fol. 124"), evidently because the copyist wants the numerator and
the denominator to have corresponding extensions.

. 3514
The fraction -

—= results in the Liber abbaci when “uncie 13, et denarii 14, et carubbe 5,

514
625
explanation of the metrology [B84,107;G142,183] — 1 uncia consisting of 25 denarii [di canterd,

1 denarius of 6 carubbe, 1 carubba of 4 grani. Fibonacci leaves to his reader to understand this.
In the Livero, an explanation is given, “This is its rule, that we shall bring to one stroke all

et grana 3” are expressed as a mixed number, namely as 3 13, in agreement with Fibonacci’s
4

the denari and the carubbe and the grani, like this, %13”. “Stroke” (verga) is used elsewhere

about the fraction line, but also [A132;B400] when the compiler takes over a graphically similar

but mathematically different notation in the problem about seven old women go to Rome

[B311;G489] — 7 ;i;i; 1 standing for 7-(1+7-(147-(1+7-(1+7-(147))))). Actually, the
111111

Livero writes 7 R 1, adding two extra 7s, using multiple strokes but still speaking of
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14th-century copyist of a substantially correct original version of the Livero. Such
misunderstanding are also found in the Boncompagni manuscript of the Liber abbaci;
there, however, they are not systematic as here, which suggests that the misunderstanding
of the composite fractions must be ascribed to the original compiler of the Livero (or
perhaps to the earlier translator into the vernacular). If this is the case, the compiler has
not followed the calculations when copying; if the mistake goes back to an earlier
translator, it would be impossible for him to do so, since the calculations are meaningless.

Indubitably the responsibility of the compiler (again, probably already of the earlier
translator) is the omission of most of Fibonacci’s alternative solutions by means of regula
recta. In one case, however [A89;B7317], in a problem about travels with gain and
expenses based on [B258;G418], only the beginning is skipped, where the unknown is
posited to be a res; in the passage that is taken over, the compiler translates this res as
a nonsensical non-algebraic “thing” (cosa ); the method itself is called per regola chorrecta.

In one case, finally, where Fibonacci [B399;G613] solves a problem of the second
degree (repeated commercial travels with constant profit rate; above, p. 134) by means
of proportions in a lettered line diagram and Elements 11.6 in key version, all letter-
references disappear from the text [A93;B324f], as does the line diagram itself. The
possession of the traveller after the second travel is misread consistently as 229 £
(Fibonacci has 299 £), blatantly contradicting the copied correct result (namely that each
100 £ earn 30 £ at each travel.

In general, much is left out from the problems that are copied from Fibonacci.
However, that which the compiler copies, he tries to copy faithfully — often repeating
Fibonacci’s cross-references even when they are no longer valid in the new context./*”

As ex lained1 in note 80, Fibonacci writes mixed numbers in the Arabic way — that
is, not 69 but 569. In the problems he borrows from Fibonacci, the compiler of the
Livero does the same, only adding in many cases a unit, which Fibonacci leaves out.

Those problems that do not come from the Liber abbaci are different. The first pages
follow the habits of the time and write, for example, libra 1, soldo 1 e denari 10, 6/7 de
denaro.”" Then suddenly the compiler starts to write the fraction to the left, for
example, libre 68, soldi 3, denari 7/, 7 de denaio [A18;B177]. This grammatically

the verga in the singular, in agreement with Fibonacci’s singular virga. Here, at least, the compiler
seems to have copied without understanding (and without counting well). Whether he understands
what was possibly added to the original text in the vernacular translation of the Liber abbaci which
he uses cannot be decided.

2 One example: When presenting Fibonacci’s first house-renting problem the Livero [A48;B231]
explains that “this one is similar to the other one about travels, that is, that somebody had 100 £,
from which of 5 £ he made 6 in each travel ...”, exactly as does Fibonacci [B267;G430]; but
unfortunately the chapter on repeated travels only comes much later [A88;B315] in the Livero.

21TA16;B174], abbreviations resolved, punctuation modern.
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impossible structure shows that he has used an original writing ... denari 7, 7, de denaio
and then (whether inspired by Fibonacci or not we cannot know) shifted the order of the
mixed number according to Arabic habits. This interpretation is confirmed by a few slips:
occasionally the shift is forgotten. The material that does not come from Fibonacci must
therefore come from an earlier abbacus-text (possibly several). That later abbacus texts
turn out to be similar to this part of the material of the Livero hence does not at all link
them to Fibonacci.

This brings us to the question of dating. Loan contracts in the text, dated 1288-1290,
were taken by Warren Van Egmond [1980: 156] as basis for the dating “c. 1290, i[nternal
evidence]”. Gino Arrighi [1989: 6] judged the text to belong to the second half of the
13th century because of the general character (stesura ).

However, the same distorted way of writing amounts of money involving mixed
numbers is found in the loan contracts contained in the Livero. In consequence, these
cannot originally have been composed by the compiler; as the rest of his text, they must
have been copied from a model — certainly an earlier teaching text, not real-life
contracts.”?! The date 1288-1290 is therefore only post quem. The complete ignorance
of the compiler of even the most basic algebraic terminology tells us, however, that he
cannot have written much later than 1310.

The manuscript, apparently a de luxe copy on vellum, may well be later. That is
evidently of no concern for the dating, but it tells us that a Primo amastramento de I’arte
de la geometria which follows the Livero in the manuscript and is written in the same
hand need not originally be from the same hand nor date as the latter. As pointed out
by Bocchi [2017: 85], it was clearly thought to be an independent treatise; it shares with
the Livero the general characteristic of drawing in part on the Fibonacci (apparently via
the same vernacular version), in part of other sources. However, its way to designate
concrete mixed numbers where it does not depend on Fibonacci is sometimes similar to
the inconsistent way of the Livero, sometimes different.””"! If not due to the same hand,
the originals of the two works seem to have been compiled by closely connected writers.
We need not undertake a detailed analysis of this Primo amastramento, but we shall return
to its way to find approximate square roots on p. 174.

The Pisa Libro di ragioni

A unfortunately incomplete Libro di ragioni (“Books of problems”) is contained in
the manuscript Siena, Biblioteca degl’Intronati, L.VL.47.%** On the basis of her

2 As observed by Bocchi [2017: 37], all accounts are opened 1 January 1288.

> Por instance [ed. Arrighi 1991: 9], bz % 9 de bragio and, in the following line after a
multiplication by 4, br. %, 38. The latter type, close to Fibonacci, is by far the most common.

24 Two editions have been made, [Bocchi 2006] and [Franci 2015]; Franci appears not to have been
aware of the existence of Bocchi’s edition. Bocchi, being a philologist and palaeographer mainly
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impression of the language and the shape of numerals Franci [2015: 11] claims it to have
been written in the late 13th century. Bocchi [2006: 19], supported by the authority of
Armando Petrucci, dates it “certainly to the first half of the 14th century, probably to its
first fourth (1301-1325)"**! Ulivi, independently [2011: 258], also dates the treatise
to the beginning of the 14th century.

According to an early foliation, three leaves are missing in the beginning. They may
have contained multiplication tables, but will not have allowed a general introduction to
the Hindu-Arabic numeral system as we know it from Jacopo. The first conserved leaf
starts (p. 22) in the middle of a sequence of metro-numerical tables — the first line closes
a list of divisions of amounts of bezants by 100,%*® after which come
— divisions of ', 8, %, 8, 1Y, 8, ..., 100 8 by 100;

— divisions of ', 8, ', 8, ', 3, ..., 12 8 by 12;

— divisions (pretendedly) of Y, B, % B, % B, ... '/, B by 12; actually, ,,B etc. are
just converted into §;

— conversions of fractions of £ into B and 9;

— conversions of fractions of a pound (a libbra sottile, cf. note 22) into ounces;

At the end come divisions of fractions
— Y%, %, and ¥ by divided by 100.

interested in the language, leaves out the numerical schemes contained in the manuscript from his
almost diplomatic transcription; they are included by Franci, who as a historian of mathematics
understands them to be important for ser purpose. Bocchi also points out in one of four cases only
that a leaf is missing within the stretch of text he transcribes (mentioning the general phenomenon
only in the introduction, p. 23), while Franci identifies the lacunae and reconstructs the statements
of problems where only the final part of the calculation survives after such a lacuna. On the other
hand, Franci omits from her transcription the final ten surviving leaves, which are too damaged
to allow her to produce an understandable text, while Bocchi includes them in his edition, which
indeed allows us to understand the topics dealt with if not the procedures. Bocchi also offers a very
useful glossary.

When nothing else is indicated, references to the text point to the pagination of Franci’s edition.

¥ Bocchi [2006: 22] further points out that the geographical awareness reflected in the problems
carries no trace of how the Pisan trading network had looked before Pisa’s defeat to Genua in the
battle of Meloria in 1284 — probably indicating that this was already decades in the past.

In a personal communication (17 June 2022) Bocchi informs me about two further paleographic
opinions, one being “early 14th century”, the other 1305.

6 Bezants tout court can be seen from a problem where they are used for purchase in Tunis (p.
46) to be garbi, not Byzantine (cf. above, note 107); p. 66 speaks of a bicantio di migliarese, the
migliarese being a silver coin, valued (according to the present treatise, for example the present
division) ', bezant. This bezant appears regularly in the treatise; they come from the Maghreb,
but imitations were coined in Pisa and elsewhere in Italy [Travaini 2003: 33]. A bi¢antio di carato
(Byzantine, Egyptian or from the Crusader states?) turns up more rarely.
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After these tables come (p. 28) a number of rules for divisibility, apparently meant
to facilitate the reduction of fractions and divisions:

— When the letter [i.e., digit] in the beginning (a chapo) is even, one may reduce
[schizzare, the term used for the reduction of fractions] to half. When proof is taken
for 9 and is 3 or 6 and the first letter is not even, one may reduce to ;.

—  When the two letters in the beginning have the Y,, all the others have too.

—  When the letter in the beginning is ¢efaro (i.e., zero), one may reduce to '/, or
'/s. Beyond the spelling cefaro (closer to original arabic sifr than the zevero that is
often found, and no obvious descendant from Fibonacci’s zephirum [B2;G5]) we may
take note that a multi-digit number is supposed to begin to the right, as in Arabic
(but also in many other abbacus books). The rules are all reasonable and correct; |
have not observed them elsewhere.

Another table follows (p. 28), with heading hoc est lasalma, “this is lasalma”. Lasalma
is related to Fibonacci’s hasam (above, note 84), rendering the Maghreb Arabic term
asamm designating a number that cannot be factorized. Lasalma, however, must come
directly from something like al-asamma ‘', with article, double consonant and (what to
a Pisan merchant looks like) a feminine ending, none of which Fibonacci indicates; it
must come directly from the Arabic.”*" Another indication that the table is not drawn
from Fibonacci (as supposed by Franci [2015: 13]) is that Fibonacci’s table lists only the
prime numbers from 11 to 97 (that is, the asamma ' numbers), while the present table
lists all numbers from 11 upwards (because of missing leaves we cannot know how far),
indicating either a splitting in two or three factors or that the number in question “has
no rule”™* — all in fraction form, confirming that division by the number in question
is intended. It appears that the author has not understood (as he would if he had read
Fibonacci) that lasalma means the same as “without rule” (that is, prime) and instead
takes it to mean “factorizalltion’l’.

For 12, the format is 5——, obviously inspired by the ascending continued fraction
>— = '/, and a functioning explanation of the reading direction of such fractions but
none the less mistaken. The format for 14, 15 and 16 is the same, but from 18 upwards
it changes to “Y, of Y,”, etc. — with the exception of 84, for which “'/, of %” is given.

Later in the treatise, mistaken use of the notation for ascending continued fractions

. L1, . L.
also occurs — in a problem on p. 39, — is thus explained to stand for ';, which is next

>’ The omission of the initial vowel and the misrepresentation of the double consonant suggests
spoken Arabic, which is anyhow what we should expect.

8 Once written sine regula, afterwards non a regula. The former expression is close to what is
used in the Liber abbaci (see note 84); but Fibonacci, as we have seen, speaks of something which
was already said “by us”, and the present words therefore need not come from the Liber abbaci.
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used three times, excluding a writing error. However, the notation for ascending continued
fractions is mostly used correctly, always written (as in Arabic and the Liber abbaci)
right-to-left — as explained on p. 46 concerning , and 7, of Y, “both fractions are to
be written on one stroke and disposed thus 5—7”. Sometimes, they go until three levels
(never more). As a rule, however, they are only used when resulting directly from the
calculation, and so rarely that the writer feels obliged to repeat on p. 53 and again on
p- 70, (and repeatedly in more rudimentary form afterwards) the instruction given on p.
46. Much more often, complex fractions are expressed as sums of fractions connected
with e, “and”**! Mixed numbers involving a fraction or an ascending continued fraction
may have the fraction to the left (the Arabic and Fibonacci-way), or to the right (the
normal local habit), with a tendency that the former type takes over completely toward
the end of the treatise. Often, mixed numbers are also written with a connecting word
(for example, p. 51) 22 e %;. This writing, often expanded, prevails when a unit is
involved; on p. 66 we thus find both 634 3 ¢ ”/, and 32 bi¢c. e "%, di bic. Complex
fractions expressed as sums invariably stand to the right, as for example (p. 34) “6 5 e
U, € Yoo € Y490 di 8 —even when reappearing in schematic calculations deprived of unit.

All in all, even though ascending continued fractions as well as mixed numbers with
the fraction written to the left are shared with Fibonacci, there is no reason to conclude
from this eclectic treatment of fractions that the present Libro di ragioni was inspired
by the Liber abbaci, and even less to find a deliberate attempt to emulate Fibonacci’s
ways. Both features simply reflect Maghreb habits; and as shown by the (badly understood)
notion of lasalma numbers and by his copious reference to Maghreb bezants, the present
writer had direct contact to the Maghreb."!

With the exception of two clearly delimited borrowed sequences (below, p. 162
onward), the matters that are taught after the tables are definitely oriented toward what
is commercially useful (and to a large extent linked to Pisa trade). By far the larger part
of what is conserved teaches the rule of three. Often the questions involve several
metrological levels and/or fractions in at least two of the positions — for example (p. 47),
“rotuli 19 and '/, cost £ 4 B 13 and & 7, at what come rotuli 58 and '/,?” They may also
ask for serial application of the rule, as in this problem (p. 48),

I buy in Palermo the cantare of cheese, which is rotuli 100, at teri 23 and grains 12, I
leave and return to Pisa with my merchandise, and each Palermo cantare in Pisa becomes
pounds 240. In Pisa I sell the centonaio, that is, pounds 100, at £ 7 and B 13, I want to

2 1n the Liber abbaci, in contrast, such sums stand without a connector.

20 Beyond the Maghreb bezant with its subdivisions and coins from the Italian mainland and Sicily,
only tornesi (minted in Tours) and the bigcantio di carato (see note 226) are referred to. The Maghreb
can be seen to have remained essential for Pisa trade a good century after the city had sent
Fibonacci’s father there as a public official.



- 162 -

know what I get per ounce.

Obviously, the calculations can be quite extensive.

Between the tables and the problems, three leaves are missing. We therefore cannot
exclude that the rule of three was introduced in abstract form, as in Jacopo’s Tractatus
and in the Livero (above, p. 17 and note 20), even though the absence of traces in the
language further on makes it doubtful. So much seems certain, however, that an
introduction, if any has been there, did not make use of a counterfactual statement, as
done in Ibero-Provencal works (below, p. 176); as we shall see when analyzing the
“Columbia algorism”, this would have left traces in the formulations of the problems.

Within the long sequence of rule-of-three problems we find two partnership questions,
both of which, however, merely indicate the total capital and the share of a single partner —
which means that these are indeed nothing but rule-of-three problems. The reader will
evidently have learned from this how to solve also problems where the shares of all
partners are given, but the aim of the text is shown by this choice to be training for trade,
not for capital management.

Related to partnership problems, however, are two earlier recreational problems (pp.
51f) about distribution according to fractions whose sum exceeds or falls short of 1; first
this one,

There are 3 men who should share 75, one should have the Y,, the other the ;, and the
other should have Y,. I want to know how much each should have. You should do like
this: knowing that these questions are called fallacious [fallace ], why are they called
fallacious? Because when the number is more than a whole part one should have less,
and when the number is less than a whole part, more B and & result. Now you should
do thus: that you should know in what ', and "; and Y, can be found, it is found in 2
times 3 multiplied by 4, they make 24, which you can reduce [schizzare ] to ', and they
are found in 12. Now say, ', of 12is 6, and ' of 12 is 4, and '/, of 3, now join together,
and you have 13. The sharing thus falls to 13. Now say, 13 parts have to share the 75,
what results for the half of 12 which is 6, now you shall multiply 6 by 75, and divide
in 13. [...].

Straightforward application of the partnership rule would have found the first share as
(4 15)/(*h+"%,+",); what is done here reminds more of a method used in Islamic
inheritance law (Ulrich Rebstock, private communication).

These problems follow a group of recreational problems similar to those treated in
part 12.3 of the Liber abbaci [B173;G296] (the “tree problems”). The first (p. 49) says
about a lance that ', and '/, of it are below ground and 32 palms above. It is solved by
means of a single false position, that is, in what Fibonacci called the vernacular way
(above, p. 25). Three other problems belonging to the group deal with pure numbers.**"

! Between the first and these comes (p. 50) a problem about buying and selling eggs, of which
only the initial line survives, but might be similar in structure (need not, in any case the numerical
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The two “fallacious” problems are followed by three problems about a house which
is owned collectively, the first of which (p. 52) (1/3 and 3/5 of the house is worth 300 ,
what is the value of '/, of the house?) makes use of a technique similar to that of the
“fallacious” problems, while the other two (both presupposing the house to be divided
into 24 shares called “carats”) use a more regular rule-of-three procedure. All five
consistently state the monetary unit after the number (e.g., “7 e 10 7, whereas the rest
of the treatise follows the habit shared by Fibonacci and most other abbacus treatises,
where this amount would have been written “ 7 e 8 12”. They are thus certainly taken
from a particular source.**?

After the house problems follows (p. 53) an unusual pure-number problem (unique
in the present work, and unusual in general in the way it is dealt with):

Divide for me 10 into 2 parts, so that one part divided by 3 makes as much as the other
by 4. You shall do like this: 3 and 4 make 7, thus 7 is worth 10, what results from 3 and
from 47 That is, and if you want to say 7, you have to divide 10 so that it comes to 3
and at 4. You should multiply 3, multiplied by 10, and divided in ', and 4%, results.
The other part you will make like this: 4 times 10 and divide in ', and 5, results, as
so much is the other part. One part is thus 4%, and the other part 57%.

A proof follows — maybe because the writer is not certain the exposition is convincing.
The idea hiding behind the procedure seems to be a variant of the single false position:
let us assume that the numbers are 3 and 4 — obviously, these fulfil the second condition.
Their sum, however, is 7, not 10, and therefore by the rule of three the first has to be
193, the second '°%,. If I do not err, the formulation “7 is worth 10” is the only time
the Libro di ragioni comes close to a quasi-counterfactual statement; it is therefore a
reasonable assumption that the present problem belongs together with the “house” and
“fallacious” problems that precede — since no money appears the criterion that kept these
together (monetary unit preceding or following the number) does not apply here, where
no money is spoken of.

This group is an insertion in the long stretch of rule-of-three problems, which continues
from p. 54 to p. 80, ending by the two rule-of-three problems about shares in a partnership.
They are followed by a section teaching how to multiply two mixed numbers (pp. 81-89).
Mixed numbers have evidently been multiplied almost ad nauseam in the many rule-of-
three problems, but by what Fibonacci calls the “vernacular” method (above, p. 62) —

parameters are different) to a problem in the Liber abbaci [B179;G304].

2 Both examples of carato designating ', of a partnership in [Edler 1934: 63] are from Florence.
But for the corresponding Castilian guilate, [Corominas & Pacual 1980: IV, 727] reports the use
about a tax (presumably of ') on the sale of fixed property in Murcia around 1300. Further, a
Venetian Libro dabaco [Tagliente 1520x: 48] speaks of shares of Y, of a ship-partnership as carati.
The generalization of the carat, after all, cannot be used to determine the region from where these
problems were adopted.
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just as the method for serial application of the rule of three is his “vernacular” step-by-step
calculation. Here, instead, the method is to “bring to fraction” both factors (in the
terminology of manuscript V of Jacopo’s Tractatus [ed., trans. Hgyrup 2007: 241f]); the
calculation is then controlled by casting out sevens, and the final result expressed by means
of an ascending continued fraction. The products (12 in total) initially are squares;
afterwards the factors are different:

17%,17%, 41,54 19 25—
23%,23%, 477,627, ‘

27%27% 567,72, 29— 37—
32,32, 79%,,85%,

37,519, 4327561

After each calculation follows the same in schematic form — each time to the right of
another schematic calculation with slightly higher numbers, whose appearance is not
commented upon. At first this:

93 71
1
218 @ 17 C

D 93 D 71
ao Gl w

+i345 +3315

It seems certain that the whole sequence is borrowed — not least because a very similar
sequence is found in manuscripts M and F of Jacopo’s treatise [ed. Hgyrup 2007: 405407,
cf. p. 551, (schemes only, and no ascending continued fractions, but also there
ordered right-to-left, and with the rare control by casting out sevens). There, there is no
doubt that the sequence is a wholesale intrusion.*

P. 89 returns to indubitable Pisa material:

A man makes 3 travels, in the first he goes from Pisa to Lucca and doubles all his money
and disburses 8 12. And then he goes from Lucca to Florence and doubles all his money
and disburses 8 15. And then he goes from Florence to Siena and doubles the money and

3 The diagram just given indeed emulates the style of these two manuscripts (M, fol. 12'-13", F
facsimile in [Simi 1995: 55-58].

3 Firstly, in contrast to V, M+F do not multiply mixed numbers in the way taught in these schemes.
Secondly, in the two manuscripts the fractions of the two factors are written as far left as possible,
while the integer part is pushed to the right; the fraction of the outcome is surrounded by a curved
line similar to those enclosing the remainders modulo 7, showing that the compiler of this version
did not understand what he copied as mixed numbers.
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spends d 21, and nothing remained for me. I want to know what my capital was.

This could be inspired by the first problem in the Liber abbaci about repeated travels
with gain and expenses (above, p. 88). It is no less possible that Fibonacci took over a
local Pisa variant of the recreational classic and solved it by means of his own sophisticated
method. In any case there is no doubt that the two problems are linked though different
(there is no mindless copying here, as in the Livero [A89;B315]). The method used in
the Libro di ragioni also differs from that of Fibonacci (copied with or without
understanding in the Livero ), namely a scheme within which the backwards calculation
can be arranged.

Three problems of the same kind but with varying numerical parameters follow. Then
(p- 92) comes a short paradigmatic example showing how to subtract a fraction from a
fraction (¥ from %) as a continued ascending fraction. The method proposed is to find
a number of which both can be taken (in case 57 = 35); since ¥ of 35 is 21 and %
of 35 is 30, the difference between the fractions is %; = . This looks like a
continuation of the borrowed sequence about the multiplication of mixed numbers that
preceded the travel-problems.

After this comes a sequence of traditional recreational problems — first the beginning
of one about the emptying of a cask through several holes, then after a missing leaf (from
here onward only transcribed by Bocchi) two analogues of the apple-picking problem
we encountered in the Liber abbaci (above, p. 90), though with different parameters and
solved in a different way.

After a single simple partnership problem follows [ed. Bocchi 2006: 70] a problem
comparing two cylindrical volumes (the payment for a projected versus the realized well);
the text is heavily damaged but at least shows that the calculations are wrong.*> A
last recreational problem [ed. Bocchi 2006: 71] deals with 4 men finding 4 purses. Even
here something is wrong, probably because of ill-understood copying. The contents of
the purses are given, and so are the ratios between the possessions of the men. Firstly,
the ratios are given cyclically in such a way that the first man has 120 times as much
as he has himself; secondly, the two sets of data are unconnected, and even with possible
ratios therefore could not possibly lead to a solution (what remains from the solution also
shows that the data are supposed to be connected).

The next section [ed. Bocchi 2006: 71-75] deals with alloying, said to be divided
into five differencie, much the way the topic is divided in the Liber abbaci (which has
seven differentiae, cf. above, p. 75). Most of the questions begin that ““a man” has or wants
to make a coin of specified fineness. We may take note, however, that one [ed. Bocchi
2006: 74] starts “I have coin, which coin is at 4/, ounces per pound” — cf. above, p. 75.

The last two conserved leaves [ed. Bocchi 2006: 75-77] deal with area computation

3 The idea of a badly used source appears to be that the volume of the cylinder is found at half-

diameter times half-perimeter times height. The final result shows that the calculations of the source
were correct, apart from a minor error in the fractions of a d.
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in Pisa metrology (also described by Fibonacci in his Pratica geometrie [ed. Boncompagni
1862: 3f]>.

Area computation is likely to have been the last topic dealt with; all in all we probably
have a good impression of the complete treatise. Summarizing, it seems to show traces
of Maghreb influence not mediated by Fibonacci; the main objective can be seen to have
been the training of the rule of three. Absent are metrological shortcuts allowing to
dispense with the full rule with its multiplications and divisions (part of the 15th-century
“Pisa curriculum”, and also known from Jacopo, see above, pp. 5 and 20). Barter is absent,
and so is interest, and a fortiori discounting; the only commercially useful topic dealt
with beyond the rule of three is indeed alloying. Recreational problems play a rather
restricted role compared with many other abbacus treatises (not to speak of the Liber
abbact).

The “Columbia algorism”

Like the Livero, the “Columbia algorism” (henceforth CA) is known from a 14th-
century vellum copy — once belonging to the Boncompagni collection, since 1902 in the
possession of the Library of Columbia University, New York (Columbia X 511 A13) —
cf. [Cowley 1923: 22f]. An edition was made in [1977] by Kurt Vogel; references to the
text in what follows point to the pagination of this edition and its numbering of sections.

On the basis of some of the coins included in a coin list Vogel dated the CA to the
second half of the 14th century, while admitting that the coin list might have been included
when the copy and not the original was produced [Vogel 1977: 3f, 158]. Better
identification of the coins in question allowed Travaini [2003: 92] to date the list to “later
than 1278 and before 1284”.

That does not necessarily determine the date of the CA itself. As we have seen (above,
p- 50), Jacopo’s coin list can be dated to 1302, five years before Jacopo’s Tractatus was
written; moreover, it was still copied in two abbacus books in the second half of the 15th
century [Travaini 2020: Ixi, Ixiv]. Francesco Pegolotti, when putting together around 1340
material useful for international trade in his Pratica de mercatura [Evans 1936:xivf],
inserted a coin list from ca 1290, with additions to be dated ca 1320 [Travaini 2003: 86].
However, another observation made by Vogel [1977: 12] supports a date close to that
of the coin list: the shapes of the Hindu-Arabic numerals are not those that were current
in the mid-14th century but seem to point to the 13th; apparently (as not quite uncommon)
the copyist tried to emulate his original. As we shall see, the contents also speaks for an
early date. Since most money-exchange problems involve the cortonesi, and since the
coin list often evaluates other coin with reference to these, the likely place of origin is
Cortona, close to the Tuscan border toward Umbria.

Like the Pisa Libro di ragioni, the CA is incomplete, missing the initial as well as

¥ Cf. [Hgyrup 2019a: 209].
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several later leaves. How much is missing in the beginning cannot be known precisely,
but hardly much, as argued by Elizabeth Buchanan Cowley [1923: 382f] after analysis
of the binding (unless a complete quire has been lost). A full introduction to the Hindu-
Arabic numerals is therefore not very likely to have been present, and hardly a detailed
explanation of operations with fractions (they are trained in the first conserved problems).
The CA was therefore no algorism,'™” as is Jacopo’s Tractatus, an explanation of the
Hindu-Arabic system (with applications), but another libro di ragioni, “book of problems”.

In the Livero, we saw, ascending continued fractions were used consistently in the
stratum more or less well borrowed from Fibonacci, and never in the basic stratum of
the text. In the Pisa Libro di ragioni, they are used intermittently, and initially the notation
apparently borrowed from the Maghreb is misunderstood. In the CA they are extremely
rare, never go beyond two levels, and the writing direction changes:lhll problem #39, p.
64, tlge;lz are to be read in the Arabic way, from right toward left,l e standing for %
and - for ’%; in #60, p. 81, the reading goes is left-to-right, -— now standing for
;¥ mixed numbers, however, are always written left-to-right. Noteworthy is an
emulation of the notation where for instance (#40, p. 65) pr stands for “1 grana and
'/, [of a grana]”, which in combination with the occasional use of (for instance)
'/, for “the fourth” meant not as a fraction but as the fourth in a sequence shows that the
fraction line is understood, not as a division but as an indication of unit — in other words,
what looks to us as a denominator is instead understood as a denomination. We shall
encounter the pseudo-ascending fractions in Dardi da Pisa’s algebraic notation on p. 215.
Ordinal numbers written in the shape of fractions are widespread in the abbacus corpus.

The Livero, including no introduction to the number system, opened with an abstract
formulation of the rule of three (the one that was going to be the standard of abbacus
books). Whether the Pisa Libro did the same is doubtful (above, p. 162). In the CA, a
general presentation is offered (#11, pp. 39f) after a sequence of problems and rules mostly
teaching numerical techniques:™**’

" The line Rascionei d’Algorsmo on top of the first conserved leaf was obviously written when
the initial leaves had already been lost. It is also written in a modern hand [Cowley 1923: 381].

28 Actually, the fraction line is discontinuous, %_;, etc., as in the Livero, and the notation thus
ambiguous; in #16, with similarly discontinuous fraction lies, p. 45, %2_10 is meant instead as '/,;+"/,,
11 1y o1
and ___ as /s+/.
510 5 10

» However, the CA is far from systematic. Within the sequence in question we also find a problem
about repeated travels with gain and expenses (#4, p. 33), solved step by step backwards (with no
use of a scheme, as done in the Pisan Libro (above, p. 165), and in #5, p. 34, the grasping problem
which we know from the Liber abbaci (above, p. 95) — with the numerical parameters which
Fibonacci shares with al-Karaji but merely with an indication of the solution, not even hinting at
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Remember, that you cannot state any computation where you do not mention three things;
and it is fitting that one of these things must be mentioned by name two times; remember also
that the first of the things that is mentioned two times by name must be the divisor, and the
other two things must be multiplied together.

An example dealing with the exchange of money follows. Later this formulation is used
a couple of times (#19, p. 48, and #21, p. 50) in examples that refer explicitly to the “rule
of the three things”. As we see, instead of referring to what is “similar” or “of the same
kind” (cf. note 20) the CA here speaks about what is “mentioned by name two times”.
While the idea is the same, the words are different.”*"!

Much more often, however, the problem is reduced to a counterfactual formulation
(invariably so in cases where the rule serves inside a more complex calculation). A simple
instance is a question (#114, p. 124) for two numbers the sum of whose squares is 64.

If you want to do this, find me a number that may be multiplied by two numbers [that
is, which may be produced as the sum of two numbers each multiplied by itself], and which
has a root, which is 25, and one number is 3 and the other is 4, and say thus: the root
of 64 is 8, and the root of 25 is 5. Say, if 5 were 8, what would 4 be, and it would be
6 and %; and say, if 5 were 8, what would 3 be, and it would be 4 and % and these
are 2 such numbers which, each multiplied by itself, will make 64 precisely.

Such auxiliary use of the rule of three in counterfactual formulation is found in no less

a method, and thus teaching absolutely nothing. The story is told in words that are very far from
those of Fibonacci.

20 “mentioned two times” is not totally absent from the later Italian record, but it must have been

rare. [ know it from only three sources, two of them from 1478. One is Pacioli’s Perugia manuscript
[ed. Calzoni & Cavazzoni 1996: 19f ], which gives this as an alternative to the normal “similar”
formulation (repeated with minimal change in the Summa [1494: fol. 57']):

The same in other words. The rule of 3 says that the thing which is mentioned twice should
be looked for, of which the first is the divisor, and the second is multiplied by the thing
mentioned once, and this multiplication is divided by the said divisor, and that which
results from the said division will be of the nature of the thing mentioned once, and so
much will the thing be worth which we try to know.

The other occurrence is in Pierpaolo Muscharello’s Algorismus, written in Nola (close to Naples,
thus in a region under strong Spanish influence and outside the core abbacus region) [ed. Chiarini
et al 1972: 59]; it is a simple nod to the “mentioned” formulation within the standard phrasing:

This is the rule of 3, which is the fundament for all commercial computations. And in
order to find the divisor, always look for the similar thing, which is mentioned twice, and
one of these will be the divisor [...].

The third occurrence is much earlier, namely in an odd corner in a Libro d’abaco compiled in Lucca
by several hands around 1330 (see below, p. 199).
We shall return to the appearance in the printed Larte de labbacho (below, p. 319).



- 169 -

than 18 problems out of 141 sections (problems and rules).”**"! Thrice the method is
identified as “by the rule of three”™* In 12 cases the multiplication and ensuing
division are specified, in seven (as here) taken for granted. Sometimes the rule is appealed
to without clear indication of which of the two approaches was thought of,**!
is simply applied without being named.***

As we shall see (below, p. 176), the approach by means of a counterfactual question
points to the Ibero-Provencal world. There is more to such a connection — Iberian rather
than Provencgal. #111, p. 122, runs as follows:

or it

Somebody had & in the purse and we do not know how many. The ' (and the ;) were
lost, and 10 & remained for him. I ask, how many & he had before the '; and the ; were
lost for him. This is its right rule, that we shall say, in what are ", and Y found, and
they are found in 3 times 5, that is, 15; and thus one shall say that he had 15 denari in
the purse. Remove the Y and the ; of 15, 7 escape. Say thus; if 7 were 10, what would
15 be? Say, 10 times 15 make 150, to divide by 7, and from this comes 21 3/7 , and so much
did he have in the purse before the % and the ' were lost for him.

In a Castilian Libro de arismética que es dicho alguarismo (henceforth
Alguarismo), a closely related problem is found:**' only 5 denari remain, and the
story is told in the first and second, not the third grammatical person; apart from that,
we find a quite faithful repetition (only the finding of 15 as 35 has been left out):

The '/, and the ' of my dineros were lost for me from the purse, and 5 dineros remained
in it, I ask, how many dineros there were in it at first? This is its right rule and calculation,
that you shall say, in what are found ", and ";, which is in 15, let us then say that you
had 15 dineros in your purse, ' and the ', were lost, 7 remained for you, say, if 7 were
5, what would 15 be? Say, 5 times 15 are 75, divide by 7, and from that come 105/7, and
so many dineros were there at first in the purse.

The CA was not widely influential, and no other Italian abbacus treatise identifies the

2, p. 32, #31, p. 57; #35, p. 61; #39, p, 64; #40, p, 65; #45, p. 70; #49, p. 73; #50, p. 74; #56,
p- 78; #57, p. 79; #58, p. 80; #61, p.83; #64, p. 86; #68, pp. 90, 91; #69, pp. 90, 91; #93, p. 109;
#111, p. 122; #112, p. 123; #114, p. 124. #96-98, pp. 110-112, further present three counterfactual
calculations (“if % and Y, of 14 were ", and ' of 11, what would the Y, and the Y of 23 be?”,
etc.). They are solved via reduction to simple counterfactual statements (the one just quoted to “if
8" were 77,,, what would 12 be?”).

#2431, p. 57; #39, p. 64; #61, p. 83.
3 Thus # 23, p. 51; #28, p. 54; #29, p. 55; #32, p. 58; #75, p. 96; #94, p. 110.
4 Thus #25, p. 52; #75, p. 96; #95, p. 110.

5 Ed. Caunedo del Potro, in [Caunedo del Potro & Cérdoba de la Llave 2000: 167]); further page
references to the Alguarismo point to this edition. The edition is based on a 16th-century copy of
an manuscript from 1393, in itself a copy of an original going back at least to the early 14th century.
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rule of three via a counterfactual structure. It is therefore next to certain that the influence
went the other way, from Iberian vernacular practical arithmetic to the CA. That this could
happen is also not implausible — we remember Fibonacci coping his treatment of barter
from a “Castilian master” (above, p. 72).12*

In many cases, obvious similarities between the CA and the Alguarismo cannot be
used to link the CA to the Iberian environment. That is the case if the problem type occurs
elsewhere in the Italian corpus; if the phrasing is not characteristically similar; and if
coinciding numerical parameters are either widespread or not sufficiently characteristic.
A number of other instances are more telling, however, and confirm the partial Iberian
inspiration for the CA.**"!

One example is #67 in the CA (p. 88):

There is a tower which is 10 cubits high; and on this tower there is a dove which by day
descends %, of a cubit, and by night returns upwards ', and Y. I ask, in how many days
the dove will come to the ground. This is its rule, how one should make all such
computations, that you shall say how much % is more than ', Y,, you see that it is Y,
of a cubit more. Hence it advances downwards each day Y, of a cubit. If one wants to
know in how many days it will be on the ground, one makes the 9 cubits and ', which
it makes in 112 days, and remains to make % of a cubit which it makes in the last day,
and then it will find itself on the ground, and the computation is made in 113 days. And
many masters say about this question that the dove will be on the ground in 112 days,
not knowing about the hoax behind, that it makes %, on the day of return and finds itself
on the ground.

Obviously, the errors of many masters (including Fibonacci, see above, p. 37) should be
120, namely 10+ ,,. We shall return to this mistake after having looked at how the same
problem is dealt with in the Alguarismo (p. 162) — since the text there is obviously corrupt,

6 One may then ask, why do we not know about abbacus-like writings in large numbers from the
Iberian area.

The primary answer is that in the Italian abbacus-area, the merchant patriciate developed into
nobility, in the Iberian Peninsula it did not manage to do so. Traditional feudal nobility conserves
with pride arms and coats of arms. Similarly, merchants becoming nobility (and their environment)
conserved their sword — the arithmetic book. One of the surviving manuscripts of the Liber abbaci
(namely V;) was in the possession of a member of the Fugger banker family before it became Church
property.

A secondary answer is that the Iberian area did not have a Warren Van Egmond. As suggested
by [Caunedo del Potro & Cérdoba de la Llave 2000] and [Caunedo del Potro 2004], more than
we know may be waiting in library manuscripts.

7 Striking and almost certainly not accidental similarities are found in CA#67, Alguarismo#40;
CA#123, Alguarismo#21; CA#61, Alguarismo#39; CA#106, Alguarismo#60; CA#56, Alguarismo#76;
CA#126, Alguarismo#152.

Similarities that could be accidental are found in CA#108-109, Alguarismo#44,66-67; CA#85,
Alguarismo#48; CA#93, Alguarismo#51; CA#118, Alguarismo#53; CA#108, Alguarismo#66.
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even to the point of being ungrammatical, I shall try to translate even more verbatim than
usually:

There is a dove on top of a tower, and the height of the tower is 10 varas.*** And
the dove mounts against upwards [sube contra suso] in a day %, of a vara, I ask you,
in how many days will this dove be on the ground. And many say that it will be on the
ground in 12 days, but it will be on the ground in 113 days, because it descends 9 varas
in 18 days and ", of a vara in 4 days, which are 112 days and '/, make in a day, and
in this way it will be on the ground in 112 days.

There are obvious copying errors and misunderstandings — first, the nightly ascent is
omitted, which may be behind the enigmatic “mounts against upwards”; what might hide
behind “descends 9 varas in 18 days” is beyond my imagination. But the reference to
what “many say” is shared with the CA; most likely, both text descend from a text where
the error attribute to “many” had been written “12” instead of “120”. The Alguarismo
has then copied that mistake better than the rest of the text, while the compiler of the
CA, seeing that it cannot be correct, has misrepaired “12” as “112” instead of “120”.
Also interesting is #61 (p. 82) of the CA:

A merchant moved from France with his denari,**" we do not know how many he

carried. He moved from France to Pisa with these his B3 invested and earned 15 of denari
per the hundred. Then he left Pisa and went to Genua and earned 20 per hundred of .
He further left Genua and went to Sardinia and earned 25 per hundred of , and turned
back to Florence and earned 30 per the hundred, and then he counted his denari and found
himself with precisely 1000 of pisani. This is its rule, how one should make all such
computations, which can be made in two ways, one by false position, the other to find
it backwards; let us make it in the way of false position, and say that he moved first from
France with 100, and in Pisa there were 115 and in Genua there were 138, and in Sardinia
there were 172 B 10, and returns to Florence and makes 224 3 5. Now it can be made
by the rule of 3, and say, if 1 8 243 were 1000, what would 100 be, which would be
448 B 3 § 24, 120

At first we observe that this appeal to a single false position corresponds to what Fibonacci
does when dealing with the gains in the first problem about repeated travels with gain
and expenses (and repeatedly afterwards; above, p. 88). More striking, however, is what
we find in the Alguarismo (p. 162):

A merchant moved from Lisbon with his dineros and we do not know how many, and
came to Sevil and earned 15 £ per 100, and then came to Valencia and earned 20 £ per

*8The vara is a length unit of around 80-85 centimetres. It corresponds to the Italian cubit
(braccio) in abbacus texts in the sense that both are used to measure land as well as cloth.

9 Here meaning “money”, cf. above, note 22.

0 Should be 445 B 18 & 7°%%,,.
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100, and then he turned to Toledo and earned 25 per 100 and found as capital and gain
thousand £, I ask you, how many dineros he had at first when he moved from Lisbon?
Say that they were falsely 100 £, and in Sevil he earned 15 £, in Valencia he found himself
with 138 and in Toledo he found himself with 172 £ and Y,, say, if 172", were 100, what
would 1000 be? Say, 100 times 1000 are 10000, and divide by 1727, and from the
division results 579 £ 19 B and 2 8, ', of 8.1

There is one travel less than in the CA, but apart from that the numbers are the same;
in both cases the traveller is defined to be a merchant, in both cases he discovers how
much he has after the last travel, and in both cases an explicit single false position is used,
which is quite exceptional for this problem type. There can be little doubt that the two
texts depend on the same source for this problem; moreover, we may notice that the three
problems in the Alguarismo that were used for this comparison are immediate neighbours;
at least the Alguarismo must therefore depend for them on a specific written source, not
for something in general circulation; actually, the following 3 problems in the Alguarismo
also have close counterparts in the CA, even though the similarities are less conclusive.

This does not exhaust the list of similarities between the CA and the Alguarismo which
can hardly be accidental, but it should suffice to make the point: not only the main manner
of the former to identify the rule of three but also a number of problems are borrowed
from an Iberian — probably Castilian — environment.”*”

Most of the problems in the CA are commercial or such widespread versions of
traditional recreational problems that nothing precisely can be said about their affinities.
Some are obviously related to problems from the Liber abbaci, but the similarities never
go beyond the shared heritage.

»!'Should be 579 14 B and 2 &, '%, of & — certainly a simple copying error.

22 Links to the Liber abbaci beyond the use of a single false position for the travel problem can
also be identified. Both the CA (#106, p. 118) and the Alguarismo (p. 167) present a two-participant
“purchase of a horse”, where the participants are defined as “companions”, and the requests are
"1+, respectively Y, +"; of what the other has. Both solve by means of an unexplained rule, which
is based on this consideration: if A+gB = B+pA, than (1-p )A = (1-q )B, for which reason the any
pair (A,B) = (k(1-q ),k(1-p) is a solution. Fibonacci’s rule (above, p. 86) can easily be derived
from the rule given in the CA and the Alguarismo, but since Fibonacci’s rule only works directly
when the fractions to be transferred are aliquot parts, the Liber abbaci cannot be the source.

In abbacus books, the participants in this kind of deals are mostly just “men”, “merchants”
or “the first, the second, ...”.  have noticed “companions” in a single problem with four participants
in Paolo Gherardi’s Libro di ragioni [ed. Arrighi 1987: 45] (written in Montpellier in Provence,
ct. above, note 39), and a two-participant problem in the Livero [A67;B268], with the same fractions
as in the CA and the Alguarismo but with given price of the horse and therefore with a different
rule; even these two problems from the CA and the Alguarismo thus seem to be related, and
Fibonacci’s two-participant example might therefore (in spite of its bezants) be inspired from the
same environment.
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The Liber habaci

The last abbacus book that may belong to “generation one” or even to “generation
zero” is the Liber habaci/™® It is anonymous,™" probably to be dated to ca
1309 (two examples in the computus chapter refer to this year, pp. 161 and 163),
and apparently written in Provence.*

The reason to see this treatise as a possible reflection of “generation zero” is a unique
feature: all integer numbers are expressed in Roman numerals, Hindu-Arabic numerals
do not appear; fractions are systematically expressed in words. Even the brief explanation
of the place-value system on p. 155 speaks about figure d’abacho but does not show these
but only speaks in the abstract about figure.

Evidently, Italian and Provencal merchants had to calculate also before they learned
to use the Hindu-Arabic numerals. Once these had become commonly known, they
certainly displaced Roman numerals; but the rule of three, and commercial calculation
in general, could also be performed on the basis of the old notation or the spoken numbers
to which they correspond — since Antiquity, keeping track of intermediate results by means
of finger reckoning had been standard.”” The Liber habaci may therefore be a

3 Florence, Biblioteca Magliabechiana X1.88, [ed. Arrighi 1987]; page numbers will refer to this
edition.

24 Arrighi ascribes it to Paolo Gherardi [1987: 7], basing himself on a library catalogue note “Paolo /
Gerardi / Arim” and on what is written on the spine of the binding, “XI./ Paolo / 418”. The title
on the spine must have been given by Giovanni Targioni Tozzetti when the manuscript was acquired
for the Biblioteca Magliabechiana in 1752/53, at which occasion he assigned it to class XI (“418”
is likely to have been its collocation in the Gaddi collection, from where it came); the catalogue
note must also be due to Targioni Tozzetti, unless it is even later [McCuaigh 1990: 431]; both are
probably inspired by the presence of another abbacus manuscript in the collection explicitly ascribed
to Gherardi. None of this evidence has any weight, and the Liber habaci must be considered
anonymous. We might observe that the orthographic habits of the two manuscripts differ, but even
this is of no consequence, given that the Gherardi text is a copy.

5 Two examples in a computus chapter refer to that year, pp. 161 and 163. Van Egmond [1980:
115] gives ca 1310, and may combine these examples with material from a calendar that is not
included in Arrighi’s edition.

6 The calendar lists the days of saints that were important there but not in Italy [Arrighi 1987:
10]. Part of the mathematical contents points in the same direction. Only part, however — pp. 129f
present Florentine area metrology (not the same as the Pisa metrology encountered in the Pisa Libro
di ragioni).

»71n this connection we should remember that not only the Liber abbaci but many abbacus books
until Pacioli’s Summa [1494: 26"] presented these finger positions — and even Girolamo Tagliente’s
Libro dabaco from [1520x] — reprinted as late as [1579].
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281 However, the

relatively late reflection of the ways of the earliest abbacus teachers."
avoidance of the place value notation could also have resulted from a choice not to
overburden an audience that did not yet know it.

Supplementary evidence that the Liber habaci is a reflection of an archaic stage is
offered, however, by a list of square roots on p. 119. After the roots of perfect squares
from 1 to 100 follows a list of approximate roots of non-square numbers — in modern

number notation

V2 = 13/7, a little less 3 1/2, a little less
V3 = 1%, a little less
\7 = 2%, a little less V40 = 6, a little less

V10 = 3Y,, a little less\'12 V50 = 7Y,
V10, V40 and V50 could have been found as the usual “closest approximation” (above,
p. 36), but the rest of the table shows that the underlying idea (not stated in the text, and
probably unknown to the compiler) is

V2 = V(2:49)/7= \100/7 = 10/7

V3 = V(3:16)/4= \49/4 = 7/4

N7 =N(7°9)/3= N64/3 = 8/3

V10 = V(10:36)/6= V361/6 = 19/6

etc.
Only V50, not indicated to be an approximation, is taken over from age-old tradition.

There are no approximated square roots in the Livero, nor in the Pisa Libro di ragioni.
The CA (p. 133) explains the “closest” approximation, yet without using this
characterization. The Primo amastramento, probably close kin of the Livero (above, p.
158) extracts many square roots, never explaining how it is done but in ways that definitely
excludes the “closest approximation”. When extracting V14 [ed. Arrighi 1991: 10] it finds
37, as its pin sutile root, which cannot come from the “closest approximation”, neither
from above not below; possibly, the basis is that V14 =(14:81)/9 =V1134/9~1156/9 =
34/9 = 37/,.The identification of 8% as the “most subtle” root of 75 [ed. Arrighi 1991:
13] can be explained either as a “closest approximation” from above or from the calculation
75 = N(759)/3 = \N675/3 =~ V676/3 = 26/3 = 8%,. Other radicands such as 194%,,
(claimed to have the root 13'%,, [ed. Arrighi 1991: 15]) will have required further
approximation, and therefore defy explanation. All in all, however, the method of the Liber
habaci may also have been the basic method of the Primo amastramento, confirming the
archaic character of both.
However that may be: even though the Liber habaci is slightly later than Jacopo’s

Tractatus algorismi from 1307 (as we know it from the Vatican manuscript), it does not
know the key innovation introduced by Jacopo, namely algebra. In spirit, it belongs

28 «Relatively late” — but the Trento Algorisimus, printed only 70 kilometres north of Verona on
the trade route toward southern Germany, was to do the same in ca 1475 — see below, p. 362.
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together with the Livero, the Pisa Libro di ragioni, and the CA, if not to an even earlier
stage.

As we have already seen (above, note 20), the Liber habaci and the Livero introduce
the rule of three in what was going to be the standard way of the abbacus tradition; how
(and whether) it was introduced in the missing sheets of the Pisa Libro di ragioni we
cannot know (above, p. 162); the CA is clearly different on this account. When it comes
to the contents, recreational problems play a much larger role in the Liber habaci than
in the Pisa Libro di ragioni or in the basic stratum of the Livero, in this respect bringing
it closer to the CA. If we consider the commercial aspect, on the other hand, the Liber
habaci comes somewhat closer to the Pisa Libro than to the others; but it contains a single
problem on barter, absent from the Libro (p. 147); in contrast to the Libro, it also considers
simple interest. Geometrical computation, basic as well as recreational, interspersed among
commercial and recreational-commercial matters, plays a larger role in the Liber habaci
that in the others; its contents and methods, though not identical, is similar to what we
saw in Jacopo’s Tractatus (above, p. 34), seemingly reflecting the particular orientation
of Tuscan abbacus authors writing in Provence.

All in all, the four surviving representatives of the first abbacus generation show no
signs of descending from the Liber abbaci, apart for the easily separable and not
necessarily well-digested sophisticated stratum of the Livero. Moreover, in their general
character they differ so much from each other and suggest so many different contacts
outside the Italian area that it is difficult to imagine that they should derive from an
accurately defined common root — what holds them together as a “generation” is
chronology, no particular mathematical style. Their authors or compilers appear instead
to have responded to a shared social need mediated and shaped by the newly arising
abbacus school; this they did by drawing on shared commercial techniques and on
inspiration from a variety of contacts in the Mediterranean world.



An Ibero-Provencal aside

The way of Ibero-Provencal writers to deal with the rule of three was referred to
repeatedly in the preceding section. Which are the sources?

Oldest are two works freely translated from Arabic material into Latin somewhere
around 1160: the Liber mahameleth and the so-called “Toledan regule” [ed. Burnett, Zhao
& Lampe 2007]. The two are closely related, see [Burnett, Zhao & Lampe 2007: 145],
and note 76 above.

The next representatives of the area are all written in vernaculars, and all postdate
the first Italian generation:

—  The 14th-century Castilian Alguarismo (above, p. 169). Certain aspects call to mind
the Liber mahameleth, enough to show it to be partially rooted in an Iberian tradition
going back to the Arabic period.

— The anonymous “Pamiers Algorism” [ed. Sesiano 2018], according to monetary
evidence written in the 1430s.

— The equally anonymous mid—15th-century Franco-Provencal Traicté de la praticque
d’algorisme [ed. Lamassé 2007], related to the “Pamiers algorism™ but neither a
descendant nor a source — see [Sesiano 2018: 9].

— Barthélemy de Romans’ Compendy de la praticque des nombres, probably written
around 1467 but only known from a revision prepared by Mathieu Préhoude in 1476
[ed. Spiesser 2003], somehow connected to the Traicté.

— Francesc Santcliment’s Catalan Suma de la art de arismetica [ed. Malet 1998: 163],
printed in Barcelona in 1482.

— Francés Pellos’s Compendion de I’abaco, printed in Nice in 1492.

The Liber mahameleth [ed. Vlasschaert 2010: II, 185; ed. Sesiano 2014: 221] and
the “Toledan Regule” [ed. Burnett, Zhao & Lampe 2007: 155] begin by an approach to
the rule of three which I know from nowhere else. Of four numbers in proportion, the
first and the fourth are declared “partners” (socii), and so are the second and the third.
If one is unknown, then its partner shall divide any of the other two, and the outcome
be multiplied by the third number; this, of course, is not the rule of three, where
multiplication is performed first. Afterwards, both specify differently (without pointin
out that there is a difference), namely in agreement with what we may call the “naked
rule of three”,

thus, if three are proposed and the fourth is unknown, multiply the second in the third,
and divide what results by the first, and what comes out will be the fourth.

No later Ibero-Provencal source contains anything similar to the socii explanation;
being isolated from past as well as from future, this Latin explanation is thus likely to
be a local invention in the learned Toledo environment which had no bearing on what
merchants and their schools were doing.

The Alguarismo [ed. Caunedo del Potro & Cérdoba de la Llave 2000: 147] explains
the procedure as follows:
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This is the 6th species, which begins “if so much is worth so much, what will so much
be worth”.

Know that according to what the art of algorism commands, to make any calculation
which begins in this way, “if so much was so much, what would so much be?”, the art
of algorism commands that you multiply the second by the third and divide by the first,
and that which comes out of the division, that is what you ask for. As if somebody said,
“if 3 were 4, what would 5 be?”, in order to do it, posit the figures of the letters™® as
I say here, the 3 first and the 4 second and the 5 third, 3, 4, 5, and now multiply the 4,
which is the second letter, with the 5, which is the third, and say, 4 times 5 are 20, and
divide this 20 by the 3, which stands first, and from the division comes 62/3, so that if
they ask you, “if 3 were 4, what would 5 be?”, you will say 6%, and by this rule all
calculations of the world are made which are asked in this way, whatever they be.

As we see, this combines the “naked” formulation of the Latin writings with use of
the counterfactual calculation used as general model.
The “Pamiers algorism” [ed. Sesiano 2018: 285] says that the rule

is called rule of 3 because there are always 3 things, 2 similar [semblantz] and one
dissimilar. And if there are more, they are reduced to these 3. [...”2%].
Multiply that which you want to know by its contrary, and then divide by its similar.

This is evidently the same rule as we know from the Italian material (including Italians
writing in Provence), excepting the use of the term “contrary”, which might refer to a
rectangular scheme similar to that used by Fibonacci; it replaces the “companion” of the
Latin treatises. The formulation has nothing to do with the alternative of the Latin treatises
(nor with their primary formulation). The examples [ed. Sesiano 2018: 286f], on the other
hand, differ in style from what we find in Italy:

And first you ask, if (so much is worth so much), how much is so much worth, For
example, if 4 are worth 7, what are 12 worth? [...].

Further, 4, are worth 7, what are 13 worth? [...].

Further, 4, are worth 7%, what are 13 worth? [...].

Further, 4, are worth 7%, what are 137, worth? [...].

These are evidently not quite counterfactual, only so abstract that they become similar
to that category — close enough for the Alguarismo to slide impercetibly from one to the
other. Only after these (and three more of the same kind) come the concrete examples
where different monies are spoken of (mostly using the same numerical parameters), as
we know it from Jacopo’s Tractatus (above, p. 18), and as also habitual in other Italian
abbacus books.

The presentation of the rule of three in the Traicté [ed. Lamassé 2007: 469] runs thus:

29 Elsewhere the author explains “the letters of algorism” to be the Hindu-Arabic numerals.

260 Extensions to rule of 5 and rule of 7.
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This rule is called rule of three for the reason that in the problems [raisons ] that are made
by this rule three numbers are always required, of which the first and the third should
always be similar by counting one thing. And from these three numbers result another
one, which is the problem and conclusion of that which one wants to know. And it is
always similar to the second number of the three. By some this rule is called the golden
rule and by others the rule of proportions. The problems and questions of this rule are
formed in this way: “If so much is worth so much, how much will so much be worth?”.
As for example, “if 6 are worth 18, what would 9 be worth?”. For the making of such
problems there is such a rule:

Multiply that which you want to know by its contrary and then divide by its similar.
Or multiply the third number by the second and then divide by the first.

Here we see a combination of the second Toledan and the “Italian” way, leading to an
abstract, quasi-counterfactual specification (the examples that follow are of the same kind).

Barthélemy de Romans’ Compendy de la praticque des nombres says about the rule
of three [ed. Spiesser 2003: 255-257] that it is “the most profitable of all”, and gives two
versions of the rule,

Multiply that which you want to know by its contrary, and then divide by its similar,
and

Multiply that which you know by that which is wholly dissimilar to it, and then divide
by its similar,

after which it goes on with the composite rules. The first version, as we observe, is shared
with the Traicté: the second, by using the term dissimilar (dissemblant ) instead of contrary,
is close to the Italian type. The exemplification is again of the abstract, quasi-counterfactual
type.

Santcliment’s Suma de la art de arismetica introduces the regla de tres in these words
[ed. Malet 1998: 163]:

It is called properly the rule of three, since within the said species 3 things are contained,
of which two are similar and one is dissimilar. This said species is common to all sorts
of merchandise. There is indeed no problem nor question, however tough it may be, which
cannot be solved by it once it is well reduced.

And in our vernacular [nostre vulgar ] the said species begins: If so much is worth
so much, what will so much be worth?

The solution of this rule is commonly said: Multiply by its contrary and divide by
its similar.

The first example offered after this explanation is abstract and quasi-counterfactual,
“if 5 is worth 7, what is 13 worth?”’.

Once again we encounter a combination of the Italian phrasing with an abstract, quasi-
counterfactual explanation and the reference to the “contrary” instead of the dissimilar
in the formulation of the rule; most interesting is the identification of the latter as the
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“vernacular”, very close to what Fibonacci says when he explains the finding of a fourth
proportional by means of the (unnamed) rule of three, “in our vernacular usage” (above,
p- 77). This leaves little doubt that the environment to which Fibonacci’s “we” refers on
that occasion is Iberian of Provengal, since counterfactual formulations seem to be absent
from Arabic sources.”*!

Pellos’s Compendion de I’abaco starts by a general introduction to the theme [ed.
Lafont & Tournerie 1967: 101-103] which does not look in detail like anything else we
have seen except by speaking about the “contrary” in the concluding General rule to find
every thing; in its entirety is likely to be Pellos’s own description of the situation, yet
still referring to familiar Ibero-Provencal parlance:

In this chapter [ want to give you a good mode and way in which you can always quickly
and without great toil find all things that you want to buy or sell. And know that this
chapter is called the chapter and rule of three things. In every computation of trade three
numbers are indeed necessary.

The first number.

The first number is always the thing bought or sold, and you need to keep it well
in memory.

The second number.

Know that the second number shall always be the value or the price of that which
you have bought or sold.

The third example or number.

And the third number shall always be the thing that you want to know, that is to say,
the thing that you want to buy.

Remember that the first and the third numbers are always the same thing [una causa ).

And know further that the first number and the third shall always be one thing. And
if they are not certainly one thing, then you shall reduce them to a form where they speak
of one thing, or matter, for in no way on earth may they be different, as appears afterwards
in the examples.

General rule to find every thing.

Always multiply the thing that you want to know by its contrary. And the outcome
of this multiplication you divide by its similar, and that which comes out of such a division
will be the value of the thing that you want to know.

[section on reduction of units]

This is the way how you should say in matters that ask: if so much is worth so much,
how much is so much worth? In this way, you may understand more clearly in the following
examples.

The first examples that follow ask “if 4 are worth 9, what are 5 worth?”, “if 3 and a half
is worth 6, how much are 4 worth?”, etc.

26! Actually, since Arabic does not use the copula, “if 5 were 7” would be a rather meaningless
“if 5 7” in Arabic; the abstract “being worth” formulation is obviously not impossible and can also
be found, but this is not what Fibonacci writes.
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All in all we may conclude that the Tuscans who went to Montpellier and Avignon
and wrote their treatises there may in general have gone to learn; but regarding the central
piece of abbacus mathematics (if we do not count the Hindu-Arabic numerals), namely
the rule of three, they brought it from home; that will have been something any future
abbacus writer had learned long before going abroad.

On the other hand, the affinity of the CA with Iberian ways seems to be confirmed.

Before we leave this topic we should take note that the “Italian” formulation did not
originate in Italy — see [Hgyrup 2012] for precise references. From Bhaskara I onward
Sanskrit mathematicians refer to the “similar” and the “dissimilar” in secondary
formulations of the rule (which even for them is a “rule of three things”) — apparently
adopted from a vernacular, that is, mercantile environment. It is used (pace
misunderstandings in the translations into Latin, English, French and Russian) by al-
Khwarizmt in his presentation of the rule in his algebra, and also by other Arabic writers
as a secondary formulation (the learned Arabs mostly prefer to begin with Euclidean
concepts). So, it appears to have been shared by a mercantile community spread over
the whole trading zone from India to the Mediterranean.



The “second generation”: crystallization of a tradition, and the arrival of algebra

As was concluded above (p. 175), the authors or compilers of the first generation
of abbacus books “responded to a shared social need mediated and shaped by the newly
arising abbacus school [...] drawing on shared commercial techniques and on inspiration
from a variety of contacts in the Mediterranean world”.

We still encounter non-Italian inspiration in what we may speak of as the “second
generation” — those abbacus writers who were active between 1305 and 1340. They can
be spoken of as a generation because of this chronology; that this generation shares more
than their epoch will follow from the analysis.

Two figures, at least one of whom was influential, worked in Montpellier, and one
almost certainly in the Papal city Avignon. Yet beginning in the early decades of the 14th
century we can reasonably speak of the formation of an Italian abbacus tradition. More
precisely, of a North Italian tradition — until the later 15th century we have no evidence
at all south of Umbria. As we shall see, one things that marks the second generation and
thus this maturing tradition was the adoption of a particular variety of algebra (which
certainly did not mean that all abbacus treatises from now on took up the topic — as we
have seen in chapter II, the revised version of Jacopo’s Tractatus actually eliminated it).

Jacopo’s Tractatus

The earliest known representative of this generation is Jacopo da Firenze, writing
in Montpellier in 1307. We already encountered his Tractatus algorismi above (p. 8) —
but not Jacopo’s original but a redaction, produced no later than ca 1410 (probably well
before that year). This version was adapted to the abbacus school curriculum and is thus
a fitting representative of the abbacus tradition as it took form over the 14th century.

There are some (mostly minor) differences between the chapters contained in both
V and M+F; some of them were identified above in the presentation of the latter version
in chapter II. Beyond that, V contains several chapters that are not to be found in M+F:
— Algebra until the second degree, with rules and examples;

— Algebra of the third and fourth degree, rules only;

— a quasi-algebraic sequence of problems about wages in continued proportion;

— and a second collection of mixed arithmetical and geometric problems, not overlapping
the earlier collection of mixed problems.

I have discussed the relation between the two versions in painfully pedantic detail
in [Hgyrup 2007: 12-25], and shall therefore only sum up the outcome:

Firstly, V is a meticulous copy of a meticulous copy of Jacopo’s original, or at worst
and not likely of an early stylistically homogeneous revised version.”*%

2 Fol. 46" starts by stating that a section on silver coins has been omitted by error and is inserted
de rimpecto nel sequento foglio, “opposite on the next sheet” (it follows indeed on fol. 47") — but
the organization of the page shows that this passage was not inserted after the writing of the
following section on “the alloys of small coins”. It must hence have been present (together with
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Secondly, M+F is arevised version descending either from Jacopo’s original or from
the hypothetical early stylistically homogeneous version from which V would also descend,
making use of supplementary material circulating in Provence. For convenience I shall
speak of the common archetype for all three manuscripts as the work of Jacopo: we cannot
get behind it, and if not really his it must in any case be close to him in time.

Thirdly, the material in V with no counterpart in M+F goes back to Jacopo’s original
version or to the hypothetical early revision, and it has been eliminated in the preparation
of the archetype for M+F.?%

Not mentioning the chapter on geometrically increasing wages, Van Egmond [2008:
313; 2009: 44] claims that the algebraic chapters in V descend from the algebra of Tratato
sopra I’arte arismetricha (Florence, BNC, fondo princ. I1.V.152, mentioned above, note
151, and described in some detail below, p. 236). Beyond glaring differences in level and
style®® he overlooks that a treatise which he himself dates to ca 1365 contains an
algebra that indubitably descends from the one contained in V, which must therefore be
earlier.

The algebra in V (of which I shall henceforth speak as “Jacopo’s algebra”) is the
earliest abbacus algebra we possess. There is also evidence that Jacopo himself saw it
as new, or at least as something new to his reader: The specific algebraic terminology
is never abbreviated, in contrast to what happens elsewhere in the Tractatus — even meno,
appearing as @ in the coin list, is written in full.

Though early, Jacopo’s algebra is not the archetype from which all later abbacus
algebras descend, but it is representative of their distinctive character and style and of
the ways in which they differ from the algebras of al-Khwarizmi, Abt Kamil and
Fibonacci. So, for the general argument it is immaterial whether V really presents us with
the earliest abbacus algebra — apart from details, the other early abbacus algebras
collectively would allow us to draw the same conclusions. In any case, it is clear that
the algebra in V descends from some source or cluster of sources which inspired the whole
abbacus algebraic tradition; it is therefore merely a convenient window to that source

amark 71 indicating the location of the omitted section) in the original used by the ultimate copyist,
who will have preferred not to run the risk that attempts to repair would lead to extra errors.

263 In his review, Van Egmond [2009] denies all of this. If I may be approximately as frank as Van
Egmond, this review simply reveals his ignorance of what anybody able to read French (no need
for Arabic) and interested in the matter (including in the innovations due to the abbacus masters)
should know since [Woepcke 1853]; etc. I shall not persevere, anybody interested may look at
[Hgyrup 2009b], which is open access.

% The only thing the two presentations of algebra have in common (apart from what all algebras
have in common) is that they contain no false rules; but the Tratato shows how one type of
irreducible cubic equation can be transformed into another one, which is far beyond the horizon
of V. All of this is obvious in Raffaella Franci’s and Marisa Pancanti’s edition of the algebra of
the Tratato [1988].
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cluster, not a historical milestone.

In one respect, unfortunately, V is not representative — but the reason is that something
(probably a single sheet) has been lost in a precursor manuscript (not in V itself, since
it would have belonged between the recto and the verso of fol. 36); this is shown by a
later backward reference, see below, p. 187. When discussing Giovanni di Davizzo (below,
p- 201), we shall see what kind of material this missing sheet may have contained. Before
that, it must also be supposed to have carried some kind of announcement of what follows,
similar to those in the beginning of other sections, for example the one dealing with the
rule of three (above, p. 17).

So, the algebra of V begins (p. 304) so to speak in medias res, with a sequence of
rules with appurtenant examples for the first and second degree:*”

When the things are equal to the number, one shall divide the number in the things,
and that which results from it is number. And as much is worth the thing.

I propose to you an example to the said computation. And I want to say thus, make
two parts of 10 for me, so that when the larger is divided in the smaller, 100 results from
it. Do thus, posit that the larger part was a thing. Hence the smaller will be the remainder
until 10, which will be 10 less a thing. [...].

Again, I want to propose to you another example, and I want to say thus, there are
three partners who have gained 30 £. The first partner putin 10 £. The second put in 20 £.
The third put in so much that 15 £ of this gain was due to him. I want to know how much
the third partner put in, and how much gain is due to (each) one of those two other part-
ners. Do thus, if we want to know how much the third partner put in, posit that the third
put in a thing. Next one shall aggregate that which the first and the second put in, that
is, 10 £ and 20 £, which are 30. And you will get that there are three partners, and that
the first puts in the partnership 10 £. The second puts in 20 £. The third puts in a thing.
So that the principal of the partnership is 30 £ and a thing. And they have gained 30 .
Now if we want to know how much of this gain is due to the third partner, when we have
posited that he put in a thing, then it suits you to multiply a thing times that which they
have gained, and divide in the total principal of the partnership. And therefore we have
to multiply 30 times a thing. It makes 30 things, which it suits you to divide in the
principal of the partnership, that is, by 30 and a thing, and that which results from it, as
much is due to the third partner. And this we do not need to divide, because we know
that 15 £ of it is due to him. And therefore multiply 15 times 30 and a thing. It makes
450 and 15 things. Hence 450 numbers and 15 things equal 30 things. Restore each part,
that is, you shall remove from each part 15 things. [...].

When the censi are equal to the number, one shall divide the number by the censi.
And the root of that which results from it is worth the thing.

Example to the said rule. And I want to say thus, find me two numbers that are in
proportion®® as is 2 of 3 and when each (of them) is multiplied by itself, and one

%35 As above, page references to V point to the edition in [Hgyrup 2007].

266 Abbacus writers, when at all referring to ratios and proportions, mostly use proportione for both.
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multiplication is detracted from the other, 20 remains. I want to know which are these
numbers. Do thus, and posit that one number was 2 things and the other was 3 things.
And they are well in proportion as are 2 and 3. Next one shall multiply the numbers, each
(one) by itself. And remove one multiplication from the other. And 20 shall remain. And
therefore multiply each (one) by itself, and say, two things times 2 things make 4 censi.
And three things times 3 things make 9 censi. Now remove one multiplication from the
other, that is, 4 from 9. 5 censi is left, which equal 20 numbers. And we say that one shall
divide the numbers in the censi, so that one shall divide 20 numbers in 5 censi. From which
results 4 numbers, and as much is worth the thing, that is, its root, which is 2. We said
that the first number was 2 things and the second 3 things. Therefore you see clearly that
2 things are 4 numbers. And three things 6 numbers. And thus I say to you that these
numbers are 4, one, and 6, the other. And such part is 4 of 6 as 2 of 3. Now if you want
to verify it, multiply 6 times 6, it makes 36. And multiply 4 times 4, it makes 16. Detract
16 from 36. 20 is left, and it goes well. And thus all the similar computations are done,
that is, according to this rule.

This beginning already shows us the most important distinguishing features of Jacopo’s
and later abbacus algebra:

First, all rules are presented in non-normalized form. The complete sequence of cases
can be summarized as on p. 138:

Jal ot =N Jad oC+pt = N
Ja2  aC=N Ja5  Br=aC+N
Ja3 oC = Pt Jab oC = B+N

C stands for censo, t stands for cosa, “thing”, N for number, o and B for undetermined
coefficients signalled by the use of a plural. As we observe, this differs from al-
Khwarizmt’s original sequence in three ways. Firstly, the thing has taken the place of
the root even in the presentation of the cases. Secondly, the first and the third case have
been switched; the new order will probably have been felt to be natural, once the thing
is understood as the unknown. Thirdly, since all cases are now presented in non-normalized
form, the first step in the corresponding rules is a normalization.

All six cases are provided with examples, sometimes one, sometimes two, the case
Ja5 (the one allowing a double solution™"") with three:

la. Make two parts of 10 for me, so that when the larger is divided in the smaller, 100 results

I shall abstain from straightening their terminology and translate “proportion” for both within the
present chapter. When they distinguish (genuine) proportions using the term proportionalita, 1 shall
translate “proportionality”.

%71t should be observed that these two solutions (when they exist) are regarded as possibilities —
if one does not work, the other certainly will. The unknown is really seen as an unknown but already
existing number, and not as a variable that may take on different values which fulfil the given
condition.
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from it.

There are three partners, who have gained 30 libre. The first partner put in 10 libre. The
second put in 20 libre. The third put in so much that 15 libre of this gain was due to him.
I want to know how much the third partner put in, and how much gain is due to (each)
one of those two other partners.

Find me two numbers that are in proportion®® as is 2 of 3: and when each (of them)
is multiplied by itself, and one multiplication is detracted from the other, 20 remains. I
want to know which are these numbers.

Find me 2 numbers that are in proportion as is 4 of 9. And when one is multiplied against
the other, it makes as much as when they are joined together. I want to know which are
these numbers.

Someone lent to another one 100 /ibre at the term of 2 years, to make (up at the) end
of year. And when it came to the end of the two years, then that one gave back to him
libre 150. I want to know at which rate the libra was lent a month.

There are two men that have denari. The first says to the second, if you gave me 14 of
your denari, and I threw them together with mine, I should have 4 times as much as you.
The second says to the first: if you gave me the root of your denari, 1 should have 30
denari. I want to know how much each man had.

Make two parts of 10 for me, so that when the larger is multiplied against the smaller,
it shall make 20. I ask how much each part will be.**

Somebody makes two voyages, and in the first voyage he gains 12. And in the second
voyage he gains at that same rate as he did in the first. And when his voyages were
completed, he found himself with 54, gains and capital together. I want to know with how
much he set out.”’

Make two parts of 10 for me, so that when one is multiplied against the other and above
the said multiplication is joined the difference which there is from one part to the other,
it makes 22.%7"

Somebody has 40 gold fiorini and changed them to venetiani. And then from those
venetiani he grasped 60 and changed them back into fiorini at one venetiano more per
fiorino than he changed them at first for me. And when he has changed thus, that one
found that the venetiani which remained with him when he detracted 60, and the fiorini
he got for the 60 venetiani, joined together made 100. I want to know how much was

268 Actually written in propositione. Most likely Jacopo copied from a text whose terminology he
did not understand — the idea of proportions was generally unfamiliar to early abbacus authors;
but we cannot fully exclude that the scribe of an intermediate or the final copy expanded an
abbreviation wrongly. In any case, the mistake is systematic — in total, there are seven instances
of propositione, whereas proportione is wholly absent.

9 Choosing the thing to be the lesser part, Jacopo obtains that the smaller of the two solutions
is valid; he does not try the other, which indeed does not work.

20 Here, both solutions are shown to be valid.

"' Because he chooses the thing to be the smaller part, Jacopo obtains that only the subtractive
solution works; he tries the additive solution and shows that it is not valid.
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worth the fiorino in venetiani.

As we see, five are pure-number problems, five deal with pretended commercial questions.
Of the former, three are of the classical “divided 10” type, which we know from Fibonacci
(above, p. 144) but which was already used many times by al-Khwarizmi as illustrations
of the potency of his algebraic technique (showing that it was already a familiar question
type and thus still older). No examples are formulated simply in terms of censi and things
(corresponding to the initial census-root-number examples used by al-Khwarizmi, Abu
Kamil and Fibonacci). Instead there is an easy substitute — we may say a cheap way to
create seeming complexity — namely numbers in given ratio. These were to become very
popular in abbacus algebras, and when more than two number are involved the ratios are
always given so as to fit nicely together, for example as 2 : 3, 3 : 4, .... In that way the
number can be posited as 2things, 3things, 4things (Jacopo’s examples, being restricted
to two numbers, do not demand this trick); the above example for the second case shows
how this allows to construct an example corresponding to a given case.*™

The first monetary problem (1b), the second illustration of the first case, is in itself
very simple — no wonder, it illustrates the first-degree case. But we observe how Jacopo
circumvents the difficulty that he is not allowed to divide by an algebraic binomial (“this
we do not need to divide”) — as we shall see, his successors would soon take for granted
that this division was permissible and write it as a “formal fraction”. The operations would
evidently be the same.

The second (4a) deals with compound interest (“making up the account at the end
of year”). It shares its mathematical structure with Fibonacci’s first problem about repeated
travels with constant profit rate, which Fibonacci solved simply by finding a mean
proportional. Jacopo, wanting an algebraic problem and an illustration of the fourth case
instead chooses the thing to be the interest in 8 per month of 1 £, and thus obtains a nicely
intricate problem.

The third (4b) is a give-and-take problem, but in contrast with those we know from
Fibonacci it involves a square root, and it is therefore of the second degree; positing that
the possession of the first man is a censo (adequate for taking a square root), Jacopo is
led to the fourth case, and finds that the rhing is V54—2. Wanting to calculate the possession
of the first man, Jacopo needs to determine the censo, which must be (\/ 54-2)* = 58-4\54.
According to prevalent aesthetics, this should be expressed 58-V864, but being unable
to calculate 1654 mentally Jacopo leaves an open space — and forgets to return.””!

1t also shows that Jacopo uses “restore” to designate subtractive (and elsewhere, as Fibonacci
and al-Khwarizmi, additive) operations on both sides of an equation. Opporre (corresponding to
Latin opponere and Arabic muqabalah ) is absent from Jacopo’s text; however, as mentioned above,
note 193, the original meaning of mugabalahloppositio was probably the confrontation leading to
the construction of a simplified equations, and this is probably reflected in the term raoguaglamento
used in example JaSb (p. 316) about a simplified equation.

3 As explained in note 262, what we possess is not Jacopo’s autograph but a copy of a copy; but
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The fourth (5b), about repeated travels with constant profit rate, belongs to a family
we already know from Fibonacci. But the way to use this dress to produce a mixed second-
degree problem differs from what we know from Fibonacci (above, p. 134); Fibonacci,
moreover, makes use of proportion theory and Elements 11 in key version, not of algebra.

The dress of the fifth (6) brings to mind some of the more intricate exchange problems
of the earlier abbacus books and of Jacopo’s collections of mixed and geometric problems
(above, p. 28), but its mathematical substance is wholly different, and indeed leads to
a second-degree equation — positing 1 fiorino to be worth a thing of venitiani, Jacopo
derives the reduced equation

40censi = 120things+100 .

These rules and examples for the first and second degree are followed (p. 320) by
the announcement

Here I end the six rules combined with various examples. And begins the other rules that
follow the six told above, as you will see,

which confirms that there must have been a corresponding opening of the algebra section
promising these six rules and thereby that a whole sheet (if not more) has been lost (cf.
above, p. 183).

The “other rules” concern solvable cases of the third and fourth degree, which can
be summarized thus (K standing for cubo, CC for censo of censo, that is, the fourth power
of the thing):

Ja7 oK =N Jal4  oCC = PBr

Ja8 oK =Pt Jal5  oaCC =BC
Ja9 oK =pC Jal6  aCC = BK
Jal0  oK+BC =1y Jal7  oCC+BK = yC
Jall  BC = oK+t Jal8 BK = aCC+yC
Jal2 oK = BC+yt Jal9  oCC = BK+YC
Jal13  oaCC=N Ja20 oCC+BC =N

No examples are given. The biquadratics corresponding to the cases Ja5 and Ja6 are
missing, apart from that all cases that can be solved by means of division, pure root
extraction or the substitution C—¢ are there — and only these. That the rules that are
offered are correct is not revolutionary, at least since Abii Kamil and al-Karajt such

this copy of a copy leaves open ca 2 cm and writes in the margin cosi stava nel’originale spatii,
“thus it was in the original, spaces”, which must have been transmitted through the whole chain.
It cannot be excluded that this chain contained more than two steps, but all must then have strived
at faithfulness.

The lacuna indicates that Jacopo calculated on his own, and did not just copy.

Jacopo cannot have been a brilliant calculator. After all, 16-54 can be found as 16-(50+4),
and 1650 = 800, 164 = 64.
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equations had been solved routinely in Arabic algebra, as also in the avere cluster of Liber
abbaci 15.3. Neither Abii Kamil nor Fibonacci had offered any similar systematic
exposition, however; al-Karaji, on the other hand, had formulated general rules [Woepcke
1853: 71] for all mixed cases where the three powers involved are in continued proportion.
Though presenting us with no new mathematical insights, Jacopo’s approach (that is, the
approach of his source) thus differs from how Abii Kamil and Fibonacci had dealt with
reducible higher-degree problems.
Even these rules, as we see, are defined for non-normalized cases.

Soon after these properly algebraic sections follows one about the manager of a
fondaco (a warehouse located abroad, from Arab fundugq ), whose wages grow geometrically
from year to year. In between, however, comes what thematically looks like an intruder —
an alligation problem dealing with the mixing of two grain sorts with different prices.
It makes use of a diagram that also serves in the later chapter about alloying (in V only,
M and F have none though once referring to it, cf. above, p. 54), and is therefore likely
to be original. It therefore may serve as a reminder that the following fondaco group was
not understood by Jacopo as belonging to algebra. Apart from that the grain problem tells
us nothing new.

The fondaco section does. If a, b, d and (when needed) e designate the wages of the
consecutive years, it contains the following problems (we remember that the wages grow
geometrically):

Fl1 a+d=20, b=28 F3 a+e =90, b+d =60
F2 a=15, e=60 F4 a+d =20, b+e =30

F1 begins like this (p. 324):

Somebody stays in a warehouse 3 years, and in the first and third year together he gets
in salary 20 fiorini. The second year he gets 8 fiorini. I want to know what he received
accurately the first year and the third year, each one by itself. Do thus, and let this always
be in your mind, that the second year multiplied by itself will make as much as the first
in the third. And do thus, multiply the second by itself, in which you say that he got 8
fiorini. Multiply 8 times 8, it makes 64 fiorini. Now it suits you to make of 20 fiorini,
which you say he got in the first and third year together, two parts which when multiplied)
one against the other makes 64 fiorini. And you will do thus, that is that you always halve
that which he got in the two years. That is, halve 20, 10 result. Multiply the one against
the other, it makes 100. Remove from it the multiplication made from the second year
which is 64, 36 is left. And of this find its root, and you will say that one part, that is,
the first year, will be 10 less root of 36. And the other part, that is, the second year, will
be 8 fiorini. And the third will be from 10 less root of 36 until 20 fiorini, which are fiorini
10 and added root of 36. And if you want to verify it, do thus and say: the first year he
gets 10 fiorini less root of 36, which is 6. Detract 6 from 10, 4 fiorini is left. And 4 fiorini
he got the first year. And the second year he got 8 fiorini. And the third he got fiorini
10 and added root of 36, which is 6. Now put 6 fiorini above 10 fiorini, you will get 16
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fiorini. And so much he got the third year. And it goes well. And the first multiplied
against the third makes as much as the second by itself. And such a part is the second
of the third as the first of the second. And it is done.

As we observe, the notion of “proportion” is absent from the problem (though not from
the formulation of F3, which has the usual mistake propositione ); this indicates that we
have to do with a standard problem type, in which the geometric increase is taken for
granted.

None of the four problems refer to thing or censo, or to anything else that points
toward algebra. Obviously, neither Jacopo nor his source made that connection. Already
here we may notice a parallel to part 15.1 of the Liber abbaci (above, p. 129).

There, Fibonacci solved problems about proportions, drawing heavily on Elements
IT'in “key” version (without referring to this term, found instead in the beginning of chapter
14 (p. 115). There is no such justification here, Jacopo merely explains the numerical
steps leading to the solution (an “algorithm”, but a trivial algorithm without branchings,
that is, a formula).

The algorithm used to find a is the same as the one used by Fibonacci to solve the
analogous problem #1 in part 15.1:

4 a+d_ a+d —ad
2 2

That is not too informative. The same procedure is used by Diophantos in Arithmetica
1.27 (ed., trans. Tannery 1893: I, 60-62), and also used to find the sides of a rectangle
from the sum of the sides and the area in Abt Bakr’s Liber mensurationum [ed. Busard
1968: 91; ed. trans. Moyon 2017: 160f]. But alternatives exist, and one is indeed used
by Jacopo himself in example 5a (above p. 185).

The remaining problems have no counterpart in part 1 of Liber abbaci chapter 15,

but they make use of a trick that is known from the Liber mahameleth, going via the
proportionality factor p between the wages of successive years — cf. [Hgyrup 2021:
46f]. In F2, this yields the solution

3 3 3
e 3 € 3 € e
_ _ _ a3 _ a’-_ |
p_, Cl’b_' 3d—, [ a) .

In the fourth, equally simple,

N
N

b+e a+d 4 4 b b+e b b
p= g 4= TR = (a+d)-a , —1+—pz,e—(+e)—.

The third is more intricate, and quite astonishing. It makes use of the insight that

(b+d)’

ae=bd= W



- 190 -

after which Elements I1.5 in “key” version can be applied. Even these formulas are most
easily derived if we make use of the factor of proportionality (b = pa, d = p,-a, e =
p*a), since then

(b+d)’ a’p’(l+py’
3(b+d)+(a+e) ~ a(3p+3p2+]+p3

=d’p’ = avap® = ap-ap* .

It is not quite as easy in words, but it is still possible, and it does not go beyond principles
of polynomial algebra that had been known at least since al-KarajT [Rashed 1984: 37].
However, to my knowledge (supported by that of all those whom I have asked) precisely
this consequence of what was familiar had not been drawn in known works. Most likely,
we have to do with another invention of the al-Andalus-environment which produced the
Liber mahameleth and gave to Fibonacci the sophisticated version of the unknown heritage
and Liber abbaci, part 15.1 (and bits of part 15.2).

The formula turns up in Pacioli’s Summa [1494: 87"], in a pure-number version that
does not seem to descend from Jacopo [Hgyrup 2009d: 100] but rather from a shared
source — very likely together with his “keys” about numbers in continued proportion
(above, p. 117), close to which they stand; it returns on fol. 96", there indeed with a
reference to these “keys”. From Pacioli it was borrowed by Tartaglia, who appears to
have used it for his (claimed but undivulged) first solution of irreducible cubic equations
(those involving cube, censi and number) — see [Kichenassamy 2015].

Beyond the algebraic sections and these four problems about numbers in continued
proportion, V also contains a final chapter with mixed arithmetical and geometric problems
that has no counterpart in M+F. Even though there are no repetitions of what has been
dealt with in earlier chapters, they do not bring much fundamentally new. A few things
may be mentioned.

As mentioned in passing in note 112, one problem (p. 360) is of type “unknown
heritage”. It does not deal with a heritage, however, but with apples:

I go to a garden, and come to the foot of an orange. And I pick one of them. And then
I pick the tenth of the remainder. Then comes another after me, and picks two of them,
and again the tenth of the remainder. Then comes another and picks 3 of them, 3, and
again the tenth of the remainder. [...].

As we have already seen it in the first collection of mixed problems (above, p. 45), Jacopo
here takes a familiar dress (though with oranges, not apples) and then applies it to a new
mathematical structure — this time more advanced, but since Jacopo offers a solution only
but no argument, from his point of view it was probably simpler than the backward
calculation.

The solution he offers is the usual one: the number of men, and the number of apples
each one gets, equals the denominator of the fraction diminished by 1, that is, 9. Jacopo
(or, as usual, his source) may have been aware that in the absence of argument a proof
is needed, and he offers one.

The very first problem in the chapter (p. 347) is a partnership, where the partners



- 191 -

do not enter at the same time. As reasonably, the gains are distributed proportionally to
the investments of the single partner weighted by the time they stay.

On p. 350 comes a more convoluted variant of the “fish problem” (above, p. 25),
here dressed as dealing with a goblet:

A goblet of silver consists of three pieces, or three parts. That is, the stem, the cup, and
the lid. The cup weighs Y and the ', of itself and of the stem. The lid weighs the Y,
and the Y; of itself and of the cup. And the lid weighs ounces 6. I ask you what the stem
weighs and what the cup weighs by itself, and what all the goblet weighs.

This gives Jacopo occasion to introduce the method of a single false position, only hinted
at but not really used in the twin problem (above, p. 23) (he never mentions nor uses the
method of the double false position).

Quite without parallel in earlier chapters is a problem

Find a number which, when the Y, and the ", and the ' are detracted from it, and the
remainder multiplied by itself, makes this same number.

Similar problems are found in the Liber abbaci [B175;G298] (above, p. 79), the Livero
[ed. Arrighi 1989: 124] [A124;B385]; and in the CA [ed. Vogel 1977: 31]. All of these
make use of a single false position — sometimes mentioning it by name, sometimes not.
Jacopo too uses it, and since he is only going to introduce the method slightly later, even
he obviously does not refer to the method by name. Since the fractions are different, there
is no reason to believe in any direct connection — the type was already widespread in
Arabic algebras (see [Hgyrup 2007: 133f]), and thus no invention of the abbacus
environment (nor of Fibonacci).

Paolo Gherardi

The two next datable abbacus books from the second generation which we possess
were also written in Provence — Paolo Gherardi’s Libro di ragioni [ed. Arrighi 1987]
(henceforth “Gherardi’s Libro”; page references point to Arrighi’s edition), and the
anonymous Trattato di tutta I’arte dell’abacho (henceforth Tutta I’arte; above, pp. 12
and 35), existing in a number of manuscripts, two of which I have consulted.*™

7 See the index listing in [Van Egmond 1980: 365] — not all are complete. Van Egmond ascribes
it to Paolo Dagomari alias Paolo dell’ Abbacho, but his only reason is apparently that a 15th-century
manuscript announces a fragment as “some small rules drawn from Master Paolo’s book, and various
ancient measures and weights” [Van Egmond 1980: 145], which rather shows that the compiler
of that manuscript thought of Paolo’s Regoluzze, contained in the three preceding sheets. Comparison
of how Tutta ’arte deals with the geometry of the circle and how that is done in the Regoluzze
should exclude common authorship, see [Hgyrup 2019a: 304 n. 29]. The two manuscripts I have
used are Florence, BNC, fond. prin. ILIX.57 (henceforth Ty); and Rome, Accademia Nazionale
dei Lincei, Cors. 1875 (henceforth T,).

Arrighi [1980] also ascribes Tutta I’arte to Paolo, but giving no other reason than a reader’s
or librarian’s note written “in a considerably later hand” than the 14th-century hand in which the
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According to its colophon, Gherardi’s Libro was written in Montpellier in 1327; what
we have, however, is a not too conscientious copy [Van Egmond 1978: 162]; it is even
plausible that the book was not written by Gherardi himself but by an assistant or a
listener — the colophon says that this “book of problems [ragioni ] will be written according
to the rules and the abbacus course held by Paolo Gherardi of Florence”; which gives
us the extra information that Gherardi was actually holding school. For simplicity, in the
following I shall speak of the author as Gherardi. Occasional Provencal spellings (e.g.,
nubre, valura) confirm that the book was written or copied in Provence (probably both).

After the colophon comes the rule of three in abstract formulation for integers and
explanation of how to eliminate fractions. The words are the same as in the Livero and
the Liber habaci (above, note 20) — and thus the same as those of Jacopo, apart from
the latter’s slight expansion of the final step, in M+F “divide in the other, that is, in the
third thing” and in V “divide in the third thing, that is, in the other that remains”. Gherardi
thus does not copy from Jacopo but clearly belongs to the same tradition (and does not
here follow the Catalan-Provencal habit).

After the rule of three with three examples follow multiplication and division of mixed
numbers, and a sequence of number problems (n stands for a single unknown number,
a, b, ... for sequences of numbers, for instance resulting from the splitting of a given
number, “/, for an unspecified fraction):

p. 16 (I+"%+",+Y%)n+3 = 25 €))
p. 17 [(1-"%=Y%)n] = 120 )
p. 17 (="%=")n =\n 3)
p. 17 If 9 is Y, of 16, what part is 12 of 257 “)
p. 17 ¥a=Nb, ab = a+b 5)
p. 18 12 = a+b, 5a=28b (6)
p. 18 a+b* =1 (7
p. 18 6 =atb, (N+"%)a=(1+"%)b €]
p. 18 4=a+b, a=(h+")b 9)
p. 19 (1+'+Y,)n+5 = 6n (10)
p. 19 n+5=0,, n-5=0, (11)
p. 19 n’+'yn = 19 (12)
p. 19 12 = a+b, ab = 31 (13)
p. 20 10, = a+b , a+11' =2b (14)
p. 20 14 =a+b, alb =4 (15)
p. 20 a+b*+c+d*+eé* = Y (16)
p. 21 424 = O (17)
p.- 21 n* =11+, (18)
p. 21 (hn)(yn) =20 (19)
p. 21 3% mn =17, (20)

manuscript is written.
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Many are solved by means of the rule of three (4), other basic arithmetic (5, 6, 14, 10,
20) or a single false position (1, 2, 3, 7, 8, 9). Others make use of algebra (12, 13, 19),
still others of what could be considered elementary number theory — (17), for instance,
gives the solution n = (*,~1)% which, for p = 24, corresponds to the identity

tfr = o]

related to the one that produces Pythagorean triples, and to what is used in (11)

This fundament for the solution goes unexplained (as do most of the others, even
when the reason for the numerical steps of the prescription are less than evident). None
the less, while Gherardi does not borrow from the Liber abbaci, the environment on which
he draws evidently shares interests beyond the commercially relevant with that which
had once inspired Fibonacci. The writings from “generation 1” as well as Jacopo’s
Tractatus, though containing some problems of the same kind, all treat the topic as less
important.

These number problems are followed (pp. 21-26) by a presentation of the arithmetic
of (square) roots and of binomials containing roots, ending by the rule for finding the
“closest root” (Gherardi says la pint proximana) — the same approximation as the one
Jacopo as well as other abbacus authors designate thus (and, like Jacopo, approximating
only from below).

Commercially relevant matters begin on p. 26, though not in any convincing
pedagogical order or progression. At first:

— Calculation of average price;

— rule of five (cf. above, p. 73)

— transformation between interest per year, month and day (pp. 27-29);

— alloying of silver and gold (pp. 29-32);

— exchange (pp. 33-37).

Before going on with partnership (pp. 38—41) Gherardi presents two recreational outsiders,
the “twin problem” (above, p. 23n), and the “unknown heritage” (above, p. 90); the former
of these at least has the excuse that Gherardi (as Jacopo) solves it by means of an explicit
fictitious partnership, but before partnerships proper are dealt with; the second is a bona
fide outsider, a purely recreational teaser (and, since it does not explain the method, a
teaser which teaches nothing, not even indirectly)

The partnership section is followed by a sundry collection of mixed, mostly recreational
problems — and mostly of kinds we have already encountered. On p. 47, however, we
find a puzzling variant of the pursuit problem. The two runners move along a circle, which
one of them completes in 4 days, the other in 5 Y, days. It is asked, firstly, when the
faster runner will reach the slower for the first time, and secondly, when they will both
be together at the starting point. What is puzzling is not the mathematics but the dress:
before the hands of pendulum clocks and wristwatches and when the ancient circus was
forgotten, what ran around in circles were planets rather than men. Could Gherardi’s



~ 194 -

variant of the pursuit problem somehow be an echo of astronomical calculation, perhaps
of the Indian “pulverizer” (hardly of the technique), cf. [Plofker 2009: 134]?

Noteworthy is also Gherardi’s version of the grasping problem (above, p. 95): the
shares (', 1/3 and 1/4) differ from those of Fibonacci; moreover, the solution is obtained
by means of first-degree algebra with unknown thing (the amount the three participants
put back) — Fibonacci would probably have spoken about regula recta, but Gherardi does
not know that expression. A four-participant “purchase of a horse” of the type where each
asks his neighbour in the sequence (p. 45) is solved by means of a double false position —
not called by name, instead the text speaks about “adjusting” one (position) with the other.

A problem on p. 49 combines a dress that is familiar from the collection of arithmetical
epigrams contained in book XIV of the Greek Anthology [ed. Paton 1918: 31, 101] with
a counterfactual calculation: So large a part of the night has passed that “if %, had been
'/, of the part that has passed and '/, were Y; of what is to come, then it would be
midnight”.

Two more make use of algebra: One (p. 49) is a number problem a/b = 2/3, ab =
a+b, dressed up as dealing with the denari possessed by two men; the other (p. 59) is
a three-participant give-and-take problem, where algebra is subordinated to a double false
position.

A long section (pp. 61-83) deals with geometry. As pointed out above, note 39,
Gherardi distinguishes between rules di misure and di giomatria, where the former could
refer to Arabic misaha while latter could refer back to the Latin post-agrimensor tradition,
which was probably more alive in Provence than in Italy;*™' but with no other evidence
for such a distinction, this remains hypothetical.

After another sequence of mixed (commercial, recreational-commercial and geometric)
problems (pp. 83-97) Gherardi closes his book with a systematic presentation of “the
rules of the thing”, that is, algebra.””® He gives rules for the following cases:

7> One problem named giomatria and certainly going back to the agrimensor tradition was mentioned
above, note 49 and preceding text; it determines the area of a regular pentagon with side 6 as
(6°-6)=2. This is the formula for the sixth pentagonal number, and believed to determine the area
of a regular pentagon for example in the Geometria incerti auctoris, in ps-Varro, Fragmentum
geometriae, and in Epaphroditas et Vitruvius Rufus [ed. Bubnov 1899: 346, 504, 534]. With an
extra mistake, we remember (omission of the halving), the formula is also used in Jacopo’s Tractatus,
V as well as M+F, and with further repair of the dimensional nonsense in Tutta [’arte — more in
[Hgyrup 2007: 96]. A paving problem on p. 62 (above, note 38) is also categorized as giometria.

276 'Van Egmond 1978] is an edition of this section, with English translation and mathematical
interpretation.
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Ghl =N Gh9 oK = Pt

Gh2 aC =N Gh10 oK =BC

Gh3 ot =fBC Ghll oK = BC+yr
Gh4d oC+Pt=N Ghl2 oK = B+N
Gh5 Pt = aC+N Ghl13 oK = BC+N
Gh6  oC = B+N Ghl4 oK = Br+yC+N
Gh7 oK=N Ghl5 oK+BC =1y

Gh8 oK =1N

All are provided with examples — never more than one for the single case, even when
(as in Gh5) the rule speaks of a double solution.

Two of the examples for the first six rules coincide with examples given by Jacopo;
the data of Gh4 — a compound-interest problem — are those of Ja4 divided by 5, otherwise
the examples are identical (cf. above, p. 186); Gh3 is a slight numerical variation of Ja3
(numbers in ratio 2 : 3 instead of 3 : 4); the example for Gh2 is a new pure-number
problem, (n—",n—",n)* = 12. Most interesting is the example for Gh6, the division of
100 by some quantity and then by 5 more, the sum of the two divisions being given:

100+¢q + 100+(g+5) = 20 .
With subtraction instead of addition, we know this problem type not only from the Liber
abbaci but also from Abi Kamil and the extended version of al-Khwarizmi’s algebra
(above, p. 149). Without being fully unfolded, however, Gherardi’s way to solve the
problem builds on a new idea: formal fractions. In its full form (as we encounter it in
later texts), the “quantity” is posited to be a thing, the quotients written as fractions and
“added as if they were fractions”

100 100 100-(¢+5) +100-¢ 200t +5
r tTe5 T t-(t+5) T C+5t

Gherardi does not mention fractions, but he performs all the requisite operations, and he
does refer to the scheme for cross-multiplication that produces the numerator (forgotten
in the copy but easily reconstructible):

100 1 thing

mo><1 thing plus 5
The full form is found often in later abbacus books, which cannot have derived it from
Gherardi’s obscure rudiment; Gherardi must have borrowed it from earlier writers to whom
other abbacus authors had access, too. Similar formal calculations had been made in the
Maghreb since the outgoing 12th century — see [Abdeljaouad 2005: 24-29]; a link is
plausible, but details cannot be traced.

We find more innovations in the higher-degree rules. Those cases that can be solved

by extraction of a cube root or reduced by a division to second-degree problems are already
in Jacopo’s Tractatus; the rules for the cases Gh12, Gh13 and Ghl4 are false. The
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solutions given for Gh12 and Gh13 are identical,

_|(BY.N B
r=J|2¢) "% *20°

just copied from the solution to Gh6. Ghl4 is no less preposterous,

(B Y,N+tYy B
t_'Z_OC o +2—(x.

Anybody who understood algebra would have seen that Gh12 and Gh6 can only have
the same solution if K = C, and hence if ¢ = 1, that is, if o0 = B+N (or, if against the
prevailing habits of the time, = 0, which entails N = 0). One might believe that the
examples would uncover the fraud, but since the solutions contain irreducible radicals
and approximations were never made in abbacus algebra, that was less easy.

These fake solutions were a great success; more would be added over the next century,
and Gherardi’s three false solutions were still repeated by Bento Fernandes in 1555 [da
Silva 2008: 200]. We shall return to the question why some abbacus masters (not all)
would indulge in such pseudo-mathematics on p. 386.

The rule for the case Gh9 is correct, but a modern reader might wonder why it is
listed separately from the preceding case. We should remember, however, that only positive
integers and fractions were accepted as numbers, and think of the difficulty which the
appearance of an irrational coefficient had caused Fibonacci (above, p. 148). N is not
a coefficient but also not a number; its appearance here instead of the number term
forebodes a practical widening of the number concept which was to take place over the
following centuries, only maturing in the 16th century (cf. [Oaks 2017]).

All examples for the higher-degree cases, reducible as well as non-reducible, are of
the easy type asking for numbers in given ratios — for example (Gh7) “find me three
numbers where the first be such part of the second as 3 of 4, and the second be such part
of the third as 4 of 5 — with the variation that Gh14 and Gh15 instead use the terminology

“be in proportion”.*""

Tutta arte

As noticed by Van Egmond [1980: 140], manuscript T, of Tutta I’arte (above, note
274) is the author’s draft. From internal evidence Jean Cassinet [2001] has shown that
it was written in Provence and almost certainly in Avignon. It is dedicated (T, fol. 17)
to Pope Benedetto, with space left open for his number; this, as further pointed out by

7" The text writes in positione, certainly a mistake for “in proportione” — the formulation which
Jacopo or his copyist had changed into in propositione, we remember from note 268. Whether
Gherardi made the mistake (abbreviation perhaps assisting) when copying from his source or his
compiler or a subsequent copyist miscopied is undecidable.
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Cassinet, implies that the dedication was written while it was still undecided whether the
previous Benedetto had been a pope or an antipope — that is, in 1334.

Various aspects of Tutta I’arte were presented above (pp. 12, 35, and note 49). In
order to illustrate the emergence of abbacus algebra we shall also have a look at how
this topic is dealt with.

In T,, the draft manuscript, one page (fol. 171") contains the beginning of an
introduction to “the rules of the thing, by means of which many beautiful and subtle
problems can be solved”. It is written in a different hand, and the date therefore uncertain.
The cases are defined in the usual terms and solved by the usual rules; they may be
abbreviated thus:

or=N oK =N
oC=N oaC+Pr = N

As we see, the order is unusual (and not to be found in later treatises I know about). The
examples are quite elementary (the example for the fourth rules is missing; on the next
page, fol. 172, the text goes on in a different hand with medical advice):

— Find me a number which, multiplied by 3 and divided by 4 makes 20.

— Find me a number which, when 1/3 and Y/, (of it) are subtracted and the remainder
multiplied by itself, makes 12. This is the same as Gherardi’s example for the case
in question (one of the two where Gherardi deviates by more than a change of
numerical parameters from Jacopo).

— Find me a number which, multiplied by itself and then multiplied by this number,
makes 12.

In Tutta ’arte proper, there is no systematic presentation of algebra, but a number of

problems are solved by means of thing and censo (all but one listed in [Cassinet 2001:

124-127]) — I indicate the folio numbers in Tj:

157" (="%=")n=5 = L(1-"4-",)

157" (three men having money, with structure) A+B+C = 104, A<B<C, A : B =
B:CP¥A=8

158" a+b =16, (Y,a)* = (¥,b)-20

160°  alb=15/7, alc =59 ab+c =c?

161" a+b =10, abl(a-b) = 2%,

162" (1+Y+"Y)n =\n

166"  (60+g ) 60+(g+2) = 150

166" A rectangle with area 180 square cubits, length = 1Y, width

78 Expressed in terms of proporzioni.

7 Expressed as “such part as”; the text has b/c = 5/9, but the rest of the text shows this to be a
slip caused by the habitual sequential formulation.



- 198 -

167" Repeated travels with given profit rate and given costs and given net profit
rate, equivalent to ¥, (% C-25) = %C

Together with Gherardi’s scattered use of algebra (above, pp. 193 and 194), this gives
us an impression of the form in which algebra was disseminated in the Provencal abbacus
environment around 1330.

It was not disseminated in Provence alone. That will follow when we look at three
representatives of the second generation written in Tuscany.

The Lucca Libro d’abaco

The first of these is a Libro d’abaco written in Lucca by several hands — according
to internal evidence around 1330.%*” We may guess that it was produced by an abbacus
master and his assistants or apprentices, or perhaps of the latter alone — where else would
we find a group that had occasion to engage in such a work?

There is no algorism, that is, no introduction of Hindu-Arabic computation. It opens
with the rule of three (p. 17), in words that only differ slightly from what we have seen
so far:

When you make some calculation [ragioni] by the three things, always take the thing
you ask for or want to know, and that which is not of the same kind [ragione ] or quality,
and multiply one against the other, and divide that amount in the other thing, and that
which results will be the effect of the question of the calculation.

This is followed by an example, first solved according to the rule just enunciated (where
the missing “not similar” turns up),

8 cubits of cloth are worth 11 fiorini, what will 97 cubits be worth? You should do like
this. The thing that we ask for is what 97 cubits will be worth, the not similar thing to
the said cubits is 11 fiorini, and therefore we should multiply 11 times 97, [...].

Then, rather unusually, come the two alternative methods where the intermediate result
is meaningful; either that 97 cubits is 97/8 times as much as 8 cubits, for which reason
the price must be % times 11 fiorini; or that the price of 1 cubit is 'Y, fiorini, whence
the price of 97 cubits will be 97 times ;. These alternatives — in particular the first one,
there called “by relation” (nisba ) — are well-known in Arabic mathematics. For instance,

0 Lucca, Biblioteca Statale, ms, 1754. ed. [Arrighi 1973], cf. [Van Egmond 1980: 164f]; page
references point to Arrighi’s edition. A change of hand in the middle of fol. 23" shows that it is
the result of collaboration, not of discordant works or fragments put together — and also that what
we possess is the original, not a copy.

The dating follows from (fictional) loan contracts (pp. 182—-188) expiring in 1329—-1333. Such
dates may evidently have been thought of as being in the future, but hardly in distant future; in
some cases they are indeed in similar fictional loan documents in Tutta [’arte, but no more than
five years [Cassinet 2001: 107].
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both are discussed by al-Karajt in his Kafi [ed. trans. Hochheim 1878: II, 16f]; but even
though they may occasionally be used by abbacus authors (cf. above, p. 22), they are rarely
expounded directly as here.*"!

As elsewhere, the presentation of the rule of three invites the teaching of multiplication
and division of fractions (called “elements of fractions”, Elementi de’ rotti, evidence of
some kind of interaction with university mathematics).

In the very end (pp. 201-205) comes another version of the habitual beginning of
abbacus treatises: First arithmetical tables (not reproduced by Arrighi); then metrological
shortcuts; and then the rule of three in the unusual “mentioned”’-formulation (above, p.
168), duly followed by teaching of how to deal with fractions and mixed numbers, and
finally a case of proportional sharing said to be “strange” and called “oblique
[traverso ] sharing” — namely the sharing between partners of which one should have
'/, and the other ';. The type is not rare — we have encountered it in the Pisa Libro di
ragioni (above, p. 162), where it is spoken of as “fallacious”; but I have not noticed the
present name elsewhere.

What we find between these two beginnings is a fairly full coverage of the usual
abbacus topics and methods — sometimes going beyond the usual, for instance when
teaching the rule of five and the rule of seven systematically, and when offering (p. 151)
a rule for gauging the volume contained in a Florentine standard wine barrel.**
Particularly noteworthy is a long account (pp. 153-175) of the weights, measures and
customs of a number of trading places, and the relations between metrologies. The places
spoken of reach from Accra, Alexandria and Constantinople in the East over Bejaia, Tunis,
Messina and Palermo in the South to Mallorca, Nimes, Montpellier and Marseille in the
West and North; numerous cities from the Italian mainland are also listed. At the end
of this tariffa comes a list of the fairs of France, Flanders and Apulia, with their calendars.

As Gherardi’s Libro and Tutta [’arte, this Libro d’abaco solves scattered problems
by means of algebra, thereby illustrating what was diffused in the environment; moreover,
it contains not merely one but two systematic presentations, a Regola della cosa (pp.
108-113), and an Aligibra amichabile, pp. 194-197).

The Regola della cosa states 16 rules:

Lcl or=N L9 oK =BC
L2 aC=N Lcl0  aCC = BK
Lc3 oC = Bt Lcll oaCC=N
Led  oCHBr=N Lel2  aCC = Pr
Le5  Pr=aC+N Lel3  aCC = BC

*8! Unfortunately a third method follows, where 97 cubits becomes 97 fiorini.

2 Namely as "5 of lengthxdiameter”. In the 16th century, German Rechenmeister were to integrate
this topic (“doliometry”) in their teaching — see for example [Ries 1550: 182-196], and below,
p- 366.
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Lc6 B+N = aC Lcl4  oK+BC =yt
L7 oK=N Lcl5  BC = oK+t
Lc8 oK = Bt Lecl6 oK = BC+yt

All cases are also dealt with in Jacopo’s Tractatus, and thus only reducible cubics
and quartics appear. Moreover, in the likeness of Jacopo, the present compiler provides
the first six cases with examples (only one for each), while the cubics and quartics have
none. Apart from changed numerical parameters, the examples for Lc4 and Lc5 agree
with problems offered by Jacopo, the others are different — sometimes even simpler than
the “such part” problems, for instance (Lc6),

find me a number which, when 30 is added to it, makes as much as when it is multiplied
by itself.

The example for Lc2 coincides with what is proposed by Gherardi (above, p. 195), apart
from a changed numerical parameter.

After the higher-degree rules come four divided-ten problems solved by means of
algebra (all of the second degree), and two stated explicitly to be solved without the thing.

Given how close the rules are to what we know from Jacopo’s Tractatus, it appears
certain that the compiler draws (directly or indirectly) either on Jacopo or on a close
precursor to his algebra chapter; the new examples he may have drawn from what was
already circulating (they fit what we know from Gherardi and from Tutta I’arte ), or he
may have constructed them himself (the example for Lc6 being nothing but an instantiation
of the rule, with specification of the numerical parameters).

The Aligibra amichabile (pp. 194-197) states 13 rules:

Lal or=N La7 oK =N
La2 oC=N La8 oK = Pt
La3  oC =Pt La9 oK =BC
Lad  oC+Pr=N Lal0 oK+BC =yt
La5 Bt = oC+N Lall BC = oK+t
La6  (omitted) Lal2 oK = BC+yt

Lal3 oaCC=N

These are simply Jacopo’s first 13 cases in the same order.”®! The first five are
provided with a single example — all but the one for La2 coinciding with examples we
know from Jacopo, sometimes with changed numerical parameters; that for La2, however,
coincides exactly with Gherardi’s example (above, p. 195). The phrasing of the example
for La4 is so similar to that of Lc4 (both numerical variants of the first example for Ja4,
which however is phrased very differently) that they must clearly make use of a shared

3 That La6 has been omitted by mistake follows from the line following where it should have
been (p. 196), “these are the six rules of aliabra amichabile”.
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source ultimately depending on Jacopo or his source but already reformulated.

As mentioned above, the Lucca Libro also contains scattered problems solved by means
of thing and censo. Most of them are similar in type to the scattered problems of Gherardi
and Tutta ’arte, but one has close kin only in Jacopo’s algebra (namely his second
example of Jadb — above, p. 186): a variant of the “purchase of a horse” which would
hardly be imaginable without the prospect of solving it by means of algebra (p. 132):

There are two men, and they want to buy a horse which is worth £ 10. The first says to
the second, if you give me Y, of your denari, I shall buy it. The second says to the first,
if you give me the root of your denari and £ 5 more, I shall buy the horse. I want to know
how many denari each one had. You should do like this: Posit that one had a censo, and
then the other must have 30 less 3 censi. [...].

Over the next century and a half, similar problems turn up in many of the more
advanced abbacus treatises.

Giovanni di Davizzo

My final representatives of the second generation are only known from being quoted
in later works. One is the Florentine Giovanni di Davizzo (fl. 1339—-1344), whose father,
brother and two nephews were also abbacus masters [Ulivi 2002a: 39, 197, 200]. Within
a sequence of number problems in the manuscript Alchune ragione from 1424,
starting on fol. 25" and ending on fol. 38", on fol. 28"-31" are inserted six pages announced
as being

extracted from a book from the hand of Giovanni di Davizzo dell’abacho from Florence,
written the 15th September of year 1339, and this is 1424.

A later hand has added a heading Algisbra, which is indeed quite adequate. Fol. 28"-29"
gives us a general idea (nothing more!) of what may have been lost in Jacopo’s algebra
(see above, p. 183).

At first come, mixed up with the four sign rules in §2, rules for the multiplication
and division of powers:

" Know that to multiply number by cube makes cube
and number by censo makes censo

28 Vatican, Vat. lat. 10488, see [Van Egmond 1980: 230]. It is written by several hands, often
shifting in the middle of a page and thus a planned collaborative effort — once again we may think
of the assistants of an abbacus master with or without the participation of the latter. Occasional
personal opinions (e.g., fol. 35", in the running text, not a marginal note) about procedures show
that those who wrote were competent abbacists, not merely scribes. My references refer to the earliest
foliation.

According to Van Egmond, the manuscript should be Venetian; he does not cite any evidence,
and the language/orthography seems to fit Florence perfectly (and not at all Venice), which would
make it less strange that Giovanni di Davizzo’s text was available in 1424 to the compilers.
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and number by thing makes thing.
{2 And plus times plus makes plus
and less times less makes plus
and plus times less makes less
and less times plus makes less.
9% And know that a thing times a thing makes 1 censo
and censo times censo makes censo of censo
and thing times censo makes cube
and cube times cube makes cube of cube
and censo times cube makes censo of cube.
I And know that dividing number by thing gives number
and dividing number by censo gives root
and dividing thing by censo gives number
and dividing number by cube gives cube root
and dividing thing by cube gives root
and dividing censo by cube gives number
and dividing number by censo of censo gives root of root
and dividing thing by censo of censo gives cube root
and dividing censo by censo of censo gives root
and dividing cube by censo of censo gives number
and dividing number by cube of cube gives cube root of cube root
and dividing thing by cube of cube gives root of cube root
and dividing censo by cube of cube gives root of root
and dividing cube by cube of cube gives cube root
and dividing censo of censo by cube of cube gives root
and dividing censo of cube by cube gives aumber censol
and dividing number by censo of censo of censo of censo gives root of root of

285]

root of root

and dividing number by cube of cube of cube of cube gives cube root of cube
root of cube root of cube root.

! If you want to multiply root by root, multiply root of 9 times root of 9, say, 9

times 9 makes 81, and it will make the root of 81, and it is done.

To divide root of 40 by root of 8, divide 40 by 8, it gives 5, and root of 5 let
it be.

To divide root of 25 by root of 9, divide 25 by 9, it gives root of 27,, done.

If you want to multiply 7 less root of 6 by itself, do 7 times 7, it makes 49, join
6 with (49, it makes) 55, and 7 times 6 makes 42, then multiply 7 times

5 From later versions it can be seen that this line was originally

“and dividing censo of cube by cube of cube gives number”
Somewhere in the process, this had become

“and dividing censo of cube by cube gives number”
Noticing the error, somebody — almost certainly the writer of the 15th-century manuscript, since
the correction is made there — saw that this was wrong, and stated a correct result (but of a division
Giovanni had not intended).
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42, it makes 294, and multiply then 4 times 294, it makes 1176, I say that
55 less root of 1176 will it make when 7 less root of 6 is multiplied by
itself.

I If you want to detract root of 8 from root of 18, do 8 times 18, it makes 144,
its root is 12, and say, 8 and 18 makes 26, detract 24 from 26, and root of
2 will remain, done.

It you want to join root of 8 with root of 18, do 8 times 18, it makes 144, its
root is 12, and say, 12 and 12 makes 24, and say, 8 and 18 makes 26, and
join 24 and 26, it makes 50, and root of 50 will the number be.

If you want to multiply 5 and root of 4 times 5 less root of 4, do thus and say,
5 times 5 makes 25, and say, 5 times root of 4, do thus, bring 5 to root,
it makes 25, and do, root of 25 times root of 4, it makes root of 100, and
do, 5 times less root of 4, it makes less root of 100, 25 still remains, now
detract 4 from 25, 21 remains, and 21 they make.

If you want to multiply 7 and root of 9 times 7 and root of 9, do 7 times 7, it
makes 49, put (above) this 9, you have 58, and 9 times 49 makes 441,
multiply by 4, it makes 1764, you have that it will make 58 and root of
1764, which is 42, done.

If you want to divide 35 by root of 4 and by root of 9, do thus, from 4 to 9 there
is 5, multiply 5 times 5, it makes 25, and say, bring 35 to root, it makes
1225, now say, 4 times 1225 makes 4900, divide by 25, it makes 196, and
do 9 times 1225, it makes 11025, divide by 25, it gives 441. We have that
dividing 35 by root of 4 and by root of 9 gives root of 441 less root of 196,
and it is done.

The rules for the multiplication of powers (§3) show, firstly, that the names for higher
powers are based on multiplication, not embedding: cube of cube stands for £, not
for ()% and secondly, that Giovanni has a full mastery of the sequence of successive
powers.

Those for division (§4), on the other hand, demonstrate that here Giovanni’s intuition
fails. He appears to have nourished a vague idea that the inverse of taking a power is
to take a corresponding root — raising to the third power and then taking the cube root
evidently leads us back to the starting point. This is then mis-applied to negative powers
(and we observe that all divisions in §4 apart from the one resulting from a copying error
should give a negative power), which are identified with roots — with some difficulty
corresponding to ', which becomes number. The multiplicative composition of these
“roots” confirms that they are nothing but postulates — when genuine roots are meant,
also by abbacus writers, the cube root of 256 is 8, and the cube root of the cube root of
256 therefore 2, the ninth, not the sixth root.*

§5 and §6 deal with the arithmetic of monomials and binomials containing square

6 This is the reason I have chosen to italicize these “roots” (but not “roots” in the normal sense),
just as I italicize the algebraic powers thing, censo, cube, etc.
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roots; it is noteworthy that Giovanni often makes use of rational roots “as if they were
irrational’; this would allow him to control the correctness of the calculations, but he does
not do so, and the expression in quotes is not found in Giovanni’s text but only in Dardi
da Pisa’s slightly later treatise (below, p. 214), which suggests Giovanni to have borrowed
(which we would anyhow expect).

After these introductory matters come, as usual, a list of algebraic cases — rules only,
no examples:

Gil ar=N Gill oK = BC+yt
Gi2 oaC =N Gil2 oaCC=N

Gi3 aC = Pt Gil3 oCC =Pt

Gi4 oaC+Pr = N Gil4 oCC=BC

Gi5 oC+N = Bt Gil5 oCC=BK

Gi6 oC = B+N Gil6  aCC+yC = BK
Gi7 oK =N Gil7 0CC = BK+YC
Gi8 oK = Bt Gil8 oCC+fC=N
Gi9 oK = pC Gil9 y+aCC =BK ?
Gilo aK+yr = BC

All cases but the last are solvable; all agree, also in order, with what we know from
Jacopo. Two of Jacopo’s cases (Jall and Jal6) are skipped, however, and GilO is the
mirror image of Jall. It may not be significant that the rule Gil0 does not mention the
possibility of a double solution, since it is added, apparently in the same hand, as having
been omitted by mistake in the rule for Gi5, and since it is conserved in the rule for Gil6.
All in all, however, Giovanni seems to share a source with Jacopo rather than copying
from him.

The rule for Gil9 is almost illegible, just leaving enough traces to show that it cannot
have been valid and to suggest that it was not one of Gherardi’s false rules. A user of
the manuscript appears to have discovered that the rule is wrong, and glued a slip of paper
over it. The slip has disappeared, but the glue has made the paper as dark as the ink. In
any case it appears that the fashion of inventing new false rules was spreading, as was
algebra.

Biagio il vecchio

Our last representative of the second generation is Biagio il vecchio, “the old”, a
Florentine abbacus master who died around 1340.”%"! Our source for his mathematics

7 «Q0ld” because the sources who refer to him also know another, younger abbacus master named
Biagio.

In spite of his fame, there is no reason to discuss Paolo dell’ Abbacho, first a student and then
apparently a partner of Biagio. Van Egmond [1977: 16] concludes that his fame was first of all
due to his “cultivating friendship with prominent figures”, and this even in spite of ascribing to
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and for our scarce knowledge about Biagio himself is Benedetto da Firenze’s Trattato
di Praticha d’arismetrica (henceforth “Benedetto’s Praticha’). This work, about which
much more will be said in the following, was an “abbacus encyclopedia” written in 1463
and containing both Benedetto’s own mathematics and extensive systematic extracts from
predecessors.**!

Book XIV of the Praticha is announced as demonstrating “exemplary cases of the
rule of algebra according to what master Biagio writes”™ Benedetto explains that
he reports what Biagio writes in his Trattato di praticha “not because others have not
written rather copiously [about the topic] but because [Biagio] was, according to master
Gratia de’ Castellani the first who reduced this treatise to a good practice [una buona
praticha]”. There is no mentioning of Jacopo or Gherardi, perhaps because Benedetto
does not know about them, perhaps because he restricts the perspective to precursors within
his own school tradition, perhaps — and most likely — because only Biagio’s extensive
treatment of the topic has the depth that deserves the characterization as a praticha.”"

Benedetto promises to follow Biagio’s order, and starts by showing some editorial
caution. The first problem asks for a “number”, but Benedetto doubts Biagio would speak

him the Tutta I’arte on more than dubious grounds (cf. above, note 274). He also points out that
Paolo’s fame among contemporaries was due to his (routine) astrological activity and not to his
practising of mathematics.

It is possible that Van Egmond is overly severe and that Paolo made noteworthy contributions
to abbacus mathematics; this could be suggested by a reference in a later manuscript to a treatise
in several parts from his hand dealing with “continuous quantities” (see below, note 405); even
then, however, there is no reason to discuss him, given that we do not know what these contributions
should be.

88 The Praticha survives in three manuscripts [Van Egmond 1980: 356], of which Siena, Biblioteca
Comunale L.IV.21 is Benedetto’s working manuscript, as can be seen occasionally when
computations have been made first and the text written afterwards in whatever space was left —
an example is shown below, p. 292. The other two extant manuscripts are incomplete.

There is no full edition of the manuscript, but a number of partial editions have been made
on the basis of the Siena manuscript. When referring to the manuscript and not to one of these
editions, I shall use the foliation of the Siena manuscript.

* Ed. [Pieraccini 1983: 1]. Further references in the format “p. n(#m)” refer to page n, problem
m in this edition (the problem numbering is due to Benedetto, and could well go back to Biagio).

0 When Fibonacci wrote a Pratica geometrie in 1220, the meaning was probably (this would agree
with the philosophical epistemology of the time) that geometry comprises two parts: a theory
(artificium ) and a practice (exercitatio, practising of the theory) — cf. [Hgyrup 2017: 209]. We
have no certainty that this was still strictly meant when Benedetto wrote, but it was certainly still
present as a connotation, remembered not least because of Fibonacci’s work. However that may
be, Biagio’s algebraic Praticha certainly had no theoretical counterpart proper (unless the term
designates not his algebra but an all-encompassing Praticha di arithmetica, which cannot be
excluded).
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thus, and therefore corrects to a question about a “quantity”’; Benedetto seems to have
suspected the text he possessed had been tampered with.'**!

References within the problem solutions show that the problem collection comes from
a larger algebraic work, which must then be Biagio’s Praticha. It follows after a chapter
stating the rules for solving 19 cases and promises (p. 27, #32) another chapter containing
biquadratic mixed equations among other matters. The order of rules in the preceding

chapter (as they are referred to in the problem collection) is as follows:**
Bil oC = Pt Bil0 oK+BC =yt
Bi2 oaC =N Bill oK+yt=BC
Bi3  [or=N] Bil2 [0k = BC+yr]
Bi4  oC+Br=N Bil3 aCC=BK
Bi5 oC+N = Bt Bil4 oCC=BC
Bi6  aC = BN Bil5 aCC =Pt
Bi7 oK = BC Bil6 oaCC=N
Bi8 oK = Bt Bil7 oCC+BK =yC
Bi9 oK =N Bil8 oaCC+YC = BK

Bil9 oCC = BK+YyC

One might suspect the references to rule numbers to be due to Benedetto, but
Benedetto’s order (as given in chapter XIII of the Praticha) is different.”™ There can

»'If anything, the tampering has probably gone the other way. Neither the Lucca Libro nor

Gherardi — both roughly contemporary with Biagio — uses quantita when asking about a pure number.
With one exception, the Lucca Libro only uses quantita when a concrete entity is referred to, as
one of several possessions or a quantity of bullion. The exception to the rule (p. 195) is that if a
quotient is multiplied by the divisor, then the result is “the quantity that is divided”. The only time
Gherardi speaks of a quantita that is not specified to be a quantity of something is when he divides
100 by “some quantity” and then by 5 more (above, p. 195). The use of quantita as a synonym
for “number” may have originated in the second half of the 14th century (in note 325 we shall
encounter it in Antonio de’ Mazzinghi).

2 No appeal is made to the third rule in the problems, and by mistake #76 identifies the rule for
ok = BC+yr as the 11th rule, which however has been explained in #75 to pertain to the case
oK+yr = BC.

% Benedetto’s own list as contained in the Praticha (Book XIII, chapter 3 — fol. 374'-388") is as
follows (R stands for cubo relato, the fifth power of the thing):
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be no doubt that Biagio’s own numbering is quoted; there are certainly a few identifiable
intrusions of Benedetto’s pen, but these have the character of commentaries.

The order of the simple cases is the traditional Arabic order; for higher-order cases
we discover a system inspired by Bil-Bi2, Bi4-Bi6, for each power to the left, first
decreasing powers to the right, and afterwards three cases that can be reduced to Bi4-Bi6
by division. Given how this system differs in part from what we find in Jacopo, Gherardi
and the Lucca Libro it is likely to have been created by Biagio.

The majority of Biagio’s 114 problems deal with abstract numbers (often spoken of
as “quantities”).” However, recreational commerce is not absent; we find repeated
travels, interest, alloying, and several other mercantile dresses — all of course representing
artificial questions that would never arise in real trade. The first problems are very similar
to what we already know from the second generation and quite simple (n stands for
“number”, ¢ for “quantity”):

Bel oC = Br Bel9 aCC = BK+yC
Be2 aC=N Be20 oR = pCC

Be3 ot =N Be2l oR = BK

Be4 oC+pt =N Be22 oR = BC

Be5 oC+N = Pt Be23 OR = Bt

Be6 oC = Br+N Be24 R =N

Be7 oK =N Be25 OR+BCC =YK
Be8 oK = BC Be26 oR+YK = BCC
Be9 oK = Bt Be27 OR = BCC+YK
Bel0 OK+BC =yt Be28 oKK = BR
Bell oK+yt = BC Be29 oKK = BCC
Bel2 oK = BC+yr Be30 oKK = BK
Bel3 oCC = BK Be3l oKK = BC
Bel4 oCC = BC Be32 oKK = Bt

Bel5 oCC = Bt Be33 0KK = BN
Bel7 aCC+BK = yC Be34 aKK+BR = yCC
Bel6 aCC=N Be35 aKK+yCC = BR
Bel8 aCC+YC = BK Be36 aKK = BR+yCC

We observe the absence of mixed biquadratics from Biagio’s list; Biagio promises to deal with
them in his next chapter, as also with cases to be solved by false rules. We also take note that the
order of the basic six cases is that of al-Khwarizmi — perhaps because chapter 1 of the Biagio’s
Praticha drew on a translation of al-Khwarizm1’s algebra (the three Florentine encyclopedias,
including Benedetto’s Praticha, all draw on al-Khwarizm1 in Guglielmo de Lunis’s translation,
cf. below, p. 306, and they all belong within a tradition going back to Biagio).

Pieraccini [1983: iii] mistakenly exchanges Be5 and Be6, thereby producing Fibonacci’s order.

24 At the end of the book (p. 143) Benedetto tells us that “I could still write many more cases,
but because I want to give space to others I shall finish this book™. Biagio’s original thus contained
“many more” problems than the 114 copied by Benedetto.
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1 # (h+Yn=An

2 #2 (¢-'hg-"q) =g

2 #3 (g-hg-"q¥) =g
.3 # (hg)(lg)=q

P 4 #5 (hg+3)(,q+d) =g
However, the last of these, when the quantity is posited as a thing, leads to an equation
having no solutions (for us, to two negative solutions), so Biagio points out that the
question is not “reasonably set”.

Further on, many illustrations of the higher-degree cases make use of the such-part
structure — for instance (p. 68, #69), “find me three quantities so that the first be such
part of the second as two of three, and the second be such part of the third as 3 of 4”.
If we look at the problems in mercantile dress it is sometimes glaringly clear that the
dress is not taken seriously — thus in this problem (p. 134, #109):

scBs=Bs=Re
[\]

Somebody makes a certain number of travels, and as many travels as he makes, so many
denari he brings. In each travel he earns 40 per 100, and after all the travels he has made
in all 6 8. It is asked with how many & he set out.

At first it is shown that the number of travels is between 5 and 6, and it is posited that
the merchant makes 5+ travels. ¢ is then found to be V7 1634177, ., —2268% . and the
amount of denari he brought therefore to be 327, +\7 103817 s~ Discreetly,
Biagio does not state that this is also the number of travels (cautiously he also has not
asked for that). In contrast, as we remember, when Fibonacci finds a non-integer number
of travels he adjusts the parameters in order to get an integer solution (above, p. 90).

We find a similar paradoxical acceptance of a non-integer result in a problem about
a chess-board (p. 122, #101). In an ordinary chess-board with its 64 cases, as Biagio
observes, 28 of these are at the edges and 36 are internal. Now Biagio asks for a chess-
board where the two numbers are equal. In brief, in an nxn-chess-board, 4n—4 cases are
at the edges, and n’—4n+4 therefore internal. Equating these, Biagio finds the solution
to be 4+V8 — tacitly omitting the other solution, 4—\/8, and (discreetly once more) not
saying that this is the number of cases along each edge.

As we have seen (above, p. 195), Gherardi at one point refers to a cross-multiplication
that only makes sense if connected to formal fractions involving algebraic binomials. Such
formal fractions turn up in several of Biagio’s problem solutions (#64, #92, #94, #97,
#98, #99, #102). Mostly they make use of the abbreviation p (obviously not meant as
the Greek letter rho but fairly similar to it) for cosa, “thing”, and mé for meno, “less”
(addition is indicated by juxtaposition). In #95 (p. 112) Biagio explains how to perform
the addition

360 360  1080p mé 2160
1_p+ Ip mé 6 = 2censi mé 6p

by me&rgs of 2clgg)ss-multiplication (similarly in #98, p. 117); next, when he has established
that p equals 39 fiorini,

2censi mé 6p
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in order not to have fractions, multiply both sides by two censi less 6 things, and you
get that 1080 things and 2160 are equal to 78 censi less 234 things [...]**

None of Biagio’s problems correspond to any of Gherardi’s false rules. One, however,
presents us with another, related innovation: the introduction of rules that only function
under specific (non-specified) circumstances. #31 (p. 25) asks this question:

Find a number which, when multiplied by itself and over this is joined its root, makes 18.
To this Benedetto observes that

in this our master gets lost, since he wants to compose a rule which does not apply to
other similar questions. And the rule and way that he indicates is this. He says, you will
posit that this number be a censo; multiplied in itself it becomes 1 censo of censo; put
unto it the root of the said number, which is a thing, they make 1 censo of censo and a
thing. Which you first bring to a censo of censo,”" and you get the same, and then
halve the thing, the half being '/, thing, which multiplied in itself make ,, and again
multiplied in itself make ¢, which, added to 18, make 18, whose root is 4 Y,, from
which quantity, when the square on the half is cut away, that is Y, , remain 4, and so much
is the censo worth. And you posited that [the number] was a censo, thus it was 4, and
as you see the rule is good for this case, but proposing it for other numbers does not serve,
and therefore we call it the pronic root [radice pronicha]. And I think he did not look
for other ways, or perhaps, since he did not intend so, it was written into his works.

It is not clear from this whether the pronic root of 18 is 4 or 2; elsewhere in his Praticha
(fol. 361") Benedetto states that it is 2. Other sources do not all agree, but at least confirm
that the concept was widely spread. Pacioli [1494: I, 115"] has this:

By radice pronica one normally understands a number multiplied in itself, and above it
set the root of the said number, of this sum that number is called radice pronica. As 9
multiplied in itself makes 81, and above it set the root of 9, which is 3, it makes 84. The
radice pronica is called 9 by practitioners,

according to which the pronic root of 18 should be 4. Piero della Francesca’s abbacus
collection [ed. Arrighi 1970b: 91f] agrees in different words, and so does the manuscript
Florence, BNC, Palatino 575 [ed. Simi 1992: 20f]. On the other hand, Gilio da Siena
[ed. Franci 1983: 18f], writing in 1384, as well as Pierpaolo Muscharello in his Algorismus
from 1478 [ed. Chiarini et al 1972: 163], state that the pronic root of 84 equals 3. In any
case, it is clear that the pronic root serves to solve equations CC+t = N. It also seems

%5 That this incipient use of symbolism is not added by Benedetto can be seen from an explanation

given in Book XIII (fol. 374"); Benedetto himself would also have used p for the thing but further
have written ¢ for censo. Cf. also note 327 below.

% This is evidently a reference to the normalization contained in a rule — a rule we may presume
to have been contained in Biagio’s next chapter.
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to follow from Benedetto’s words (“we call it”) that Biagio did not use the term, and in
any case a “rule” would not be needed if tabulated pronic roots were at hand. In the actual
case, the rule only works because 1/2C = ¢, that is, because t = 2.

We shall soon encounter other special roots meant to solve irreducible equations.

The second generation — summary observations

Summing up, we may say that the second generation was strongly marked by an Italo-
Provencal group, but that is also presents us with the establishment of a more
homogeneous, properly Italian tradition than what we find in the first generation. The
most conspicuous innovation of the second generation, however, is the introduction of
algebra.

Abbacus algebra, already from this beginnings, differed in characteristic ways from
the algebra that was known in Latin — the translations of al-Khwarizm1, Fibonacci, and
(scarsely diffused) the Liber mahameleth and the translation of AbG Kamil’s algebra.

Firstly, there are no geometric proofs, and (perhaps connected to that) the first power
of the unknown (really the unknown) is a thing (cosa ), no root (radice); secondly, all
cases are defined in non-normalized form, entailing that the first step of rules is a
normalization; thirdly, there is systematic exploration of the possibilities to solve problems
of higher than the second degree, as opposed to the solution of single cases we have
encountered in the avere group of Liber abbaci, part 15.3 (some abbacus writers trying
to show off by postulating false rules for higher-degree cases which only a modicum of
algebraic understanding could unmask). Fourthly, algebra is applied to a range of
sometimes complicated recreational business problems, reflecting that abbacus algebra
was practised within and grew out of an environment fundamentally engaged in the
teaching of commercial arithmetic. Finally, there is scattered evidence of incipient formal
calculations and use of letter abbreviations within these, enough to show that formal
calculations existed and were made use of — which implies that these abbreviations served
as symbols serving the mathematical argument directly and not through virtual expansion
into a rhetorical argument.



Further into the 14th century

By 1340, abbacus schools were well established in many places. From now on it would
be meaningless to single out “generations’: the fundamental curriculum as we have seen
it described above (p. 5) and as we have seen implemented in the revised version of
Jacopo’s Tractatus (above, chapter II) did not change perceptibly neither over the rest
of the century nor before the advent of printing. There is no reason to go into details.
The innovations that took place concerned the supra-utilitarian level, first of all the algebra.
They went in many different directions, evidence of active and creative interest in the
field. Some innovations converge and prepare what happened in the 15th century, other
seem not to have invited emulation (with the proviso that much — probably most — of
the evidence has been lost).

Dardi da Pisa and the Aliabraa argibra

Biagio may have written the first extensive treatise (a praticha) on algebra, but we
know it from Benedetto’s extract only. The first extant treatise dedicated solely to algebra
is the Aliabraa argibra, written by a certain Dardi da Pisa in 1344 — perhaps identical
with the abbacus master Dardi Ziio (or Dardi de Zio) who is known to have taught in
Venice in 1346 [Ulivi 2002b: 131]: beyond the date and the not very common name, a
Venetian origin would also fit internal evidence.””

Dardi’s treatise is extensive and falls in three parts, preceded by a preface opening
with an echo of the “four causes” dear to contemporary university philosophy, explaining
that the present book like others was made by four rispetti.**® First comes the title,
which we may assume is thought of as the formal cause — here Aliaabra, explained to
be Arabic and to mean “explanation of subtle question™; second the author’s intention
(probably seen as efficient cause), namely to solve some questions by means of numbers

71 have used the following versions:

—  Vatican, Chigi M.VIIL.170 (ca 1395, cf. [Van Egmond 1980: 211]); henceforth D, (when
referring, I use the recent foliation);

— Raffaella Franci’s edition [2001] of Siena, Biblioteca Comunale 1.VII.17 (ca 1470, cf. [Van
Egmond 1980: 188]); henceforth D,;

—  Warren Van Egmond’s personal transcription of the Arizona manuscript, written in Mantua
in 1429, for which I thank him heartily; henceforth Dj;.

A fourth manuscript is Florence, Biblioteca Mediceo-Laurenziana, Ash 1199, from c. 1495. I have

only seen the extract in [Libri 1838: II, 349-356], according to which it is quite close to D,.
The Vatican manuscript is generally but not in all respects the best, cf. [Hgyrup 2007: 170

n. 331, n. 332]. It follows Venetian orthography. Moreover, the abbreviation ¢ for censo, used in

all manuscripts, corresponds to the northern writing ¢enso (in the 15th century changing into

zenso ); it therefore seems fairly certain that Dardi wrote in Venice or at least in north-eastern Italy

(just like Fibonacci, in Pisa he would not have be identified as “from Pisa”).

% The preface is in D, only [ed. Franci 2001: 37f]. It is lost in D, and replaced by a different one
in D; which speaks about the copying of that manuscript itself.
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and others by means of roots, namely those that have no discrete solution; third the matter
which it deals with (the material cause), namely the “names” (in our terminology “powers”)
things, censi, cubi, censi of censo and cubi of cubi. Fourth (the final cause) the utility
of the book, namely that the one who understands it well will be a good arithmetician
and geometer — matters which when dealt with as theory (spechulativamente ) belong to
natural philosophy.

Even though abbacus masters did not belong to the university environment, !
the intellectual separation was not absolute — and from the last observation it is clear that
Dardi intends his present book to develop theory and thus to be counted among
philosophers.

The preface goes on with an explanation of the meaning of the terminology for powers:
the thing is a linear length and the root of the censo; the censo

is a surface width and the square [quadrato ] of the thing, and called censo from cerno
cernis,’™ which stands for “to choose” because the censo chooses the mean proportional
between the thing and the cube. The cube is a corporeal thickness, whose body includes
the length of the thing and the surface of the censo, and is called cube according to the
arithmetic of Boethius from this name cubus cubi™'! which says as much as aggregation

of numbers.

The final statement is inspired by De institutione arithmetica 11.39 [ed. Friedlein 1867:
136; trans. Masi 1983: 163], according to which cubes are sums of subsequent odd
numbers: 1° = 1,2* =345, 3> =7+9+11, etc. It is not meant by Boethius as an explanation
of the name; Dardi seems to write from rather approximate memory of what he has learned
(not that his etymologies are more fanciful than so many others from the epoch).F*

The first of the three parts is introduced as a

treatise about the rules that pertain to the multiplications, the divisions, the joinings and
the subtractions of roots. And further to know to find the roots of square and cube numbers

* Some of them taught astrology with the necessary astronomical underpinning at the medical
faculties, where astrology served prognostication. One who did so was Giovanni di Bartolo, on
whom below, p. 255 — see [Ulivi 2002a: 39 n. 141].

300« distinguish, you distinguish” — a trace of how Latin verbs were taught in school. Apart from
the other obvious flaws of the explanation, Dardi’s proposed translation from the Latin is at best
approximative.

! Hardly meant as “cube of cube” but presumably another trace of Latin as taught at the introductory
level (nominative+genitive form). Dardi probably frequented a grammar school but hardly university,
where such references to declination schemes would have been left behind.

3921t is not to be excluded that Dardi builds on an intermediate source misquoting Boethius. Jacopo,
with many others, certainly treats Boethius worse than Dardi, cf. above, note 9.
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and other subtle rules that give to understand calculations magisterially (maistravile ).

In principle it thus corresponds to fol. 28"-29" of the extract from Giovanni di Davizzo
and to the missing introduction to Jacopo’s algebra. It is much longer, however (12 to
15 folio sheets in the various manuscripts). A full translation into modern symbolism of
the contents can be found in [Franci 2001: 8-10]; here I shall point to some significant
features, keeping closer to the text.
When teaching the multiplication of binomials, Dardi makes use of diagrams. For
example (D, fol. 6°), for (3-V5)-(3—5)
3.0 K de 5 »
— 14 % B de 180
3 m Kk de 5
(R abbreviates radice, “root”).
Instead of just stating the sign rules as Giovanni di Davizzo does (above, p. 202),
Dardi uses a similar diagram (i, strictly M, stands for meno, “less”) to support an
argument for the most difficult of them (D, fol. 4):

Now I want to demonstrate by number how less times less makes plus, so that every times
you have in a construction to multiply less times less you see with certainty that it makes
plus, of which I shall give you an obvious example. 8 times 8 makes 64, and this 8 is
2 less than 10, and to multiply by the other 8, which is still 2 less than 10, it should
similarly make 64. This is the proof. Multiply 10 by 10, it makes 100, and 10 times 2
less makes 20 less, and the other 10 times 2 less makes 40 less, which 40 less detract
from 100, and there remains 60. Now it is left for the completion of the multiplication
to multiply 2 less times 2 less, it amounts to 4 plus, which 4 plus join above 60, it amounts
to 64. And if 2 less times two less had been 4 less, this 4 less should have been detracted
from 60, and 56 would remain, and thus it would appear that 10 less 2 times 10 less two
had been 56, which is not true. And so also if 2 less times 2 less had been nothing, then
the multiplication of 10 less 2 times 10 less 2 would come to be 60, which is still false.
Hence less times less by necessity comes to be plus.

10 o 2

64
10 m 2

As we see, we are well beyond the limit of established algebraic thought: instead of just
arguing that (-2)x(-2) must be 64-60 since that is what is missing, Dardi has to make
a double indirect proof®®™ in order to rule out the possibilities (-2)x(-2) = —4 and
(-2)x(=2) = 0.

When explaining (D, fol. 11*) how to perform the division of 8 by 3+\4, Dardi makes

%% Often, indirect proofs are believed to be much more difficult to grasp than direct proofs, and
only introduced when mathematicians interacted with philosophers — most famously in [Szab6 1969:
341-346]. Dardi puts this assumption to rest (if need be, Aesopus’s salta hic should suffice to do
S0).
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use of the rule of three: Since (3+V4)(3-V4) = 5, 5/(3+V4) = 3—V4; 8/(3+\4) must
therefore be (8°[3-V4])/5. That V4 appears in the example is no accident. Dardi makes
repeated use of rational roots “as if they were irrationals”; this should obviously make
it possible to control the outcome, but Dardi mostly leaves it to the reader to do so.**¥
Giovanni di Davizzo does the same, we remember (see above, p. 204), but never explains,
nor does he take advantage. We may assume that both took over the idea from earlier
writings but only Dardi understood. [Added: Actually, al-Khwarizmi applies the trick to
V94 [ed. Hughes 1986: 244].]

Giovanni di Davizzo shows in two examples how to simplify the sum of two roots
or their difference (say, \/ai\/b) — above, p. 203), but only as an unexplained numerical
prescription, and does not specify that the method leads to a simplification if and only
if ab is a square. Dardi (D, fol. 9"") first explains this condition and then shows in the
examples that the method builds on the squaring of Va#\b. Once again, Dardi certainly
understands what he is doing, while Giovanni di Davizzo may simply have copied.

The second part of the Aliabraa argibra presents the six basic cases.”™ The order
is the usual abbacus order, as we known it from Jacopo, both algebra presentations in
the Lucca Libro, and from Giovanni di Davizzo; quite
outside the beaten path, however, is Dardi’s use of 5
geometric demonstrations. Their principle is the same as
we know from al-Khwarizm1’s demonstrations, but the way
of lettering is different. We may compare the 2 <
demonstration for the fourth case with al-Khwarizm1’s

ok
w
N

nNl-
=

N
o

,_h
[o)yan
[T
-

corresponding demonstration (above, p. 139). Already al- e ’
Khwarizmt had deviated from the Greek canon by using 5 2

letters to designate areas; Dardi deviates from this as well 2%
as from the canon of geometers (ancient Greek or of his g tla g f

own times) by designating identical areas by the same

** At an early point (D, fol. 3'), Dardi explains the multiplication of root by root on the example
V49 = \/(4'9) = \/36, and as “prova manifesta” he explains that V4 = 2, \9 = 3, and 23 =
6 = \36. Dardi may have expected his reader to have understood the principle and that repetition
was superfluous.

3% In D,, a sheet has been lost, and it therefore starts in the very end of the third rule.

For equation, instead of Jacopo’s raoguaglamento (also used by others) Dardi uses the term
adequation (Dy, e.g., fol. 15") or adequatione (Ds, e.g., fol. 24"). Seduced by the normal appearance
of the word in the composite /’adequation (written without the apostrophe, not yet invented) and
interpreting this as la dequation, the scribe of D, at least in the beginning believes the term to be
dequatione (thus nelle dequationi [ed. Franci 2001: 64]); but la ditta adequatione, overo de
adequatione and la adequatione [ed. Franci 2001: 73, 77, 88] show that the original term was
equation(e). Franci takes over the mistake except in a few cases where a preceding vowel differing
from a prevents it. It may be noticed that adequazione (derived from adeguare ) was in attested
Tuscan use around 1350 [Crusca, p. 21], while no cognate of dequation can be found.
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letters. Once more it seems that Dardi works according to approximate memory of what
was done in writings he had seen — this time producing a pedagogically efficient tool.

In this part, Dardi starts using the abbreviations ¢ for cosa, “thing”, and ¢ for censo
(referring to the Venetian spelling ¢enso, cf. note 297 — for relative ease of reading I shall
use C); mi is still used for meno. Most striking is a quasi-fractional notation for monomials,
similar to the use of quasi—fralctions for denominated r%})lmbers in the CA (%ll)ove, p. 167):
thus (D, f013.615", 227, 46"), <. sltands for “1 censo”, — for “30 things”, — for “21 (in)
numbers”, — for 36 cubes, == (emulating an ascending continued fraction) for “5',
things”. Nothing but a compressed linguistic expression and no operatory symbolism
however rudimentary is intended. Thalt can be seen from the way “l censo of censo” is
expressed (D, fol. 47") — namely as - de C.

0 This algebraic notation is not Dardi’s invention — there is a single unexplained instance
(=) in Tutta I’arte (Ty, fol. 1597), showing that already the compiler of this work knew
it in 1334, and that even he was not its inventor.

Using a notation that looks like a fraction but where the “denominator” is a
denomination, if anything a factor rather than a divisor, would obviously give rise to
ambiguities if it were combined with the use of formal fractions involving algebraic
polynomials. But it never is, by Dardi nor in any other Italian work I have inspected.”**

On another account, Dardi is our first source for another strain in the development
of algebraic symbolism, related to the algebraic parenthesis. Here, a possible
misunderstanding should be cleared away. A parenthesis is not a bracket but an expression
enclosed, for example, in a pair of brackets; in written language it can also be delimited
between two dashes, and in spoken language by pauses. An algebraic parenthesis is a
composite expression that is dealt with as a single entity — so, in (a+b )%, (a+b ) as a whole
is submitted to the squaring operation. Post-Cartesian algebra and analysis could not exist
without the algebraic parenthesis. It is so pervasive that we tend to forget its crucial role.
Cf. [Hgyrup 2015].

We have already encountered one kind of algebraic parenthesis above, namely in the

. .. 1080p me 2160 o
formal fractions. In Biagio’s oo ey the fraction line takes care that the numerator
(1080p me 2160) as well as the denominator (2 censi me 6p) are algebraic parentheses.
In modern notation, the extended root sign also delimits a parenthesis. The abbreviation
R cannot do that, and Dardi uses (invents?) a way to indicate that a root is to be taken
of a composite expression — for example (D, fol. 8"), he expresses

[z

% The “German algebra” (on which below, p. 355) does combine the two, but only because this
late-15th-century compilation is an eclectic combination of material drawn from a variety of sources.
The very last problem [ed. Vogel 1981: 43] makes use of a formal fraction; but precisely this bit
of text uses a different notation for the cossa, namely a superscript ¢ known from other Italian
writings.
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as “R de zonto ', con R de 127, “root of, joined, '/, with root of 12”. Later abbacus
writers instead speak of a radice generale, radice universale or radice legata (“general”,
“universal” or “bound root”), or use ®, an encircled R. The notation is somewhat
ambiguous, it is not always clear how far the composite expression goes; but normally
it is restricted to two members, and it mostly fulfilled its purpose within the ambit of
abbacus algebra.*"”

Part 3 of the Aliabraa argibra presents rules and examples for “194 regular and 4
irregular” cases — thus announced in the preface [ed. Franci 2001: 38]. The “regular” cases
are those which can be solved by root extraction or by being reduced to one of the six
fundamental cases; the irregular cases are solved correctly but only for particular
parameters.

The reason Dardi reaches 194 regular cases is that he makes extensive use of radicals
(square as well as cube roots, sometimes both within the same equation). Since the whole
sequence is shared by no other writer, there is no need to recapitulate all of it.**® After
16 cases where no radicals appear come these:

Dal7 N = (o) Da22 N = (oK)
Dal8 ot =N Da23 aCC =N
Dal9 oC =N Da24 N =(0.CC)
Da20 N =1(CC) Da25 or = V(Br)
Da2l oK =N Da26 aC = V(Br)

We observe that Da21 coincides with Gherardi’s Gh8; this tells us that Dardi does not
start completely from scratch. So far, everything looks quite simple from our perspective,
in particular if we replace ¢, C and K by powers of x. However, as said in connection
with Gherardi (above, p. 196), we should remember “that only positive integers and
fractions were accepted as numbers, and think of the difficulty which the appearance of
an irrational coefficient had caused Fibonacci”.

Later on things become more intricate, and more difficult to express. For instance,
the rule for Da41, N = 0(K+\/([3K) runs

you shall divide the number [N ] by the quantity of cubes [0], and serve what results
separately. And then multiply the quantity of cubes that are not roots [0] in itself, and
divide the quantity of cubes [B] that are said to be roots by this multiplication. And the
fourth of that which results for you, join it above the division that you served, and the

%7 In note 334 we shall see how Antonio de’ Mazzinghi invented a way to eliminate the ambiguity
when he needed to get around it. Apparently it did not spread, probably because the need was not
there.

% Full lists in modern symbolism can be found in [Van Egmond 1983: 402-417] as well as [Franci
2001: 26-33]; the former list also indicates the rule given by Dardi for each case in modern symbolic
language.
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root of this sum, that is, the cube root, less the root of this fourth that you joined, that
is, the division that results for the cubes called roots in the multiplication of cubes that
are not roots. And so much is worth the root of the cube, and this root multiplied in itself,
so much is worth the cube, and the cube root of this multiplications comes to be worth
the thing

— corresponding to the formula

3 2
S [oeeaoy
! o2 o PR

The formula makes heavy use of parentheses. As we see, Dardi instead calculates the
single constituents separately; in the subsequent example, he does the same. We also
observe that Dardi has an explicit concept of coefficients, “quantity of cubes” instead of

=

the habitual “the cubes” (D, mostly returns to the customary way).
In many cases, Dardi explicitly reduces a question to a another one which he has dealt
with before — for example in Da82, 0Lt+B\/ C=7C,

You shall detract the things on each side [parte ], and on one side will remain for you
censi less things, and on the other root of censo, and then multiply that which remains,
each part in itself, and you will have on one side censi and on the other censi and censi
of censo less cubes. Then detract the smaller quantity of censi on both sides, and give
the cubes that are missing on one side to both sides, and you will have that the equation
will come to be that of the 70th or the 71st chapter,”® and then proceed according
to the way of the chapter already dealt with.

All 194 rules are correct, with two exceptions: for Dal77, v (o) = & (BCC), the rule stated
is 1 = ™(B¥a?) instead of 1 = *V(B¥ar*), for Dal79, V(0K ) = *V(Bt), the rule gives 7 =
(B0 ) instead of t ="\(B¥ar*). As argued by Van Egmond [1983: 417], the likely reason
is that no terminology was as yet available for the fifth and the seventh root.

All regular cases are provided with examples (as already Jacopo, Dardi offers three
examples for the fifth rule). All are stated in terms of pure numbers — almost half ask
for two or three numbers in given ratio (in “such part” formulation),”'” more than
a fourth for a number which fulfils the conditions of the equation, around 15% are divided-
ten problems.

Between Dal82 and Dal83"'"! the four “irregular cases” with appurtenant rules

% Respectively (Da70) a.CC+yC = BK and (Da71) a.CC = BK+yC.

1 The “proportion” notion only appears when numbers in continued proportion are spoken of
correctly (D, fol. 44",) or misunderstood (fol. 23").

*"In D;, they have been moved to the very end, and the order of the first two rules has been
inverted.



- 218 -

are inserted,

D-il yt+BC+0K = N, ‘= 3 (%)ﬁ% B %

D-i2 St+YC+BK+aCC = N t= m_\/g_f
D-i3 St+yC+a.CC = N+BK ‘= 1/(%)&; o2 _\/2%
D-i4 St+0.CC = N+yC+BK ‘= 1/%)& % + 41 B \/%

These rules are said (D, fol. 100") to be true only for the cases for which they have been
arranged (ordinati) but included because “by some accident the said rules may turn up
in certain problems”.

The first two examples deal with compound interest, the other two build on a divided
ten. A look at the first will reveal how the rule is produced (D, fol. 1007):

Somebody lends to someone else £ 100, and in the end of three years he receives £ 150
in earning and capital, interest being made up at the end of year. I ask at what rate it was
lent a month.

We have encountered a similar problem above (p. 186), namely Jacopo’s first illustration
of Jad4, where the money was lent for two years. There as here, a simple way to solve
the problem would be to take the value to which 1 £ (or 100 £) has grown after a year
as the unknown, then the problem would be reduced to the extraction of a square or cube
root; that is indeed the way Biagio (pp. 69, 84) solves problems about a capital growing
over three respectively four years. Jacopo, as we remember from p. 186, instead produced
amixed second-degree problem by taking the monthly interest of 1 £in d as his unknown.
Exactly the same trick works here. We may take the interest rate to be 7 § per £ per month
(and thus '%,,t £ per year and £); then we have that 100-(1+'%,¢)* = 150, whence

3
2043, 150 20

t= (E) o " -

If instead we develop the equation we get

20 5 '(202 _(203'150 (203
r3mt+3l5) = 5wl

‘We observe that % can be found as the quotient between the coefficients of ¢ and £, and
that (%)3 % arises as the sum of the number term and %) ; and further, that ¢ results
if from this sum we extract the cube root and afterwards subtract % — and that is exactly
Dardi’s rule.

The second rule can be derived in a similar way. The examples for D-i3 and D-i4

both have the structure
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10 = a+b , “_”b_\/N,

ab

N being respectively 18 and 28. If we posit a = 5+t, b = 5-,°'* we get in both cases

biquadratic problems (if we accept square roots as number terms, as done in Dal8 and
Da21, quadratic equations). Positing instead t = a or t = b we get the equation types D-i3
and D-i4, and comparison once again allows us to derive the rule valid in these particular
cases.

Whoever devised these rules was a very good algebraist, at the level of Biagio and
certainly far above that of Gherardi. We can be confident that it was not Dardi. Firstly,
there is no reason Dardi should depart from his constant use of pure-number problems
just for the first two irregular cases and nowhere else; secondly, the way he distances
himself when introducing them (D, fol. 100), “hereafter will be written certain chapters
[...] though by some accident the said rules may turn up in certain problems” (when
speaking about what he does himself, for instance in the preface, Dardi is not afraid of
speaking in the first person singular).

Since (as we have seen) Biagio possessed the tools to derive the irregular rules, they
may have come from his hand and have been among those that were not transcribed by
Benedetto. As we have observed (p. 209), Biagio did not shy away from devising rules
for higher-degree questions that only apply to specific cases. But we have no firm
foundation for the belief that Biagio was the sole abbacus writer of his kind and level.
In any case, it is not certain that Biagio or whoever it was knew that the rules derived
by means of the ingenious method we have seen had no general validity; that may well
have been Dardi’s discovery.

Further evidence that the irregular cases and their rules did not originate in the
Aliabraa argibra comes from their afterlife. A number of manuscripts contain sometimes
only the two compound-interest problems, sometimes all four — sometimes with, sometimes
without the examples.’) A few also contain an extra case, YC+BK+a.CC = VN, with

2 This is done by Biagio (pp. 39, 47, 49, 51) in five other divided-ten problems.

33 1 know of the following instances:

—  Florence, BNC, Fond. princ. ILIII.198 (see [Franci 2002: 96f]);

—  Parma, Bibl. Palatina, Ms. Pal. 312 (the Libro de conti e mercatanzie, [ed. Gregori & Grugnetti
1998: 24f1);

—  Palermo, Biblioteca Comunale, Ms. 2Qq E13; contains also the third irregular case (see [Franci
2002: 9711);

—  Vatican, Vat. lat. 4825 (Tomaso de Jachomo Lione), fol. 80'-81"; contains also the third case;

—  probably also in Florence, Ricc. 2252, which according to [Franci 2002: 98] should be “quite
similar” to the Palermo manuscript;

—  Florence, BNC, Palatino 567 (Raffaello Canacci, Ragionamenti d’algebra [ed. Procissi 1954:
441]); as Tomaso di Jachomo di Lione, yet without examples;

—  Vatican, Vat. lat. 10488, fol. 93", brings Dardi’s first irregular Rule without example;

—  Florence, BNC., Palatino 575 [ed. Simi 1992: 53], rules alone;
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the example (certainly as basis for the rule for solving the case) that 50 £ grow in 2 years
to (50+V484) £.° None of these sources ever mentions the restricted validity of the
rules, as one might have expected at least some of them to do if they had borrowed from
Dardi.

Beyond reporting the first of Dardi’s irregular cases, Vatican, Vat. lat. 10488, fol.
94", also give fully valid rules for oz = \/N, N = Oc\/t, oC =N and N = \/C, while
Florence, BNC, Palatino 575 [ed. Simi 1992: 52-55] has rules for &.C = M+\N, oNCC =
N, oNKK = N, oNCC+M = N and oNCC-M = N.P' Together, the only partial overlap
with Dardi’s material, the simple character of these cases and the closeness in style to
Gh8, oK = \/N, suggest however that these rules are not borrowed from Dardi but instead
(like Gh8) representatives of the type which had inspired Dardi for his vast exploration
of its possibilities.

So, however brilliant it is, and even though a number of copies of the treatise were
made, Dardi’s exploration was a dead end.

Alcibra amuchabile

Another compilation (rather than treatise) dedicated solely to algebra is a Trattato
dell’alcibra amuchabile from c. 1365 (henceforth Alcibra amuchabile ).*'®

In the likeness of the Aliabraa argibra (and many other algebras from al-Khwarizmi
onward), the Alcibra amuchabile consists of three parts. The first of these teaches
multiplication and division of roots or expressions containing roots. For the product of
binomial by binomial, a diagram is introduced to illustrate the procedure — for instance
(p. 18), for (5+V20)-(5-20):

5 e piu R di 20

5 e neno K di 20

— finally, the first three rules with the usual examples are copied in Bento Fernandes’s Tratado
da Arte de Arismética from 1555 [da Silva 2008].

3“The example contains writing or copying errors as well as erroneous calculations, but the

underlying idea is as good or as bad as in Dardi’s irregular cases. Since we do not possess Biagio’s

treatment of the arithmetic of roots and arithmetical polynomials we do not know whether the

appearance of V484 (= 22) is compatible with ascription of the irregular rules to Biagio.
Canacci has the rule without the example. Bento Fernandes copies both.

1 Rules only, no examples. The former group coincides with Dal8-20, the first two in the latter
group with Da38 and Da24, while the last three have no counterparts in the Aliabraa argibra.

316 Florence, Biblioteca Riccardiana ms. 2263, ed. [Simi 1994]. Page references will be to Annalisa
Simi’s edition. Date according to watermarks. Written in two or three different hands [Van Egmond
1980: 151].
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Division of 100 by 104420 is accompanied by a similar diagram

10 piu R di 0
10 meno R di 20

s

which serves to illustrate that both dividend and divisor are to be multiplied by 1-20.
These look like reduced versions of Dardi’s schemes, but since there is no hint that
the compiler knew the Aliabraa argibra, either Dardi made a more elaborate version of
what he knew from a shared background, or the present compiler reduced what was around;
the existence of a shared source or source tradition is in any case beyond doubt.
The second part lists 24 algebraic cases with rules and examples:

AAl* ar=N Jal

AA2* at=N Ja2

AA3* oC = Pt Ja3

AA4* oC+Pt=N Jad

AAS* Pt = aC+N Jas

AA6* oC = B+N Ja6

AA7T" oK =N Ja7;Gh7 Example differs
AA% oK = Pt Ja8;Gh9 Same example
AA9* oK = BC Ja9;Gh10 Same, with error
AA10" oK = BC+yr Jal2;Gh11 Same example
AAll oK =N Gh8 Same example
AA12 oK = B+N Gh12 Same example
AA13 oK = BC+N Gh13 Same example
AA14° oK+yt = BC (Jall)

AA15* oaK+BC =yt Jal0;Gh15 Example in Gh15
AA16* BC = aK+yt Jall

AA17* aCC =N Jal3

AA18* aCC = Br Jal4

AA19* aCC = C Jal5

AA20* aCC = BK Jal6

AA21* 10CC+BK = yC Jal7

AA22% BK = aCC+YC Jal8

AA23* oCC = BK+YC Jal9

AA24 oCC+BC =N Ja20

An asterisk * means that the rule and example (if such exists) are the same and use the
same words as Jacopo’s algebra. A pillow ™ indicates that the rule coincides with Jacopo’s
corresponding rule, but that an example has been added — the last column states whether
the example is shared with Gherardi or not. A degree symbol (°) indicates that the rule
is worded differently than Jacopo’s corresponding case.
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As we see, the Alcibra amuchabile copies all of Jacopo’s cases very faithfully. In
four of the regular cases involving cubes an example is provided (as we remember, Jacopo
supplied no examples after the first six cases). On one point, however, a telling correction
is made. In the second example for Ja4 [ed. Hgyrup 2007: 312f], Jacopo at one point
has to compute (V54-2)%, which should give him 58+ 454, which according to prevailing
norms should be expressed as 58+y (1654) = 548+V864. As pointed out above, note 273,
Jacopo does not perform the computation 16-54 but leaves the space open (five times
in total); at least two consequent copyists reproduce this faithfully, the last of them (if
not both) writing in the margin “cosi stava nel’originale spatii”, “thus it was in the original,
spaces”. The Alcibra amuchabile instead completes the calculation.

This shows beyond all doubt that “Jacopo’s algebra” (that is, the algebra contained
in manuscript V of Jacopo’s Tractatus ) was older than ca 1365; in view of its almost
certain influence on the two algebra sections of the Lucca Libro, we may say with
reasonable confidence that if not already present in Jacopo’s original from 1307, it cannot
be much younger.

It could of course be older, in which case Jacopo would have copied it so faithfully
from some source that he did not even take the trouble to perform the multiplication 16-54
while none the less making it stylistically homogeneous with the rest of his treatise — see
[Hgyrup 2007: 23-25]. This seems quite implausible; so is a stylistically harmonizing
insertion of the algebra chapter in the Tractatus between 1307 and 1330.

As shown by the scheme, the Alcibra amuchabile also deals with a number of cases
with a counterpart in Gherardi but none in Jacopo, and most of the new examples coincide
with examples given by Gherardi. The example for AA7 does not, however, and the precise
wording is never faithful as when the compiler copies Jacopo. Moreover, Gherardi’s only
four-term rule is absent. There is no reason that a compiler who copies one model verbatim
should paraphrase another one; we must therefore conclude that Gherardi is no direct
source, and therefore that the compiler drew on material that had also been at Gherardi’s
disposal in 1327.57

The third part of the Alcibra amuchabile consists of 41 solved problems. While those
examples in part 2 that do not come from Jacopo are all pure-number problems of the
“part-of” type, such questions are totally absent from part 3. Problems 1-10 concern a
divided 10, problem 11 a divided 20. Then follow 9 dealing with 100 divided by some
quantity (we shall return to one of them), 3 about compound interest (one involving the
square root of money already in the data) and 10 about exchange of money. One concerns
the partial excavation of a well, which (since labour can be supposed to increase
proportionally to depth) involves the formula for summation of an arithmetical series.

7 As we remember from p. 192, “Gherardi” stands for a treatise “written according to the rules
and the abbacus course held by Paolo Gherardi”. The real Gherardi could thus be somewhat earlier
than 1328.
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At the end come three give-and-take problems, one of them involving a product and thus
of the second degree; and amidst these, problems about 60 & divided first between a
number of men and then between one or two more.

The most remarkable feature is the use of formal fractions. We may look at problem
13 (p. 41), which we have already encountered in Gherardi (above, p. 195):

Somebody divides 100 in a quantity, and then he divides 100 in 5 more than at first, and
these two results joined together made 20. I want to know in what 100 was divided at
first and in what it was divided afterwards.

The method somehow presupposed by Gherardi is fully spelled out here with reference
to a diagram

Posit that you divided 10 in a thing, 100 divided in a thing results. And then say that you
divide 100 in 5 more than at first, you shall thus divide 100 in a thing and 5, 100 divided
in a thing and 5 results. Now you have to join 100 divided in a thing with 100 divided
in a thing and 5. Now I will show you something similar so that you may be well advised
about this joining and I will say thus: I will join 24 divided by 4 with 24 divided by 6,
which you see should make 10. Thus posit 24 divided by 4 in the way of a fraction, from
which results 2%,. Also similarly posit 24 divided by 6 in the way of a fraction. Now
multiply in cross, that is 6 times 24, they make 144, and now multiply 4 times 24 which
is above 6, they make 96, join with 144, they make 244. Now multiply that which is below
the strokes [verghe ], that is 4 times 6, they make 24. Now you should divide 240 by 24,
from which 10 should result. I say that if I multiply 10 which should result from it, against
the divisor 24, it will make the multiplied, that is, 240,58 and so it does precisely.
Let us therefore return to our problem. Let us take 10 divided by a thing and therefore
posit these two divisions as if it were a fraction, as you see it drawn hereby. And now
multiply in cross, as you did before, that is, 100 times a thing, which makes 100 things.
And now multiply the other way [schisa, literally “cleaving”], that is, 100 times a thing
and 5, they make 100 things and 500 numbers; join to 100 things, you have 200 things
and 500 numbers more. Now multiply what you have below the strokes, one against the
other, that is, a thing times a thing and 5 more, they make a censo and 5 things more.
Now multiply the results, that is, 20 against a censo and 5 things more, they make 20
censi and 100 things more,
100 100

per una cosa  per una cosa e piu 5

which quantity is equal to 200 things and to 500 numbers. Now take from each side 100
things, you will have that 20 censi are equal to 200 things and to 500 numbers. Bring
to one censo, that is, that you divide each thing by the censi, you will have that one censo
is equal to 5 things and to 25 numbers. [...].

Per se, the final step in the addition of the two genuine fractions seems superfluous. From
the division of 240 by 24, not only 10 should result, evidently it results. It reflects that

'8 Thus, correctly, the manuscript. Simi writes 24, apparently taking the small final zero for a spot
of ink.
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the use of the formal fractions is still a step “behind” how we would treat them. Instead
of just multiplying an equation p+q = r by g without thinking about why the step is valid,
the text argues from the very definition of division, namely that the equation means that
p= qr.[319]

For further elucidation we should remember a passage in Jacopo’s second example
for Jal [ed. trans. Hgyrup 2007:305], a partnership problem (and as such involving a
division) — quoted above, p. 183. There, no formal fractions were made use of, but we
find the same reference to what the division means:

[...] And therefore we have to multiply 30 times a thing. It makes 30 things, which it suits
you to divide in the principal of the partnership, that is, by 30 and a thing, and that which
results from it, as much is due to the third partner. And this we do not need to divide,
because we know that 15 libre of it is due to him. And therefore multiply 15 times 30
and a thing. It makes 450 and 15 things. Hence 450 numbers and 15 things equal 30 things.

As we see, the use of formal fractions has not yet eliminated the need to keep in mind
the underlying meaning of the operations that are performed on them. We may observe
that the progress inherent in the above “behind” consists exactly in elimination of this
need, freeing the mathematical mind for more creative task — in more recent times, say,
solving integral equations without thinking about the definition of equations.

So, the author of this piece of text — whether the compiler of the Alcibra amuchabile
or some predecessor — is on his way on ‘“the royal road to us” — but he has still not
advanced so far on it that the starting point has been lost from view.

Problem 22 (p. 48) illustrates how far away from us he is. It deals with a loan at
compound interest over two years, and in this connection gives a general explanation that
the solution

for one year follows from number, and in two years it comes by simple root, and in 3 years
it comes by cube root, and in 4 years it comes by root of root, and in 5 years it comes by root
of cube root, and in 6 years it comes by [cube?] root of [cube?] root.

As we see, at least the fifth root emulates the naming of the fifth power by multiplication;
a copying error prevents us from seeing whether this was also the case for the sixth power.
In any case, since the problem deals with two years, the compiler has no occasion to
discover the absurdity.

Antonio de’ Mazzinghi

Some of those abbacus books from the later 14th century that try to present the whole
of abbacus mathematics leave out algebra; this we have seen exemplified by the redaction
of Jacopo’s Tractatus. Those that present the discipline mostly teach us little new; we

3! That Biagio had already multiplied by the denominator as a matter of course (above, p. 209)
merely shows that we are not dealing with linear progress; nothing indicates that the present compiler
knew Biagio’s text.
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shall return to an exception to this rule and bypass the others.

At first, however, we shall look at an outstanding figure, Antonio de’ Mazzinghi from
Florence, a representative of the school tradition spanning from Biagio il vecchio to
Benedetto da Firenze.

According to Benedetto’s Praticha (above, p. 205), fol. 451", transcr. [Arrighi
2004/1965: 157]), Antonio was a student of Paolo dell’ Abbacho and began his career as
an abbacus teacher when Paolo died (that is, in 1367); Benedetto further relates that
Antonio was said to have died around the age of 30. On fol. 431" this is said to have
happened around 1390. Weighing this incongruous information (Antonio, however bright,
cannot have started teaching at the age of 7!) against a number of documents from the
Florence archives, Ulivi [1996] concludes that Antonio must have been born between 1350
and 1355, and probably died in 1385-86 — thus essentially confirming what had been
suggested by Van Egmond [1976: 354-356] on a narrower basis.

We know Antonio’s mathematics from reports and excerpts in various later treatises.
The encyclopedic manuscript Florence, BNC, Palatino 573 (above, note 151) relates (fol.
258, ed. [Arrighi 2004/1967: 183]) that Antonio is said to have produced the first tables
of compound interest. The tables are reproduced on fol. 262"-277"; they deal with the
value, on one hand of 100 £, on the other of 1 £ (expressed in £, B and ) after 1, 2, 3,
... 20 terms, at the rate of 5, 5%2, 6, 6%, ..., 20 percent per term (thus expressed, not as
mostly done in § per £ per month); as we remember from p. 20, 15 percent per year was
in the upper end but still permissible.”* The same treatise refers (fol. 397", ed. [Arrighi
2004/1967]) to a Gran Trattato from Antonio’s hand in which he presupposes the reader
to be familiar with part 15.1 of the Liber abbaci.

According to Benedetto’s Praticha (fol. 451", ed. [Arrighi 2004/1965: 158], Antonio
“left many volumes about geometry and arithmetic, but the most sublime is the one entitled
Fioretti, in which are written the cases that I shall show; so, be attentive”.

Ulivi [1996: 123] suggests that this collection of “small flowers” should be identified
with the Gran trattato. The title (in particular when used by somebody as familiar with
Fibonacci as Antonio) seems rather intended to intimate a relation to the Gran trattato
similar to that of Fibonacci’s Flos to the Liber abbaci. There is also nothing in the Fioretti
that relates to Fibonacci’s part 15.1. In any case, what Benedetto copies corresponds well
to the Flos, being a collection of often intricate and supposedly beautiful problems
(whoever can be charmed by mathematics will agree).*?"

** Tables for the growth of 100 £ are also found in the manuscript Vatican, Ottobon. lat. 3307,
fol. 225-233", with an inversion on fol. 229". The announcing words on fol. 221" state that such
tables “were first composed” by Antonio, and thus do not promise to render Antonio’s original
faithfully.

21Tt may be worth noticing that Antonio gave to Fibonacci’s Flos the Italian title Fioretto — see
the quotation in the manuscript Vatican, Ottobon. lat. 3307, fol. 348" [ed. Arrighi 2004/1968: 221].
In the same quotation, Antonio speaks of the Liber abbaci as Fibonacci’s Praticha d’aresmestricha
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Starting just after Benedetto’s “be attentive”, Arrighi [1967a] contains an edition of
the Fioretti, which I shall use in the following (checking the manuscript when there seems
to be a reason to do s0).??! The text contains a number of editorial observations made
by Benedetto (as does his extract from Biagio — cf. above, p. 207); but they are clearly
separate, and what remains can (precisely because of Benedetto’s care to make clear where
he intervenes) be ascribed with fair certainty to Antonio; so can, as is particularly
important, the order of the problems.

Quite apart from its appeal to the aesthetic feeling of mathematicians, the Fioretti
as we know it from Benedetto is of the highest interest because it turns out at closer
inspection to be a work in progress, or at least a work where Antonio has done nothing
to eliminate the traces of his progressing insight. The most direct evidence for this (we
shall come back to strong indirect evidence) is problem 29 (p. 63)

10=a+b, a’+b*+Va+\b =86 ;

Antonio makes a position a = 5—¢; b = 5+1¢, which leads to

JS5-t+ 5+t =36-2¢7.

At this point, Antonio exclaims “I do not like it, and therefore I do not complete it” —
after which he goes on with a problem about three numbers in continued proportion.**!

Also unexplainable unless we assume a work in progress is the beginning of problem
34 (p. 70) — a false start:

Make two parts of 10 for me so that, when one is divided by the other and the other by
the first and they are joined together, etc.

Make two parts of 10 for me so that, when one is divided by the other and the other
by the first and each division is multiplied in itself and they are joined together [...].

Benedetto’s editorial intention is expressed on p. 47, where he says that something
could be expressed in a particular way; “but since we speak like Master Antonio, we shall
say” — and then the matter is formulated by means of formal fractions involving algebraic
polynomials. There is thus no doubt than Benedetto tries to render notation as well as
mathematical procedures faithfully.

The extract from the Fioretti ends (p. 94) with the words

and about many Florentine citizens possessing Fibonacci’s works.

322 Problem and page numbers in the following refer to this edition. The problem numbering is too
similar to what Benedetto does elsewhere to make us sure that it originated with Antonio; on the
other hand, it agrees so nicely with what is found in other abbacus writings that nothing excludes
Antonio’s hand.

33 If problem numbers had been supplied by Benedetto, it would have been natural to provide this
new problem with one of it own. That this does not happen may be taken as a strong suggestion
that the numbering is due to Antonio.
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I would have many things to say; but for lack of time and because the volume would grow,
we shall put an end to this chapter, and therefore to the book

—namely to book XV of Benedetto’s Praticha. Comparison with the corresponding clause
at the end of the extract from Biagio (above, note 294) seems to tell us that Benedetto’s
version of the Fioretti is complete.

The Fioretti consists of 45 problems™* and a section mirabile dictum about
properties of continued proportions. The most striking innovation in the treatise is the
gradually developed use of two algebraic unknowns, wholly different from what we (and
Antonio) have encountered in the Liber abbaci.

In problem 9 (p. 28) the beginning of the procedure suggests the use of two unknowns.
It deals with two numbers (A and B), fulfilling the conditions that

AB=8, A’+B*=27.
At first, “though the case does not come in discrete quantity”, Antonio solves it by means

of Elements 11.4, according to which (when it is read as dealing with “quantities” and
not line segments)

A’+B*+2AB = (A+B ).

3 3 3 3
A= 102 122 g 102 22

Next Antonio states that

This leads to

we can also make it by the equations [aguagliamenti ] of algebra; and that is that we posit
that the first quantity™ is a thing less the root of some quantity, and the other is a
thing plus™ the root of some quantity. Now you will multiply the first quantity
[A] by itself and the second quantity [B ] by itself, and you will join together, and you
will have 2 censi and an unknown quantity, which unknown quantity is that which there
is from 2 censi until 27, which is 27 less 2 censi, where the multiplication of these
quantities [those of which the square root was taken] is 13, less a censo. The smaller
part is thus a thing minus the root of 13, less a censo, and the other is a thing plus the

2 The second-last and the last are both designated 44.

33 The two numbers of the statement have now become “quantities”. There is nothing unusual in
this, Antonio often replaces one word by the other. In the following lines that creates some
confusion, only to be kept under control by keen unspoken awareness of what the various “quantities”
refer to. Further on Antonio shows to be aware of the difficulty and to know how to eliminate it.

326 «“plus” translates piil, literally “more” — but the expression “una chosa pili la radice d’alchuna
quantita” is ungrammatical if pin is understood in this literal way. The word instead functions as
a quasi-preposition, just like our “plus”. Fortunately the English word “less” can serve as a quasi-

preposition as well as in adjective function, just like Antonio’s meno.
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root of 13, less 1 censo. [...].

If Antonio had worked with two algebraic unknowns, taking the “some quantity” as the
second unknown (say, ¢ ), he would have started with these steps (C stands for censo ):

A=t+Vg, B=1t-g
A’+B?>=2C+2(Vg) =2C+2q
whence
q=13"%-C,
which corresponds to the numerical steps in Antonio’s argument, and obviously to his
understanding. But what he does can instead be expressed

a=t+\?, b=t
a+b*=2C+7,

and the fact that “??” equals two times “?” stays in his mind.
From this point onward, the method is algebraic, but with only one unknown.

The following problem 10 (p. 30) begins

Find two numbers whose squares are 100, and the multiplication of one by the other is
5 less than the squared difference. Posit that the first number be a thing plus the root of
some quantity, and the second be a thing less the root of some quantity, and multiply each
number by itself and join the squares, they make two censi and something not known.
And these squares should make up 100. Whence this unknown something is the difference
there is from 100 to 2 censi, which is 100 less 2 censi. [...].

Antonio here gets even closer but still does not fully implement the possibility of working
algebraically with two unknowns. But he is clearly preparing mentally; then, in problem
18 (p. 41) the idea is unfolded:

Find two numbers which, one multiplied with the other, make as much as the difference
squared, and then, when one is divided by the other and the other by the one and these
are joined together make as much as these numbers joined together. Posit the first number
to be a quantity less a thing, and posit that the second be the same quantity plus a thing.
Now it is up to us to find what this quantity may be, which we will do in this way. We
say that one part in the other make as much as to multiply the difference there is from
one part to the other in itself. And to multiply the difference there is from one part to
the other in itself makes 4 censi because the difference there is from a guantity plus a
thing to a quantity less a thing is 2 things, and 2 things multiplied in itself make 4 censi.
Now if you multiply a quantity less a thing by a quantity plus a thing they make the square
of this quantity less a censo; so the square of this quantity is 5 censi. And if the square
of this quantity is 5 censi, then the quantity is the root of 5 censi; whence we have made
clear that this quantity is the root of 5 censi. And therefore the first number was the root
of 5 censi less a thing and the second number was the root of 5 censi plus a thing. We
have thus found 2 numbers which, one multiplied in the other, make as much as to multiply
the difference of the said numbers in itself; and one is the root of 5 censi less a thing,
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the other is the root of 5 censi plus a thing. Now remains for us to see whether one divided
by the other and the other by the one and these two results joined together make as much
as the said numbers. Where you will divide the root of 5 censi less a thing by the root
. o raof5cless p radiscmelp

of 5 censi plus a thing, this results, that is, — T T LTas e 1. Arngf ghf,r}/u?/loél
will divide the root of 5 censi plus 1 thing by the root of 5 censi less a thing, m
results."*" And these two results should be joined together; where you will multiply the
root of 5 censi plus a thing across,*™ that is, by the root of 5 censi plus a thing, they
make censi plus the root of 20 censi of censo; and further multiply root of 5 censi less
a thing across, that is, by root of 5 censi less a thing, they make 6 censi less root of 20
censi of censo.”* Which, joined with 6 censi and root of 20 censi of censo, make 12
censi. And this quantity we should divide in the multiplication of the root of 5 censi less
a thing in root of 5 censi plus a thing, which multiplication is 4 censi because root of
5 censi in root of 5 censi make 5 censi, and a thing plus multiplied in a thing less™*"
make a censo less, and when it is detracted from 5 censi, 4 censi remain, and multiplying
1 thing plus by root of 5 censi and 1 thing less by root of 5 censi, their joining makes
0. So the said multiplication, as I have said, is 4 censi, so these two results are 12 censi
divided in 4 censi, from which comes 3. And we want they should make as much as the
sum of the said numbers, whence it is needed to join the root of 5 censi less a thing with
the root of 5 censi plus a thing, they make 2 times the root of 5 censi, which is the root
of 20 censi. Whence the joining of the said numbers is the root of 20 censi, and we say
that it should be 3; so 3 is equal to the root of 20 censi. Now multiply each part in itself,
and you will have 9 to be equal to 20 censi; so that, when it is brought to one censo, you
will have that the censo will be equal to %,. So the thing is equal to the root of %, and
if the thing is equal to the root of %, the censo will be worth its square, that is, %,. So
the first number, which was the root of 5 censi plus a thing, was 1', plus the root of
%ho; and the second number, which was the root of 5 censi less a thing, was 1, less the
root of %,. And so is found the said two numbers [...].

This probably goes beyond what Antonio was able to do by mental implicit use of a second

77 We observe that Antonio, as Biagio (above, p. 208) uses p for the thing and mé for meno, “less”;
but also that addition is not made by mere juxtaposition but indicated by a fully written piu, “plus”,
while censo is abbreviated c. The difference between the ways Biagio’s and Antonio’s texts are
dealt with confirms that Benedetto does not impose his own ways on the texts he copies. To the
same effect we may add that the manuscript Vatican, Ottobon. lat. 3307, also copying Antonio,
uses the same notation when Benedetto does so — as seen for example on fol. 338" in the Ottoboniano
manuscript confronted with fol. 456 in Benedetto’s text.

32 The cross-multiplication is shown in a symbolic operation on the two formal fractions in the
margin in the manuscript (fol. 458") — Benedetto’s autograph, but certainly copied from Antonio,
as argued in [Hgyrup 2010: 31-33]. A similar marginal calculation occurs when Biagio adds two
formal fractions on fol. 403".

329 Arrighi has “20 censi”, but the manuscript (fol. 458"), correctly, has “20 censi di censo”.

330 We observe a distinction between additive and subtractive (not yet negative) numbers.
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unknown, or at least beyond what he found it possible to convey to a reader in this way.
This is the likely reason that he now makes the use of two unknowns explicit, and also
chooses a more stringent language, pointing out that the same quantity is meant in the
two positions. Awareness that something new and unfamiliar is presented to the reader
is reflected in the explanation that now “it is up to us to find what this quantity may be” —
it is never stated that the thing has to be found, neither here nor elsewhere in problems
with a single algebraic unknown, that goes by itself.

It is also noteworthy that from this point onward, quantity in general use (cf. note
325) disappears from all problem solutions where that term is used to designate one of
two algebraic unknowns (but not from other problems — in these quantity is still used
profusely.?*!

The procedure can be translated into familiar symbols as follows:

AB=(A-B), *,+%, =A+B
with the algebraic positions

A=gq-t, B=g+t.

Then
(A-B ) =4C, while AB=q¢>-C,
whence
q2 =5C,
that is,

q=5C .

In consequence we have the preliminary result

A=/5C-t, B=5C+t.
Inserting this in the other condition we get
A B NGBC)-t NGBC)+t
BTA T NGC)+1 T NGC)-1
which, after cross-multiplication, becomes
A B (NGC)-1P+((GBC)+1?  6C+6C  12C
BYA " 5C-C =~4c "¢ =3

Therefore, since

A+B=2g=2/5C

3! There are two apparent exceptions, one in the present problem (“this quantity we should divide
in the multiplication of the root of 5 censi less a thing in root of 5 censi plus a thing”), one in
problem 28 (pp. 61f). Both, however, turn up after the algebraic quantity has been eliminated,
and the problem thus reduced to one with a single unknown thing.



- 232 -

we have
2/5C =20C =3,

whence
20C=9.
Tacitly interchanging “first” and “second” number, Antonio thereby obtains that
B =1"%+%, A =1, .

This would probably have been very difficult even for a mathematician of Antonio’s calibre
without the explicit use of two unknowns. Once Antonio had decided to make the step,
things were easy. As we can see in the marginal calculations, Antonio routinely performed
formal calculations involving p (standing for the thing, we remember) and ¢ or ¢ (both
standing for censo) — his “multiplication across” refers to that.

Now, once the method has been invented and introduced, Antonio makes use of it
even in problem 19 [ed. Arrighi 1967a: 43], which could have been solved according to
the pattern we know from problems 9 and 10:

Find two numbers so that the root of one multiplied by the root of the other be 20 less
than the numbers joined together, and their squares joined together be 700. It is asked,
which are the said numbers? You will make position that the first number be a thing less
some quantity, and posit that the other number be a thing plus some quantity. And then
you take the square of the first, which we said was one thing less one quantity, and its
square is one censo and the square of this guantity less the multiplication of this quantity
in a thing. And the square of the second number, which we say is a thing and some
quantity, is a censo and the square of this quantity plus the multiplication of this quantity
in a thing.™* Which, joined together, make 2 censi and 2 squares of 2 quantities.**
And we say that they should make 700, whence one of these squares is 350 less one censo.
This quantity is thus the root of 350 less once censo. And we posited that the first number
was one thing less one quantity, that is was hence one thing less the root of 350 less one
censo. And the second number, which was posited to be a thing and a quantity, was one
thing and root of 350 less one censo. And thus we have solved a part of our question,
that is, to find two numbers whose squares joined together make 700. Now it remains
for us to see what it makes to multiply the root of one by the root of the other. Therefore
you thus have to multiply the general root of one thing less root®# of 350 less one

32 Obviously, the product of quantity and thing should be taken twice here as well as in the square
of the first number. Antonio abbreviates, knowing that the two elliptical expressions cancel each
other.

33 2 quadrati di 2 quantita — namely “the two squares coming from the two distinct quantities”.

33 Underlined root renders ® or an encircled fully written radice (Arrighi does not indicate the
encirclings, they have to be traced in the manuscript). Antonio may well be the one who introduced
this notation for the “universal” or “bound” root, the root taken of a binomial (cf. above, p. 216).
As we see, Antonio avoids the inherent ambiguity by using the further notion of a “general root”,
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censo by the general root of one thing plus root of 350 less one censo, they make root
of 2 censi less 350; and this is their multiplication. For these matters one has to keep the
eye keen, I mean of the mind and the intellect, because even though they seem rather
easy, none the less, who is not accustomed will err. Therefore we have thus found that
this multiplication is the root of 2 censi less 350, and this we say is 20 less than the
numbers joined together. And the said numbers joined together are 2 things, that is joining
a thing less root of 350 less a censo with a thing plus root of 350 less a censo, which
indeed make 2 things. Whence we have that 2 things less 20 are equal to the root of 2
censi less 350; whence, in order not to have the names"*! of roots, multiply each part
in itself, and you will have that root of 2 censi less 350 multiplied in itself make 2 censi
less 350, and 2 things less 20 multiplied in itself make 4 censi and 400 less 80 things.
So 2 censi less 350 are equal to 4 censi and 400 less 80 things. Where you should make
equal the parts giving to each part 80 things and removing 2 censi; and we shall have
that 2 censi and 750 are equal to 80 things, which is the fifth rule. Where you bring to
one censo, and you will have one censo and 375 equal to 40 things. Where you will halve
the things, and let the half be 20, multiply in itself, they make 400, detract the number,
they will make 25, that is, detracting 375 from 400, of which 25 take the root, which is
5, and detract it from 25, 15 remain. And you will say that the thing is worth 15, and
the censo will be worth its square, which is 225. Whence the first number, which we
posited that it was a thing less root of 350 less a censo, detract 225, which is worth the
censo, from 350, 125 remain. And you will say, one part was 15 less root of 125, and
the second number was 15 plus root of 125. [...].

In our usual translation:
VAVB=A+B-20, A’+B*>=700,
with the position
A=t-q, B=t+q,
where Antonio no longer feels the need to point out that the two “some quantity” (alchuna
quantita ) refer to the same quantity. He does not quite return to the formulation of

problems 9 and 10, A = t— q,B=t+ v g, since with the explicit position of g he can now
operate freely with its square. Antonio calculates

A’=C+q*-[2lqt, B*=C+q*+[2]qt,
whence
2C+2¢4° =700, ¢* =350-C, q=(350-C).
Therefore
A=1-(350-C), B=1t+V(350-C),

where the “general root of one thing less root of 350 less one censo” stands for \/(t—\/ [350-C)).

35 Nomi. At least from Dardi onwards (above, p. 212) the algebraic powers (cosa, censo, cubo,
etc.) were spoken of as “names”; as we see, Antonio sees the roots of powers as belonging to the
same category.
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which is seen as a partial answer, and is inserted in the other condition:

AB = J1-V(350-C) -/1+V(350-C) = /C-(350-C) = {/2C-350

a calculation which seems straightforward but where, according to Antonio, the untrained
will none the less err.*®! At all events, with the correct calculation we now have

V2C-350 =A+B-20=2¢-20

whence after squaring
2C-350 = 4C+400-80¢ ,
which can be reduced to
2C+750 = 80¢ .
Solving this equation by means of the standard rule or algorithm for the fifth algebraic
case Antonio finds # = 15 — silently discarding the other solution ¢ = 25.%"

Several more problems are solved by means of two algebraic unknowns: number 20,
number 21, number 22 (twice during the procedure), number 24, number 25 and number
28. All seven make the position

A=t-q, B=t+q,
and all seven could instead have been solved in the same way as number 9 and number

10. They tell nothing new about the use of two unknowns, except that by now Antonio
had taken full possession of the technique.**!

3¢ Those who doubt Antonio’s words should be aware that near-contemporary algebraic writings
might presume that \/(a+\/b) = Va+\\b — thus the Libro di conti e mercatanzie [ed. [Gregori &
Grugnetti 1998: 116]. The somewhat cavalier use of language came at a cost for those who did
not fully understand what was meant (from our point of view a cost — themselves they hardly had
any occasion to discover). Cf. also below, note 415, on a fallacious solution to the problem which
Antonio for good reasons did not like.

37 This alternative solution indeed leads indeed to a complex and thus impossible values for g, and
hence also for A and B, which Antonio may have seen (not in our terms, of course). We should
remember that abbacus algebra regarded the two solutions to the fifth case (when solutions exist)
as possibilities of which at least one will be valid, cf. above, note 267.

33 Only one detail is noteworthy. Number 20 (p. 44), begins

Find two numbers so that their roots joined together make 6 and their squares be 60, that
is, the joining of the squares be 60. Posit the first number to be a thing less the root of
some quantity, that is, less some quantity; the other posit to be a thing plus the said
quantity. [...].
Once more we see that Antonio as copied by Benedetto presents us with a work in progress: if
the Fioretti had been polished, there would have been no reason to leave a formulation “root of
some quantity” then to be corrected. Antonio must at first have had in mind the method of problems
9 and 10; it is a plausible guess that he used an earlier solution of the problem — probably his own.
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Also noteworthy is the presence of no less than 11 problems dealing with numbers
in continued proportion,”*** accompanied by two (numbers 14 and 15) about compound
interest making use of Antonio’s theoretical insight in the topic, solving a problem which
had been considered impossible: to find the yearly interest equivalent to an interest of
20 percent made up every 9 months (#14); and to find the interest over 8§ months that
is equivalent to a yearly interest of 4 & per £ and month (#15). These question are
obviously related to Antonio’s interest in tables of compound interest, mostly with terms
of unspecified duration; in mathematical future perfect they are a step towards Jost Biirgi’s
way to introduce logarithms — cf. [Clark 2015].

Related to the tables of compound interest is #16, to find the yearly interest of a loan
which in five years grows from 1000 fiorini to 2500 fiorini, “which many ignorants have
said cannot be resolved”, but which Antonio solves via the extraction of a radice relata,
a fifth root.®*"!

These three problems have little if anything to do with practical commercial life. The
problems about barter (#11, #13), partnership (#12) and exchange (#43, #44a, #44b) have
even less — note 92, above, mentioned how Antonio manages to make the givens so
abstruse that second-degree equations result. All of these, like the refined pure-number
problems, are really fioretti, flowers picked on the field of abbacus mathematics, not
matters to be taught to merchants in spe for use in their trade. These hopefuls were
certainly also taught in Antonio’s school, but not from this book.

39 Numbers 1, 2, 3, 4, 5, 8, 23, 24, 25, 26 and 33.

30 This gives Benedetto the occasion for a cross-reference to the last chapter of his book 12. Before
wondering that Antonio’s problem could be deemed impossible we should be aware of what
Regiomontanus says about the analogous problem where 100 ducats grow to 900 over six years
in a letter to Giovanni Bianchini [ed. Curtze 1902: 256]: namely that it “sent him onto a major
rock” — namely because at first he had taken the yearly interest as his thing (cf. above, pp. 186
and 218). The solution he then gives shows him to have discovered Antonio’s easier way (which,
with fewer years, is also that of Fibonacci and Biagio).

The introduction of the radice relata solves the problem that made Dardi stumble: how to
express roots that cannot be composed of square and cube roots (cf. above, p. 217).

The manuscript Florence, BNC, Palatino 573, fol. 258" [ed. Arrighi 2004/1967: 191] quotes
Antonio for this explanation of the powers:

Thing is here a hidden quantity; censo is the square of the said thing; cube is the
multiplication of the thing in the censo; censo of censo is the square of the censo [quadrato
del censo ], or the multiplication of the thing in the cube. And observe that the terms of
algebra are all in continued proportion; such as: thing, censo, cube, censo of censo, cubo
relato, cube of cube, etc.

Since the sixth power is produced by multiplication, the fifth power could have been too, as censo
of cube or cube of censo. It looks as if the new name for the fifth root has called forth a
corresponding naming of the fifth power, at the moment without general consequences being drawn
(the name for the sixth power is still multiplicative).
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The Florentine Tratato sopra I’arte della arismetricha

Final facets of the development of abbacus algebra in the 14th century are visible
in the manuscript Florence, BNC, fondo princ. II.V.152 (above, note 151), Tratato sopra
I’arte della arismetricha.

Internal evidence (model loan contracts etc., and the contents of problems) tells us
that the treatise was produced in Florence in the early 1390s, which fits watermarks dated
to the years 1390-1399 [Van Egmond 1980: 138]. With this dating, the author almost
certainly knew about Antonio as a recent colleague. As we shall see, however, he appears
not to have known his mathematics too well; his innovations are his own, or in any case
not borrowed from Antonio’s lost writings.

The Tratato is written in a single hand. Its extensive algebra was edited by Franci
and Marisa Pancanti [1988]; page references in the following will point to this
edition.**!

The algebra occupies fol. 145'-180". As we have seen in other cases, it begins with
generalities — in the present case by explaining the sequence of algebraic powers, where
explicit insight in the nature of this sequence as a continued proportion is combined with
an astonishing terminological innovation.

The thing (cosa) is explained (p. 3) as

nothing but a position that is made in many questions, and when it happens this position
that has been made may stand for [portare, literally “carry”] the quantity of a number
at some occasion, or a quantity of time at another occasion, or a quantity of cubits [...].

Further,

Having seen what a thing means, having shown that it is a position, we come to its
multiplication: we should know that a thing multiplied in itself makes a root which is
called a censo, so that it is the same to say a censo as to say a quantity which has a root,
engendered from a number multiplied by itself.

This turns out to be the beginning of a system. A thing multiplied against a censo gives

a cube, that is a cube root, so that if you should say that if the thing should produce 6,
then the censo will produce 36, that is, the square of the thing, the cube will produce 216
[...]. So it is the same to say a cube as to say a cube root of a given number.

Next (p. 4), thing times cube produces a censo of censo, “which is to say root of the
root of a given quantity”; that of a thing and a censo of censo will make

cubo di censi, which will be as much as saying a root which is engendered by a squared
quantity multiplied against a cubed quantity; as it would be to say, if the thing were worth

*! Insofar as possible I have controlled critical points in a barely readable scan of a low-quality
secondary microfilm.



- 237 -

6, the censo is worth 36, and the cube will be worth 216, and the multiplication that is
engendered by the 36 against the 216 will be 7776, you will thus say that if the thing
were worth 6, then the cube of the censo will be worth 7776, and there are some that call
this root the radice relata. So it is the same to say cubo of censo as to say radice relata
of a quantity.

This passage shows us, firstly, that our anonyme can hardly have been too close to
Antonio; either he has misunderstood his use of radice relata (namely that it refers to
a proper fifth root and not to a fifth power), or he refers to an already current usage (by
“some”’) without taking Antonio into account. Secondly we see that while Giovanni di
Davizzo’s impossible “multiplicative” composition of roots has no influence, multiplicative
composition of powers was still in use, in spite of the unusual phrase cubo of the censo
(chubo del censo , that is, including the definite article), even used about numbers where
the grammatically proper reading should be “cube of 36” (the censo having just been said
to be 36), that is, 46656.

If it had not been for what follows immediately, this might look as a pedantic
imposition of modern thought; but the next step shows that we are in the midst of a “phase
transition” of algebraic thought:

If you want to multiply a thing against a cube of censo, it will be a censo of cube [censo
di chubo ], which means as much as to say, taken the root of some quantity, and of this
quantity taken its cube root, as it would be if the thing were worth 3, the censo will be
worth 9, the cube will be worth 27, the censo of the censo will be worth 81, the cube
of the censo will be worth 243, the censo of the cube will be worth 729, because, taken
the root of 729 it will be 27, whose cube root is 3, and that equals the value of the thing.

This is the preliminary concluding step of the explanation of powers. Whereas the fifth
power, in the notation which is used so far, is KC, where the juxtaposition means
multiplication (and K as well as C are thus understood as entities ), the designation of
the sixth power has to be expressed as C(K), where C, in modern terms, is a function.
We may assume that the transition, partial as it is, has been called forth by interaction
with the taking of roots; to which extent it is also, at a different level, an outcome of
challenges between abbacus masters is undecidable as long as we have not texts hinting
at that.**

*2 A speculation is possible: a change due to explicit challenges would likely lead to explicit
understanding and thus to a full transition involving cube as well as censo. My guess, which can
be no more (beyond being based on psychological experiments which I performed half a century
ago, never published), is that the full transition which occurs over the following century may well
be the outcome of social interaction — discussion, challenge or both — but the present beginnings
a result of private thought.

We may remember how Antonio’s naming of the fifth root affected his naming of the fifth
power (above, note 340). The present Tratato seems to have improvised like Antonio but not to
have borrowed from him.



— 238 -

Some further rules for multiplying powers follow on pp. 4f, pointing out that the
powers are in continued proportion. Here, the sixth power — whether produced as cube
times cube or as thing times censo of cube is named cube of cube (chubo di chubo). If
these inconsistencies were produced by a bungler, they would tell us nothing of general
importance; but as we shall see, the author was an eminent algebraist, and they are
therefore evidence of a difficult birth.

The Tratato goes on with the multiplication of algebraic binomials and polynomials
shown in schemes — for the binomials similar to what we find in the Alcibra amuchabile
and in Dardi — for instance, for (61-3):(5t+4)

6 chose meno 3

5 chose piu 4

When dealing with tri- or higher polynomials, the scheme is (by necessity) different. So,
(6+8+Y9)(6+8+V9) is shown (p. 11) as

6 chose e 8 e RS
6 chose e 8 e RS

censi p n R
36 9
36 96 48
64

36c  132p 121n

where advantage has been taken of the fact that \9 is rational. Such schemes would still
be in full use in the printed algebras of the 16th century. Here it is (correctly) explained
to emulate the multiplication of three-digit numbers a casella (not quite our algorithm,
but based on the same principles).

As we have seen it before, this introduction about powers and polynomial arithmetic
is followed from p. 44 to p. 97 by an enunciation of what in the closing words is called
“the 22 rules”. These are the same as those of Jacopo, supplemented by the two failing
biquadratics. We may observe that there is no trace of Dardi’s explicit notion of
coefficients — to use the first rule as example, the initial normalization is spoken of as
“division of the number by the things”.

All rules are provided with examples — 51 in total, since most are provided with at
least two. In several cases (#10, #11, #12, #175*) it is also pointed out that they can
be reduced to one of the basic 6 cases through division; in number 17 it is moreover
claimed that all cases after the first six can be reduced to these, which is evidently only
true if the root extraction of #2 is generalized to the extraction of any root. 15 of the
examples are of the simple “such part” type, which leads directly to the corresponding
equation type. Of the remaining six pure-number problems, two are of interest. The first
example for rule 5 is

3 The cases are not numbered in the edition, but in the manuscript they are.
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10 = a+b, a*+b*> = 82 .

Taking a to be a thing, the problem is reduced to 2C+18 = 20¢, indeed the fifth case. The
third example for rule 6 is strictly parallel,

10 = a+b, a*+b* = 60 .
Taking again a to be a thing, we would get 2C+40 = 20z, again the fifth case. But instead
the author chooses a to be a thing+4, whence b is 6-thing. This results in the equation
2C =4+8. the sixth case. It appears that the author is full aware of the effects of a linear
change of variable, which we shall see confirmed below.

The remaining 30 problems are in commercial or recreational dress, but as we have
seen it in other algebras they deal with situations that could never present themselves in
proper commerce. Often, traditional linear types like the give-and-take are twisted so as
to become non-linear — for instance (p. 82) in the first example for rule 16 (aCC =

BK),

Three men have denari, the first says to the second, if I multiplied my denari by
themselves I shall have 2 times as much as you, the second says to the third, if [ multiplied
my denari by themselves I shall have three times as much as you; and the third says, and
I have 4 times as many denari as when the denari which the first has are multiplied by
those of the second, it is asked how many has each on his own.

Nothing absolutely new, of course, already Jacopo had a give-and-take problem involving
a square root, though only with two participants (above, p. 185).

Seemingly commercial problems like barter (also by nature linear) are dealt with in
similar ways, by augmenting the value of goods not by a fraction but, for instance, by
its square root. As a result, the transformation of these warped problems into an equation
is quite intricate — and solution without the use of algebra hard to imagine.

Two problems are worth mentioning not because they tell us something new about
mathematical thought but as traces of connections over time.

One is the second example for rule 15 (CC = BC), which is simply Jacopo’s fourth
fondaco problem, with numbers doubled (first and third year together 40 fiorini, second
and fourth year together 60 fiorini). In the present Tratato, the properties of continued
proportions are discussed explicitly. The solution makes use of algebra, but — without
saying so — first of the factor of proportionality which is also behind Jacopo’s solution —
namely by positing the salary of the first year to be 2 censi, and that of the second year
3 censi. The following algebraic calculation is much more complicated than it needed
be. In particular, of course, the choice of the basic unknown as a censo seems strange.
Admittedly, it serves to make a second-degree problem emerge as a biquadratic, but the
author seems not to be have thought of that — once he has found the censo he feels obliged
to find the thing, and then to return to the censo by squaring. It seems likely that he builds
on a source where, in the original Arabic way, the censo stands for an amount of money.

More than likelihood is involved in the second problem. The fourth example for rule
13 starts like this (p. 76):
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Somebody lends to another one 1000 £ to make up at the end of year, and when he came
to the end of the 4 years he gave him back in capital and interest £ 14641, it is asked
at what were his denari per hundred. [...]

As can be guessed from the value after 4 years and as confirmed by the subsequent
calculation, “1000 £ is a mistake for “10000”. Exactly the same formulation, including
the mistaken 1000, is found in Biagio’s Praticha as copied by Benedetto. The rest of the
calculation is also explained in almost the same words. It seems next to certain that the
anonyme copied from — and thus, as later Benedetto, had access to — Biagio’s work.

What follows on p. 98 after the 22 rules with examples builds on the tools that led
to the discovery of Dardi’s irregular rules, and were pointed out above (p. 219) to be
possibly borrowed from Biagio. Here, they are used for a mathematically impeccable
purpose — a mathematically valid approach to irregular equations:

We have so far explained the 22 rules of algebra with examples, here we shall show how
other rules can be made, by which are solved several questions which would not be solved
by the 22 rules. And when we want to deal with this it is at first necessary to make clear
that there are other roots than those of which one commonly speaks, that is, that there
are other roots than square and cube roots, and among these there is one called cube root
with a joined number [radice chubica con I'aguagliamento d’alchuno numero™*],
and about that one I want to show certain things.

On p. 209 we encountered the “pronic” root, which is connected to the equation CC+t =
N. The cube root with addition o instead procures the solution to equations of the type
K = ar+N. So, as explained, the cube root of 44 with 5 added is 4 because 43 = 44454,
Similarly (still the text), the cube root of 65 with addition 12 is 5 because 5° = 65+12°5.

We might find this rather uninteresting, nothing but a synonym for “the solution to
the equation K = our+N”. Firstly, however, we should remember that as long as we make
no approximations (and abbacus algebra never does), then the same can be said about
the square and cube roots, similarly synonyms for “the solution to the equation C = N”
respectively “to the equation K = N”.

Secondly, the author uses this particular root not to postulate solutions but to explore
possibilities and connections. He shows that it is sometimes but not always possible for
a given ¢ and K to find a fitting (integer) value of a. For instance, for N = 36 we may
choose K = 64 (whence ¢ = 4), and then find o0 = (64-36)+4 = 7. The cube root of 15
with added 2 cannot be found in this way, it is pointed out, whereas that with added 4
can.

After this explanation the author turns to such rules where this can be used — and

4 As the further text shows, aguagliamento (meaning “equation”) is a mistake for agiugnimento,
which gives my translation. As we shall see (below, p. 276), a contemporary source speaking about
the same type of root also speaks about “joining”.
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these turn out to concern cases that can be transformed so as to have the shape K =
ot+N. One of them is aK+BC = N (p. 99). At first it is normalized, with an outcome
that it is easier for us to deal with if we write it as
£+3af =m .

Completion gives

P+3ar4+3a’t+a’ = m+a’+3a*t
that is,

(t+a)’ = m+a*+3a*(t+a )-3a*a ,
which is exactly what the rule of the text says, in this order and without reduction of the
expression to the right. There can be no doubt that the transformation was derived in a
way that corresponds closely to our use of polynomial algebra.

In this way it is shown that the notion of a cube root with added number can also
solve problems of the type aK+BC = N. After application to three examples it is shown
on p. 102 and 104 to apply to the cases oK = BC+N and BC = oK+N. The problem on
p. 102 even shows that the new root can be taken of negative numbers: the cube root
of “debt 80” with addition of 108 is indeed 10, since 10° = —80+10-108.

At the end come 41 problems — some of them as difficult as those contained in
Antonio’s Fioretti, though not the same. Formal fractions are made use of when adequate,
with the powers written in full words, without abbreviation.

Absent, however, are second-degree problems solved by means of two algebraic
unknowns. The last four problems, on the other hand, throw oblique light on the gradual
acceptance of a second unknown. They are all of the first degree, two of the type “purchase
of a horse”, while two deal with the “finding of a purse”. All four are similar in their
principles; we may take a closer look at the first of them (p. 145). Beyond the description
of the procedure, there are some metamathematical commentaries — here in spaced writing:

Three have denari and they want to buy a goose, and none of them has so many denari
that he is able to buy it on his own. Now the first says to the other two, if each of you
would give me ', of his denari, 1 shall buy the goose. The second says to the other two,
if you give me Y, plus 4 of your denari I shall buy the goose. The third says to the other
two, if you give me ', less 5 of your denari I shall buy the goose. Then they joined
together the denari all three had together and put on top the worth of the goose, and the
sum will make 176, it is asked how much each one had for himself, and how much the
goose was worth. Actually I believe to have stated similar questions
about men in the treatise,?’ but wanting to solve certain
questions in anew way I have found new cases which I do not believe
to have [already] treated. [...]. Therefore I have made it in such way
that in this one and those that follow it will have to be shown that

*5 Namely, in the sense that fol. 97'—110" (coming before the algebra) contain a large number of

9 <

“give and take”, “purchase of a horse” and “finding a purse” problems.
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the question examined by the rhing will lead to new questions that
cannot be decided without false position. [...]. I shall make this beginning,
let us make the position that the first man alone had a thing, whence, made the position,
you shall say thus, if the first who has a thing asks the other two so many of their denari
that he says to be able to buy the goose, these two must give to the first that which a goose
is worth less what a thing is worth, which the first has on his own. So that the first can
say to ask from the other two a goose less a thing, and you know that the first when he
asks for the help of the others asks for Y, of their denari. So the two without the first
must have so much that '; of their denari be a goose less a thing, and in this way you
see clearly that the second and the third together have 3 geese less 3 things. Now it is
to be seen what all the three have, and it is clear that the first by himself has a thing and
the other two have 3 geese less 3 things, so that all three have 3 geese less 2 things. Now
we must come to the second, who asks from the other two '/, plus 4 of their denari and
says to buy a goose. I say that when the second has had as help of the other two the part
asked for, he shall find to have a goose**).

Further protracted arguments show that B is ', goose plus %, things less 5"/, in number
(A, B and C being the three original possessions). Since B+ C has been seen to be 3 geese
less 3 things, C is 2%, geese and 5", in number less 3, things. Using then that
C+',(A+B)-5 is a goose, it is found (I skip the intermediate steps) that 17, geese equals
3Y, things and 1 in number or, multiplying “in order to eliminate fractions”,

Tgeese = 13things+4 .

Moreover, since A + B+ C was seen to equal 3 geese less 2 things, and these together with
the goose equalled 176, we have

4geese—2things = 176 .

Now, for instance, the thing might have been found from the latter equation (namely,
to be 2 geese less 88) and inserted in the former, which would immediately lead to the
goal. Instead the author goes on,

So, you have two equations [aguagliamenti ], which are solved one by means of the other
in this way: You have on one side that 7 geese must be worth as much as 13 things and
4 in number, on the other side you will have that 4 geese must be worth as much as two
things and 176 in number, put the sides [parti™"] together, now I shall make the
position that the goose is worth 40, and take the first side, that is that 7 geese are worth
as much as 13 things and 4, if the goose is worth 40, the 7 will be worth 280, thus 13
things and 4 are worth 280, dividing the 276 by 13, the thing will be worth 217%,,. With
this go to the other side, and you will say, if the goose is worth 40 and the thing is worth
21%,, we shall see that 4 geese are worth as much as 2 things and 176, where we know
that so much should be worth one as the other, from where it is manifest that the 4 geese

6 Thus the manuscript; the edition has a mistaken thing.

37 Here, the parti do not (as elsewhere, also in the present treatise) refer to the sides of an equation
but to the two equations. Once more we see that the terminology was in a state of flux.
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are worth 160, and this is on one side, on the other side the 2 things and 176 in numbers
will be worth 218%, and we indeed said that they should be worth 160, there comes
589, more for us [than there should]. Thus save in this first position for 40 that you
posited the goose to be worth there comes 58 %, more for us. Now make the other position
and posit that the goose is worth 80 [...], so you shall say in the second position for 80
that you posited the goose to be worth, 58 %, are missing for me. No take the two positions
that were made and follow the way to be made for positions that become plus and less,
and you shall find that the price of the goose was 60. When the price of the goose is
known you shall say, if the goose is worth 60, then 7 geese®™® are worth 420, and 13
things and 4 in number are worth 420, the thing is thus worth 32 [...].

This is far removed from the use of two algebraic unknowns as we have encountered
it in the Liber abbaci or in the Fioretti — the author can hardly have been familiar with
either. He seems to have been distantly acquainted with the use of a second unknown
in regula recta computations but not to have known it well enough to apply the method;
instead, drawing on the familiar technique of a double false position in a beauteous piece
of bricolage, he invents a method of his own — a method which apparently was destined
to remain his own, I do not remember having seen anything similar in later (or, for that
matter, earlier) sources. One comes to think of Jean Paul’s “little schoolmaster Maria
Wutz” who, when informed about an interesting book which he evidently cannot afford,
writes it himself [ed. Hecht 1987: 1, 119].

Even the ingenious transformation of third-degree equation types seems to have been
forgotten. Such transformations were to become a key element in Girolamo Cardano’s
general solution of third-degree equations, but Cardano appears to have had to reinvent.

So, all in all, abbacus algebra unfolded impressively during its first brief century,
if we compare Jacopo’s beginning with Dardi, Antonio and the anonymous Florentine.
But we cannot discern cumulative progress, apart from the evidence we have that ideas
shining through in Biagio’s Praticha had matured and influenced both Antonio and our
present anonyme. Algebra, as a sophisticated outgrowth on the practically oriented teaching
of the abbacus school, had insufficient social density to constitute a discipline — and also
to wipe out the fake rules, which were far more likely to impress the mathematically
incompetent judges in competitions for positions than the mathematically sound polynomial
transformations of the Tratato.

¥ Thus the manuscript; the transcription by error has 3geese.



The abbacus encyclopedias

The great innovation in 15th-century abbacus mathematics is the appearance of
ambitious “abbacus encyclopedias” — three from around 1450-1465, and from 1494
Pacioli’s Summa, to which we shall return in the next chapter. Here, we shall look at the
three Florentine specimens, all of which carry the descriptive title Praticha d’arismetricha.
As it turns out, here we see for the first time substantial borrowings from Fibonacci though
only dominant in sections explicitly borrowed from him.

One of them we have drawn upon extensively, since it was our source for Biagio
and Antonio: Benedetto da Firenze’s Praticha (see above, note 288). The second,
anonymous and contained in the manuscript Florence, BNC, Palatino 573 (henceforth
the “Palatino Praticha’), was mentioned first in note 25; it is also our primary source
for Antonio’s tables of compound interest (above, p. 226) and for his explanation and
naming of the algebraic powers (above, note 340). The third, equally anonymous, is in
the manuscript Vatican, Ottobon. lat. 3307 (henceforth the “Ottoboniano Praticha™).
Descriptions and extracts from all three were published by Arrighi in the 1960s, reprinted
as [Arrighi 2004/1965], [Arrighi 2004/1967] and [Arrighi 2004/1968].

As said above (note 288), the principal manuscript of Benedetto’s Praticha can be
seen from marginal computations to be the author’s working copy; these were indeed
repeatedly made before the main text was formulated. The two other encyclopedias (each
of which exists in a single copy only) can be seen in the same way to be authors’
autographs.*!

All three are in the Florentine tradition going back to Antonio de’ Mazzinghi, Paolo
dell’ Abbacho and Biagio. The two anonymous writers both declare themselves to be
students of Domenico d’ Agostino Cegia, apparently a mathematical dilettante of standing
and no abbacus teacher and known as i/ Vaiaio — “the fur dealer”, which had been the
profession of the family before protection by Lorenzo il Magnifico allowed it to improve
its already considerable material conditions and social standing [Ristori 1979; Ulivi 2002a:
48f]. All three encyclopedias quote material from named earlier members of the tradition
extensively; we have seen the lengthy extracts from Antonio in Benedetto’s as well as
the two anonymous Pratiche, and also Benedetto’s extract from Biagio, but there are more.

The Palatino Praticha was prepared (as a gift) for a member of the distinguished
Florentine Rucellai family, whom the author wants to “serve as a friend” [ed. Arrighi
2004/1967: 168]; the coat of arms of the Rucellai is depicted on the first page.”*”
Girolamo di Piero di Cardinale Rucellai took possession of the manuscript on 22 April

39 See for instance Palat. 573, fol. 64" and 69", and Ottobon. lat. 3307 fol. 48", 51-52" and 53"-54".

3%0 According to the same introduction, the treatise was a new version, with additions and deletions,
of an earlier one, of which we have no trace. Fictional loan documents on fol. 288-291 refer to
repayments to be made between 1450 and 1454; that might determine the date of the lost version.
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1460;°" we may safely assume that he

was the intended recipient, and that the writing Palazzo

was not much earlier than this date. Benedetto Rucellai.jpg

says in the very beginning that his treatise was

written for a “dear friend” in 1463, but since

the same page carries a depiction of the coat

of arms of the equally distinguished

Marsuppini family [Arrighi 2004/1965: 130],

we should probably think of a patron-friend —

although abbacus masters could be counted

as fairly wealthy when compared to master

artisans, they were far below the immensely

rich Rucellai and Marsuppini. The Ottobon-

iano Praticha carries no coat of arms, but the

introduction ends [ed. Arrighi 2004/1967: 211] Palazzo Rucellai, built around 1450—60
by asking “you, or whoever might get this [Libke & Semrau 1905:11].
work into his hand” to correct the errors that

might be found. Exactly the same phrase concludes the introduction to the Palatino
Praticha; even the Ottoboniano Praticha was thus meant as a gift to a particular person,
most likely another patron-friend."**?

Van Egmond [1980: 213] argues from watermarks that the Ottoboniano Praticha was
written around 1465. However, the author writes on fol. 315" about a certain problem that
it was sent to Florence by a master from L’Aquila “already around 12 years ago”.
According to Benedetto [ed. Pieraccini 1983: 118f] this happened in 1445. Only one of
the watermarks referred to by Van Egmond has not been identified in manuscripts dated
before 1461, which after all is no strict criterion. The best dating thus seems to be
1457-59.

This writing for patron-friends, at least two of whom belonged to the absolute upper
crust of Lorenzo (“il Magnifico”) de’ Medici’s Florence, already puts the three Pratiche
into a particular class of abbacus books. So does their size (all three between 700 and

31 [Arrighi 2004/1967: 1161]. In [Hgyrup 2010: 39], repeated in [Hgyrup 2019a: 858], an oversight
and a misreading made me argue for a date around 1470.

32 Both also open the explanation of the addition of fractions (Ottoboniano fol. 9", Palatino fol.
12") addressing the recipient with a promise to be concise, being “convinced that you know these
matters” — intendo dire brievemente queste chose le quali certo sono che sai, with the only difference
that the Palatino manuscript inverts, sono certo. The two obviously shared more than a teacher.
However, when arriving at the multiplication of fractions the Palatino Praticha repeats the promise
(fol. 13"), the Ottoboniano (fol. 9") not.

As we shall see in the following, the two treatises are largely drawn from the same archetype,
though not throughout.
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more than 1000 rather densely written folio pages) — and in particular their contents, which
illustrates the development of abbacus mathematics at its mathematical best and its highest
intellectual ambitions until the mid-15th-century.

The Ottoboniano and Palatino Pratiche

I shall first look at the Ottoboniano Praticha, to which least attention has been paid
by earlier workers,*** regularly confronting it with parallel passages in the Palatino
Praticha and in the Liber abbaci. The reader who does not like to eat pedantic dust may
skip the details.

The Ottoboniano Praticha is divided into 11 parts, subdivided into chapters. The
Palatino Praticha is very similar in structure, with the same parts and grossly the same
chapters; as we shall see, there is no doubt that this structure, and most of the material
is taken over from a shared model. The following analysis of the former with identification
of the ways the two differ should thus give an adequate picture of both.

The Ottoboniano Praticha presents itself as a Libro di praticha d’arismetricha, “that
is, fioretti drawn from several books of Leonardo Pisano”. This has to be taken with a
grain of salt, Fibonacci may well be the most important single identifiable source, but
the general abbacus tradition overweighs him, and long stretches are also borrowed from
other named predecessors. There is little doubt, however, that the author (better, compiler,
according to his own words as well as internal evidence, as we shall see) had access to
a copy of the Liber abbaci, plausibly a vernacular translation. This is quite possible —
as we remember from note 321, possession of Fibonacci’s work had not been uncommon
in Antonio’s time, and those citizens for whom it was a prestige object were not necessarily
well trained in Latin (admittedly, the Latin originals might still serve them as prestige
objects).

Part 1 (fol. 1'-8") presents the shapes of the numerals and the place-value system,
together with addition, subtraction, multiplication and the beginnings of division. The
division of 574930 by the prime divisor 563 gives rise to the introduction of fractions.
The last chapter deals with the factorization of non-prime numbers of more than 2 digits.
Most, not