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Preface

Some six years ago, Vinzenzo de Risi approached me (7 November 2016, to be
precise), inviting me to write a short volume for a new series at Birkhäuser which he
edited. It was supposed to be based on some as yet unpublished paper of mine and be
between 70 and 150 pages.

That should be quite easy – so thought Vincenzo and so thought I. We agreed on
a volume dealing with the Italian abbacus tradition. That should still be easy, and the
material I had at hand still seemed to fit the planned length.

How naive I was! One might as well have sent an alcoholic well provided with money
to the supermarket expecting him to buy nothing but bread. Like Oscar Wilde I can resist
anything but temptations, and in my case sources took the place of alcoholic beverages.
Having no predefined deadline I dived into Leonardo Fibonacci’s Liber abbaci, Benedetto
da Firenze’s Praticha d’arismetricha, Luca Pacioli’s Summa and many other works, all
of which I had worked on at earlier occasions but always from some particular and partial
perspective. Obviously, there was more to say about all of them, but saying it presupposed
reading and analyzing, and writing the outcome asked for the many pages that follow –
and a cobweb of more than 600 cross-references.

Nobody lives eternally; so, I did have an implicit though not sharply defined deadline.
Somehow suspecting that I decided from an early moment to include normal abbacus
geometry but to disregard the large vernacular translations of Fibonacci’s Pratica
geometrie. Figures at the periphery of abbacus culture – Nicolas Chuquet, for one, in spite
of his impressive work – were left at the periphery, or beyond the horizon.

I started in earnest in early October 2019. My thanks to Vincenzo for having kept
me busy during the Covid-19 pandemic!

Technically: All translations into English from original sources or secondary literature
are mine where nothing else is stated. When translating, I try to keep as close to the
original text as possible, often at the cost of stylistic elegance (with the exception that
fractions will be written with a slash, whereas the sources invariably use a horizontal
fraction line); terms and phrases in the original language may be inserted in square
brackets. Illustrations taken from manuscripts are redrawn for clarity, not reproduced
directly.

When an edition of a manuscript exists, my references will be to this edition; however,
if I have had access to the manuscript, I have controlled critical points.

References are made according to the author/editor-date system, in the format [N
N year], or alternatively “NN ... [year]”; for works that cannot be ascribed to an author
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or an editor, [Title ] is used.

My thanks to Fabio Acerbi, Ahmed Djebbar, Enrico Giusti and Ulrich Rebstock for
interaction along the road.
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Introduction

As I was around fourteen years of age, my Danish school arithmetic taught topics
like these:
– Applied proportionality (no longer called the “rule of three”, but a few decades before

it had been reguladetri );
– alligation and fineness of bullion;
– the partnership rule (proportional sharing);
– simple and compound interest;
– bills of exchange;
– discounting;
– and bonds and stocks.
At the time I probably understood vaguely that this was the mathematics of the financial
infrastructure of capitalism (not of capitalism tout court, it goes by itself) – around the
same time I read the Communist Manifesto. What I did not understand, and what my
teacher probably did not know, was that all of this, bonds and stocks excepted, belonged
within a tradition reaching back to the Italian 13th–14th century – that is, to the beginnings
of Italian commercial capitalism, and to the Italian abbacus school and its mathematics.

The preceding line invites two misunderstandings, which have to be cleared away.
Firstly, the abbacus school did not thrive in the whole of Italy but between the Genua-
Milan-Venice arc to the north and Umbria to the south. Secondly, much more important,
“abbacus” has only the etymology in common with “abacus”. The abbacus school taught
calculation with Hindu-Arabic numerals (what we mostly speak of as “Arabic numerals”
today) on paper, and never made use of a reckoning board. Those of its students who
later as bank employees had to make use of a calculating board for accounting purposes
were trained in that during their apprenticeship, following after their frequentation of the
abbacus school. “Abbacus” (abbaco ) can be understood approximately as “practical
calculation” – but of the particular kind which was taught in the school.

In any case, in Western, Central and Northern Europe, from around 1300 and until
around 1960, those who learned mathematics of the abbacus kind constituted the majority
of those who were at all subjected to systematic mathematics teaching. In this sense, we
may say that abbacus mathematics and its direct descendants were highly visible for two
thirds of a millennium – all who were professionally engaged in commercial activities
knew at least its basic level.

Yet in the historiography of mathematics, abbacus mathematics as a specific
undertaking went completely unnoticed until the mid-20th century; at most it was subsumed
under the general heading “practical arithmetic” (and its geometry under that of “practical
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geometry”).
Change was announced – but hardly more than announced – by Amintore Fanfani,

an economic historian and leading Christian Democratic politician (six times Italian prime
minister), in a lecture held at Université de Liège in 1950 and published in [1951]. As
already Henri Pirenne [1929] had done with emphasis on north-western Europe, Fanfani
contradicted Werner Sombart’s opinion [1919: I.1, 296–298] that late medieval merchants
were almost illiterate and hardly able to calculate (Sombart, it is true, admits that the Italian
situation was not quite as gloomy). Accordingly, Fanfani’s main interest was the abbacus
school system; but he also referred to specific “abbacus books”, which he had obviously
inspected.

Louis Karpinski had published a couple of descriptions of abbacus treatises in [1910]
and [1929], yet without seeing them as representatives of a particular genre; editions of
full texts only began in the 1960s with Gino Arrighi’s work, much of which will be drawn
upon below. In the late 1970s, Warren Van Egmond undertook to produce a complete
catalogue (published in [1980]) of all abbacus manuscripts he could trace in Italian
libraries – still almost complete four decades later. By then and thereby, the existence
of the particular abbacus tradition was finally established beyond doubt.

The continuation of this tradition (as we shall see, a reconstructing adoption) by the
German Rechenmeister and other teachers of practical arithmetic, as well as its impact
on writers such as Luca Pacioli, Michael Stifel, Johann Scheubel, Nicolò Tartaglia and
Rafael Bombelli was also recognized. Lacking, however, and on the whole lacking to
this day, is understanding of how one particular aspect of the abbacus tradition – namely
its algebra – through these contributed to the redefinition of higher-level mathematics
from the 17th century onward.[1]

Outside that restricted part of the scholarly community which reads Italian, knowledge
about the abbacus tradition in general is also missing to this day. Only two abbacus texts
have been translated into any language. The short Larte de labbaco or “Treviso
Arithmetic”, originally printed in 1478, was translated into English by David Eugene Smith
(published in [Swetz 1987]); and the Vatican version of Jacopo da Firenze’s Tractatus
algorismi from 1307 was translated into English by myself [Høyrup 2007].

The primary purpose of the present volume is to present a fairly detailed portrait of
the abbacus tradition as it developed historically; as will be argued, Fibonacci was much

1 “Algebra” is a notoriously ambiguous term – its reference constitutes, so to speak, a Wittgensteinian
“natural family”. Wherever “algebra” is spoken of in what follows, equation algebra is meant. There
is no reason to get lost in discussions about “geometric” or “Babylonian algebra”; neither is relevant.
Nor do group theory and its further developments enter in any way, not even as a matter of fact
the “theory” of equation algebra. In the present context, “algebra” is the technique of equation
algebra. Even when “our algebra” is spoken about, it is this technique that is referred to – “the
art of x and y” of school mathematics, so to speak,.
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less important for the emergence of the this tradition than mostly assumed – but since
his importance in broadly taken for granted, that argument needs to be made, for which
reason Fibonacci’s Liber abbaci is also described and analyzed in some depth. A secondary
purpose is to show (in less depth) how the adoption of abbacus mathematics in German
lands gave rise to the creation of a different tradition. The very end of the book investigates
that interplay of abbacus algebra with other intellectual currents which turned the whole
mathematical undertaking upside-down in the 17th century.

Fibonacci wrote before the emergence of the abbacus school, but the discussion does
not start with him. Chapter I gives a short introduction to the abbacus school institution
and to its curriculum, and chapter II presents the mathematics that it taught through
analysis of a particular abbacus book – the revised version of Jacopo da Firenze’s Tractatus
algorismi, which adapted it to the curriculum that was taught. The Liber abbaci is dealt
with in chapter III, while the stages of the development of the abbacus tradition are
described and analyzed in chapter IV. Chapter V delineates what happened to the abbacus
tradition, on one hand in 16th-century Italy when it went into print, on the other when
it was adopted, adapted and transformed in the German area from the mid-15th century
onward. The first section of the “double conclusion” of chapter VI returns to the abbacus
tradition of the 14th and 15th centuries and portrays it as a particular mathematical practice;
the second section looks at the process in which it contributed, in interaction with other
forces, to that “analytical” transformation of European mathematics that took place after
1600.



I. The home of abbacus mathematics: the abbacus school

The abbacus school was a school type that thrived between Genua-Milan-Venice to
the north and Umbria to the south. The earliest evidence for its existence is truly
accidental: in 1265, a certain Pietro characterized as abbacus master appears as a witness
in a contract in Bologna. Within the next decades, however, documents appear confirming
the existence of abbacus schools financed by the city communes;[2] such schools remained
in existence until well into the 16th century, after which they seem to have merged with
the elementary schools that taught reading and writing [Grendler 1989: 22f ]. Big towns
like Florence and Venice also allowed a number of private abbacus schools to flourish.[3]

Abbacus teaching was a craft, and the trade was often handed down from father to
son; for instance, the Bologna master serving as witness in 1265 had a son who wrote
his testament in 1279 and also identified himself as an abbacus master. The students were
mainly artisans’ and merchants’ sons, who frequented the school for 1½ to 2 years, as
a rule around the age of 11 or 12. Even those of higher social standing, however, often
frequented the school. So did Niccolò Machiavelli, a lawyer’s son, in 1480 (he was born
in 1469) [Black 2007: 379], and in 1479 a brassworker wrote to Lorenzo de’ Medici il
magnifico, the de facto ruler of Florence, that he had gone to the abbacus school together
with Lorenzo’s father Piero [Goldthwaite 2009: 552].

We have some numbers. Writing at a few years’ distance about the Florentine situation
as it had looked in the years 1336–38, Giovanni Villani [1823: VI, 193f ] states in his
Cronica that some 5500 to 6000 children were born each year in the city, and that 8000
to 10000 went to school learning to read; taking child mortality in account, this means
that at least half of all children, boys and girls together, learned to read and write (which
explains why vernacular writing matured in Italy well before it did in the rest of Europe).
Six abbacus schools taught 1000 to 1200 boys – which, if true, means that at least 20%
of all boys went through an abbacus school. Grendler [1989: 72] argues that real numbers
must have been considerable lower, from the premise that each school will have had a
single teacher with no assistants. A Florentine contract (on which below, p. 5) shows that
this premise was not always true. Moreover, a probably Florentine manuscript (Vatican,
Vat. lat. 10488), written in 1424 by several hands (see below, note 284) looks as if it
is the product of the collaboration of a master and several assistants, or between assistants
alone: hands may change in the middle of a page, and occasionally those who write express

2 Elisabetta Ulivi [2002a: 124–126] offers a convenient summary.

3 For Florence, see [Ulivi 2004].
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their own opinion about how matters should be treated, showing that they were not
professional scribes. Data from 1480, finally, indicate that more than one third of Florentine
boys aged between 6 and 14 went to school (and remember that only those who went
to a grammar school continued beyond the age of 12). All in all, Villani’s numbers seem
reliable. We should not believe, however, that the situation in average cities was similar
to that of Florence (that in the countryside even of Florence certainly was not).

We have two sources specifying the curriculum taught in the school. One [ed. Arrighi
1967c], from the first half of the 15th century, sets out how the abbacus is “taught in the
Pisa way”.

At first the boy is taught how to write the digits from 9 to 1 (an order that still reflects
Arabic writing from right to left as interpreted in an ambience that wrote left-to-right),
then the place-value system and the use of the multiplication table (learned by heart),
and squares until 99×99 (to be calculated) as well as further multiplications of two-digit
numbers. Next follow monetary and metrological conversions and shortcuts, and in many
steps more advanced multiplications and divisions and the computation with fractions.

This is followed by commercial calculation: simple and compound interest and
reduction to interest per day; the rule of three, with extension to partnership; area
calculations; discounting, with simple and compound interest and per day; alloying; and
finally the single false position.[4] From multiplications beyond the 10×10-table everything
is trained as problems done as daily homework.

The other specification of the curriculum is a Florentine contract [ed. Goldthwaite

4 “Single” because there is also a “double false position”. We may exemplify by the corresponding
ways to solve the problem “a quantity, with 1/6 of it added to it, gives 40”.

We may try the convenient guess or “position” that the number is 6. Then the total will be
7, and not 40 as it should be. Therefore, the true value must be 40/7 times as large, that is, 40/7 6 =
342/7. In the abbacus books, the last step would instead be made by means of the rule of three, “to
the false value 7 corresponds the true value 40; what corresponds to the false value 6?”, which
leads to the formula 40 6/7.

The double false position normally served for more complex (though still linear) problems,
but it can also be used in the present case. One position may be that the quantity is 6; that still
yields 7 for the total. Alternatively, we may try 60, which yields 70 for the total. The former value
falls 33 short of what we need, the latter exceeds by 30. The texts never explain the basis of the
method, but the trick is to “mix” the two positions in such a way that the errors cancel out. We
might take the former guess 30 times, this would give a total deficiency of 30 33; and the second
guess 33 times, that would give a total excess of 33 30. But we should only make 1 guess, not
30+33 = 63 guesses, and therefore we have to divide by 63. The total true value is therefore
30 6+33 60/33+60 = 2160/63 = 240/7. If both guesses had been deficient or both in excess, we would have
had to use subtraction.

The principle of the double false position is the same as the “alligation principle”: if we are
to mix gold of 15 carats and gold of 22 carats in such relative quantities that the mixture will be
of 20 carats we have to take 2 measures of 15 carats and 5 measures of 22 carats – and in order
to get only one measure, divide both by 2+5.
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1972: 421–425], signed in 1519. It

Ghaligai 1521
titelblad

states what the assistant signing the
contract has to teach: multiplication,
division and fractions, as in the Pisa
document; finally, the rule of three and
the (complicated) Florentine monetary
system. It can be imagined that the
more advanced matters that are listed
in the Pisa curriculum were to be
taught in Florence by the master
Francesco Ghaligai himself; it is also
possible that the syllabus of Ghaligai’s
school went no further than the rule of
three and the monetary system,
although Ghaligai’s Summa de
arithmetica from [1521] (depicting on
its title page the Medici dedicatee
throning over four students, one of
whom is engaged in weighing and
another one busy with a compass)
makes it unlikely. As pointed out by
Goldthwaite, however, homework
problems (ragioni ) about the rule of
three might also have been understood to involve the application of this rule to partnership,
alloying, interest calculation, etc. Even the single false position is so closely connected
to the rule of three that it may have been subsumed under this heading – after all, the
contract primarily deals with the salary to be paid per student in each section and with
the mutual obligations of master and assistant, the curriculum only comes in as description
of the contents of the single sections.

The so-called abbacus books cannot be used uncritically as information about the
school curriculum. Abbacus books were not textbooks for the students. The term refers
to all kinds of manuscripts about practical mathematics written by authors who were or
had once been connected – as masters or as students – to the abbacus school institution.

Abbacus books may be messy problem collections (zibaldoni ), or more orderly,
looking like “teachers’ books” without being necessarily meant to serve in this function.
The orderly books may indeed also have been written for friends or patrons, and some
claim that they can serve self-instruction. Three (to which we shall return below, p. 245)
are genuine mathematical encyclopedias. Some are author’s autographs – but still, as so
many mathematics textbooks from all epochs, drawing heavily on named or unnamed
predecessors; some are booksellers’ copies. Some are anonymous, some indicate the name
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of an author, some borrow the name of a famous author but alter or maltreat his material.
Some authors display a thorough understanding of the mathematics they present, others
make gross blunders as soon as they arrive at the inverse rule of three or volume
determination. Some cheat, or naively plagiarize the fraud of predecessors (Piero della
Francesca’s abbacus collection famously falls in this category, as shown by Enrico Giusti
[1991: 64]). Some stay within the limits of the Pisa curriculum, some go far beyond (not
least taking up algebra). All types are represented in Van Egmond’s above-mentioned
catalogue.

Fraud (to be discussed in detail below) mostly concerns the algebra. Cheating at the
level that was to be taught and used in commercial practice was of course excluded: it
would readily drive the teacher out of business. But nobody would ever discover in a
commercial dispute that a formula for solving a third-degree equation was fake. Such
formulas might therefore serve to impress mathematically incompetent municipal authorities
and fathers of prospective paying students; they may also have been meant to bewilder
rivals in competitions for employment – rivals who might not understand the deceit, and
who would in any case find it difficult to explain to the judging authorities that something
was fishy.



II. An example: Jacopo da Firenze’s Tractatus

algorismi, the short version

In 1307, one otherwise unidentified Jacopo da Firenze (“from Florence”), at the time
living in Montpellier in Provence, wrote a Tractatus algorismi. After the Latin title and
an equally Latin incipit, the language of the work is Tuscan. Three manuscripts claim
to represent the treatise:
– Vatican, Vat. Lat. 4826, datable by watermarks to ca 1450 (henceforth V[5]);
– Milan, Trivulziana 90, to be dated in the same way to ca 1410 (henceforth M);
– Florence, Riccardiana 2236, written on vellum and therefore undatable (henceforth

F).[6]

F and V are very close to each other, F with somewhat more errors than M.
The present chapter discusses the version of the treatise represented by M and F.

V is longer and probably closer to the original than M+F, as shall be argued later (and
in much greater depth in [Høyrup 2007: 5–25]). M+F look like an adaptation of the
original treatise to what was actually taught in the school. It is therefore a better
introduction to the general undertaking of abbacus mathematics, and will serve as such
in this chapter.

I shall follow the semi-critical edition of the two manuscripts given in [Høyrup 2007:
382–456] – “semi-critical” because I worked directly on M but used Annalisa Simi’s
transcription of F [1995] and not the manuscript itself (however, comparison of Simi’s
transcription with a facsimile of one page from the manuscript that is included in her
publication shows the transcription to be reliable). Page references in the following point
to this semi-critical edition. When the same matter appears in V and in M+F I shall refer
to its location in both versions (that of V anchored to the edition in [Høyrup 2007:
193–376]); when translating I shall build on M+F.

5 I shall write sigla for manuscripts in boldface; they correspond to the list on p. 408.

6 Van Egmond’s dating of F merely repeats the date given in the shared incipit and is thus no dating
of the manuscript but only of the original from which the manuscript claims to be derived.



The introduction

As mentioned, the treatise opens with a Latin incipit. It states where and when the
treatise was written, and moreover (p. 383) that the

art [of algorism] consists of nine species, namely, numeration, addition, subtraction,
mediation, duplation, multiplication, division, progression, and root extraction.

The same list is found in V (p. 193), and it is equally misleading in both versions. It is
copied verbatim from Sacrobosco’s Algorismus vulgaris [ed. Pedersen 1983: 174f ] and
is indeed a precise description of the contents of that work.

The incipit is followed immediately by an introduction, equally shared with V, and
actually copied more often than any other introduction to abbacus writings during the
following two centuries (from which we may conclude that it expresses widely shared
attitudes):[7]

Admittedly, all those things which the human race of this world know or are able to know,
are obtained in two main ways, which ways are these. The first is discernment [senno ],
the second is science. And each of these two ways is accompanied by two gentle and noble
partners. One is the grace of God. And the other is knowledge by reason. And of the
partners of science, one is mastery of what has been written. And the other is understanding
with good intelligence. And according to what the Holy Scripture says, discernment is
the noblest treasure that there is in the world. And you shall know that Solomon, who
was close to being the wisest man of all the world, asked the Lord in his youth to give
him discernment. And our Lord said to him that his request was the highest request that
he could have asked. Wherefore he gave him one third of the discernment of Adam, and
this discernment was by grace of God. The Holy Scripture also says that no man until
now asked God for any request more beautiful or higher than that, since all God’s good
and pure gifts descend from this request. It is true that one may call discernment and
science, one natural discernment, the other accidental science. And you shall know that
everything men do naturally and by accident, our Father has granted (them) to know in
his most holy virtue and grace and compassion. And therefore we are all obliged to thank
Him who is such a sweet Father and Lord, who has given us to know so much subtlety
for our use.[8]

And therefore in His most holy name and His most holy honour we begin our treatise,
which is called algorism. And know that we call it algorism because this science was first
made in Arabia, and those who found it were similarly Arabs. And art in Arabic is called
algo, and the number is called rismus, and so it is called algorism. Which algorism
distinguishes five chapters, which we shall show you manifestly in our treatise ordered
according to the said matter, as the said science asks for. And we begin in the honour
and reverence of our Lord Jesus Christ and his most holy mother Virgin Mary and the

7 Beyond V, F and M, it is recycled more or less completely in no less than 10 treatises from
between ca 1370 and 1513 described in [Van Egmond 1980] – detailed list in [Høyrup 2007: 46
n.120].

8 “for our use” is not in V – probably by omission, since it is in Giovanni de’ Danti’s copy of the
text [ed. Arrighi 1985: 9].
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whole celestial court, and with the assistance of our predecessors, and in honour of all
masters and scholars of this science, and of every other honest person who might see and
read this treatise with dedication and sense.

Now we shall show the properties of the five chapters spoken of above according
to what Boethius says in his Arithmetic.[9] The first chapter is to multiply. The second
chapter is to divide. The third chapter is broken numbers. The fourth chapter are the rules.
The fifth chapter is the general understanding which is drawn from the said four chapters.
And you shall know that the said five chapters have many subdivisions and sections, such
as multiplying by two or three or four or more figures [i.e., digits]. Division falls in whole
numbers and fractions. The fractions are to multiply, to divide, to join, to subtract, and
to say which fraction is greater than the other, or how much smaller, and which. And to
recognize them, seeing them written by figures. The rules comprise many routines [maniere]
and insights and subtleties, which you will hear in orderly manner according to their nature
which is explained.

As in this treatise the mind and good intelligence grants us to know the great subtlety
of the prophecies and the philosophies and the celestial and temporal writings, it will grant
us to know even more henceforth, since by mind and good and subtle intelligence men
make many investigations and compose many treatises which were not made by other
people, and know to make many artifices and written arguments which for us bring to
greater perfection things that were made by the first men. Hence as we have said above,
our treatise is called in Arabic algorism, and so we should write the ten figures of the
said algorism according to the custom of the Arabs, since they were those who found this
science. That is, we shall write backwards and read to the right according to [what is
customary with] us, that is to say, we shall begin by writing from the smallest number
and read from the greatest number.

A number of observations can be made on this introduction. First of all, we should take
note of the praise of knowledge and the belief in the continuous growth of knowledge;
this goes further than Bernard of Chartres’ oft-quoted point that we are like dwarfs perched
on the shoulders of giants[10] – Jacopo is convinced that others shall still climb onto
his shoulders. At the same time we notice the strong religious key, rather different from
what we see in the works of even outspokenly strong believers among the university
scholars of the time.[11] Admittedly, the distinction between discernment (senno ) and
science, of which the former is “natural” and the latter is “accidental” is a trace of the
Aristotelian philosophy of the time (where “accidental” often replaces the Aristotelian

9 Another case of deceptive namesdropping. This time, the description corresponds to what Jacopo
deals with in his treatise, but there is no connection to Boethius’s Arithmetic.

10 “Bernard of Chartres used to compare us to [puny] dwarfs perched on the shoulders of giants.
He pointed out that we see more and farther than our predecessors, not because we have keener
vision or greater height, but because we are lifted up and borne aloft on their gigantic stature” –
thus John of Salisbury in the Metalogicon from 1159 [ed. trans. McGarry 1971: 167].

11 For example, William of Ockham, Duns Scotus and Dietrich von Freiberg, all three as dry as
Aristotle’s Second Analytic whether writing about theology or philosophy.



– 11 –

notion of being “by art”); but as we see, Solomon, not Aristotle is called in as witness.[12]

That the art (pp. 194, 383) is

called algorism [...] because this science was first made in Arabia, and those who found
it were similarly Arabs. And art in Arabic is called algo, and the number is called rismus,
and so it is called algorism

is a reflection of Sacrobosco’s Algorismus vulgaris. It is hardly direct – Sacrobosco does
not mention the Arabic origin and does not state that algo means “art” in Arabic (rismus,
shared with Sacrobosco, obviously reflects Greek arithmós ). However, The Art of
Nombryng, an English version of Sacrobosco, states that algos means “art” in Greek. So
does the Craft of Nombrynge, an amplified translation of a commentary to Alexandre de
Villedieu’s Carmen de algorismo [ed. Steele 1922: 33, 3]. Both are known from 15th-
century manuscripts, but it seems likely that the ascription of the meaning to a prestigious
language (whether originally Greek or Arabic is a guess) goes back to a common source.

12 On the whole, the Solomo story is borrowed from 1. Kings 3:5–14 and 2 Chr. 1:7–12. But the
borrowing is clearly indirect: none of the two Biblical versions refer to “one third of the discernment
of Adam”; nor is this part of the story to be found anywhere in the Bible (including apocrypha),
the Qur’ān, or the ca 170000 densely printed pages of the Patrologia latina, Latin Christian writings
written before 1200. I presume it comes from the lay pious environment which is reflected in
Jacopo’s and other abbacus writings.



About the numerals and the place-value system

So, Sacrobosco, albeit indirectly, is one source for the presentation of the Hindu-Arabic
numerals. But he is not the only source. Jacopo goes on,

These are our abbaco figures, by means of which you may write whatever number you
wish, or of whatever quantity it were. And these are the figures of the old art and the
new.[13]

The idea of presenting two variants of the figures goes back to the Maghreb/al-Andalus
mathematician Ibn al-Yāsamı̄n († ca 1204) [Burnett 2002a: 240] (if not to some
predecessor). Ibn al-Yāsamı̄n shows the ghubār (“dust”, referring to their use on a dust
abacus; mostly referred to as “western”) as well as the “Eastern” shapes of the numerals.
Jacopo, as we see, lists the shapes current in 13th- and 14th-century Latin Europe (both
derived from the ghubār shapes). The idea of presenting both of these together recurs
in a Trattato di tutta l’arte dell’abacho written in 1334, probably in Avignon,[14] and
independent of Jacopo’s Tractatus; we may surmise that Jacopo follows a more general
Provençal habit, on its part ultimately inspired by Ibn al-Yāsamı̄n in ways we cannot trace.

Jacopo goes on (pp. 196, 385),

Further we shall write here below how the said figures denote. And so that they may be
understood better and more clearly we shall write them by figures, and similarly by letters,
so that one may understand by himself without any master teaching him. And you shall
know, and it is thus that the zero by itself does not signify anything, but it surely has the
power to make signify when it is accompanied [from here only in V], but not always but
according to where it is put, either before or behind. That is, if the zero is put before[15]

another figure it does not have the power to make signify anything, but if placed behind
the figure then it has the power to give to signify according to which figure it is. That
is, if it were beside 1, it signifies 10, and if it were beside 2, it signifies 20. And if it were
beside three, it signifies 30. And thus according to the figure which it makes signify.

This is followed by an extensive table containing numbers in Hindu-Arabic writing together
with the corresponding writings by means of Roman numerals. Whereas we would explain
that “ccxxxiiii means 234”, subliminally understanding “234” as being the number and
not being a mere writing, Jacopo obviously expects his reader to see things in the opposite
way.

That “zero by itself does not signify anything, but it surely has the power to make

13 Redrawn after the Trivulziana manuscript.

14 Both in the compiler’s draft autograph (TF, fol. 23r ) and in a copy of the final version (TR, fol.
3v ); the treatise and its dating is discussed in [Cassinet 2001] – cf. below, p. 196.

15 “before”, as we notice, is now to the left – the local writing direction has taken over.
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signify” is borrowed from Sacrobosco [ed. Pedersen 1983: 176]; that this power depends
on whether it is written left or right, however, is not from Sacrobosco, and it may well
be Jacopo’s own addition to the text.

The table is followed by a very pedagogical exposition of the place value principle –
more fit for self-study, in agreement with what is promised (“without any master teaching
him”), than as support for a teaching master who already knows.



Multiplication, division, fractions

After this follows (pp. 203, 389) another table containing first squares n2, 2≤n≤10,
then products m×n, m<n≤10 (called librettine minori, “minor booklets”), continued by
other examples where one or both factors is multiplied by a power of 10 (for example,
300×600).[16] Then (pp. 206, 391) come librettine maggiori (“major booklets), products
m×n, 11≤n≤20, m<n≤20, and then (p. 392 – in tables organized in the Arabic way, from
right to left) all squares from 1×11 until 99×99 and select other products of two-place
numbers, all controlled by casting out nines – but that this is the reason that, for instance,
the field containing the numbers 840, 24 and 35 (meaning 840 = 24×35) also contains
the number 3 is not explained. Another (equally unexplained) set of products (p. 403)
involves mixed numbers (also written according to Arabic custom, with the fraction to
the left); this time, the control is made by casting out sevens (after transformation of the
mixed numbers into pure fractions). Since the fractional and integer part of the mixed
numbers are widely separated in M as well as F, the compiler of the archetype for M+F

is likely not to have understood what was meant (which is also the likely reason that he
did not normalize the writing of the mixed numbers).[17]

Two types of division follow (pp. 220, 408) – in general known as a regolo (“by
ruler”) and a danda (“by giving”), here unexplained and unnamed. The former are
sequences of 10 to 12 short divisions, starting from a dividend of 6 to 8 digits.[18] The
danda method was the outcome of the transfer of a division algorithm performed on a
dustboard to paper, where deletions were no longer possible – a forerunner of our long
division. A regolo division is shown for divisors from 2 to 12, a danda is used on 12
examples – for example, 71422330÷37.

As in the Pisa programme, fractions close the section about pure arithmetic, and as
explained in the introduction to the treatise it is taught here how “to multiply, to divide,
to join, to subtract, and to say which fraction is greater than the other, or how much
smaller, and which”. At first (pp. 228, 415), the procedures are summarized in schematic
examples:

16 We observe that addition and subtraction go unmentioned, just as in the Pisa and Florence
programmes. In Sacrobosco’s Algorismus vulgaris, on the other hand, they are the first operations
to be explained [ed. Pedersen 1983: 177–181].

17 V contains the squares from 11×11 to 99×99 (organized left to right) with check by casting out
nines, but nothing more.

18 With the successive remainders put in as a first digit in the results, so as not to make the students
“run out of numbers, as they would soon do if remainders were not picked up”, as Pacioli explains
[1494: 32v].
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To multiply broken numbers To divide broken numbers

To join together broken numbers
into a single number

To subtract one broken number
from another one and state
the remainder

How much one broken number
is more than another broken
number

How much one broken number
is less than another broken
number

After the schemes follows (pp. 230, 416) this introduction to the topic,

We have spoken about the multiplications and the divisions and of all that is necessary
concerning this. Now we leave this, and we shall speak in proper and legitimate rule about
all routines about broken numbers, such as we proposed before in the prologue, since they
give tools for the other computations, and without them this art cannot be subtly exercised
nor learnt.
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Then 19 examples are explained – first this one:

Let us first begin in the name of the supreme God and say thus, say me, how much is,
joined together, 1/2 and 1/3 . Do thus, say, a half and a third are found in six because 2
times 3 makes 6. And take the half and the third of 6, which are 5, and divide 5 by 6,
from which comes 5 sixths. And we shall say that 1/2 and 1/3 joined together are 5 sixths.
And in this way you may join whatever broken number it be.

Neither God nor the product of denominators are mentioned in the other examples, but
apart from that their general style is the same. The following 18 examples merely prescribe
the finding of a common multiple when it is pertinent – actually, the least common
multiple. Curiously, the writing of fractions with a fraction line (verga, literally “a cane”)
is only described after the third example.



The rule of three

In agreement with both curricula, fractions are followed by topics of specifically
commercial relevance – at first, as in the Florence document, the rule of three. V (p. 236)
has an introductory remark similar to the one that precedes the operations with fractions,

We have said enough about fractions, because of the similar computations with fractions
all are done in one and the same way and by one and the same rule. And therefore we
shall say no more about them here. And we shall begin by doing and showing some
computations according to what we shall say soon.

It is absent from M and F, but its stylistic agreement with the introduction to fractions
suggests that it belonged to Jacopo’s original and is no addition. It contains an important
piece of information about abbacus meta-terminology: Addition and multiplication of
fractions certainly do not follow the same steps. That they are “done [...] by one and the
same rule” indicates that “rule” is not necessarily to be understood as a precise procedure
or algorithm but may refer instead to some general principle.[19]

In all three manuscripts (pp. 236, 419), the rule of three is introduced in this way:

If some computation should be given to us in which three things were proposed, then we
should always multiply the thing that we want to know against that which is not of the
same (kind), and divide in the other, that is, in the third thing.

With no or minimal deviations, this was to remain the standard formulation of the rule
of three for two centuries.[20]

19 This, by the way, was to become the meaning of “algorithm” until the late 19th century – after
having first, spelled algorismus, simply referred to the calculation with Hindu-Arabic numerals.
The shift of meaning and to the hypercorrect spelling is marked by Christoph Rudolff’s Coss [1525:
9v], who states that his second chapter ist von gemeinem algorithmo der Pruch, “is about the general
algorithm for fractions” – precisely Jacopo’s “one and the same rule”.

20 In V, the precise formulation is

If some computation should be given to us in which three things were proposed, then we
should always multiply the thing that we want to know against that which is not similar,
and divide in the third thing, that is, in the other that remains.

The Livero de l’abbecho (discussed in detail below, p. 155), known from a 14th-century copy
in the manuscript Florence, Ricc. 2404 but probably to be dated around or slightly after 1300
[Høyrup 2005: 27–28, 47], has almost the same formulation as M and F [ed. Arrighi 1989: 9],
followed word for word by the anonymous Liber habaci [ed. Arrighi 1987: 111] from ca 1309:

If some computation was said to us in which three things are proposed, then we shall multiply
the thing that we want to know with the one which is not of the same (kind), and divide in
the other.

Pacioli explains in the Summa de arithmetica [1494: 57r] that

The rule of 3 says that the thing which one wants to know is multiplied by that which is not
similar, and divided by the other which is similar, and that which results will be of the nature
of that which is not similar, and the divisor will always be of the similitude of the thing which
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A number of examples follow. The first one (pp. 237, 419) runs like this (tornesi
are minted in Tours, parigini in Paris):

I want to give you the example to the said rule, and I want to say thus, vii tornesi are
worth viiii parigini. Say me, how much will 20 tornesi be worth. Do thus, the thing that
you want to know is that which 20 tornesi will be worth. And the one which is not the
same is that which vii tornesi are worth, that is, they are worth 9 parigini. And therefore
we should multiply 9 parigini times 20, they make[21] 180 parigini, and divide in 7,
which is the third thing. Divide 180, from which results 25 and 5/7 . And 25 parigini and
5/7 will 20 tornesi be worth.

Then come three more examples with the same ratio between tornesi and parigini, the
third however asking for the value of 150 £, 13 ß and 4 δ of tornesi.[22] With no
intermediate calculations, 9 times 150 £, ß 13, δ 4[23] is stated (correctly) to be £ 1356,
and the outcome of the division is similarly announced directly.

The next examples astonish a modern ear. First (pp. 238, 420), “if 5 times 5 would

one wants to know

which merely adds the clarification “and that which results [...] wants to know”.

21 This way of speaking characterizes the whole of M+F (but not V, abbacus writers had different
views on the matter). The idea is that the number 20 (in itself seen as a singular) occurs 9 times,
and these 9 constitute a plurality that together make 180.

22 £ stands for lira/lire (singular/plural), ß for soldo/soldi, δ for denaro/denari. The lira was a money
of account (in Carolingian times the value of a pound of silver, but that was 500 years of monetary
debasement ago). It was divided into 20 soldi (the soldo descending from the solidus introduced
by the Emperor Constantine the Great in 312, by then 1/72 of a Roman pound of gold); the soldo
was divided into 12 denari. Those who remember the British monetary system as it looked until
1971 will recognize it.

The main weight unit used in the treatise is the (light) pound, libbra (sottile ), varying according
to location but mostly ca 320 g. It was divided into 12 ounces. 8 ounces constituted a mark
[marcha ], and 2 marks in most places a “heavy pound” (which was thus close to a British pound).
The ounce was subdivided into weight denari – with a few exceptions, 24 denari, and the denaro
into 24 grani. See [Zupko 1981: 106, 129–135, 139f, 174–177]. Henceforth, Zupko’s work will
be the basis for all metrological information unless a different source is indicated.

Apart from the denaro being a specific monetary unit, the plural denari also had the generic
meaning “money” (as soldi in present-day Italian and pennies in obsolete English). Even though
the abbacus authors probably did not think of the difference (and used the same abbreviation in
both cases) I shall try to reserve the abbreviation for the cases where the monetary (or, occasionally,
metrological) unit is intended.

23 In the first example, Jacopo follows general spoken language, stating the “quantity” (7) before
the “quality” (tornesi ). Now, he gradually shifts to the commercial technical order quality-quantity
(still with us today). In my translations I shall try to be locally faithful to the originals (inconsistent
though they often are, as here), while complying with the habits of spoken language in paraphrases
and commentaries.
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make 26, what would 7 times 7 make at the same ratio?”, next, “if 3 times 4 would make
13, what would 7 times 9 make?”. As we shall see, these “counterfactual calculations”
are informative about the historical process; for the moment we shall simply take note
of their presence though as secondary examples.

Returning to monies, Jacopo now teaches what to do when fractions are involved
in the parameters; at first, “3 1/3 tornesi are worth 4 parigini” is transformed by
multiplication into “10 tornesi are worth 12 parigini”. Three more examples follow.



Basic commercial techniques

The rule of three, with examples mostly speaking of money, looks commercial.
Actually, it is a general – we may say functionally abstract – technique; as we shall see
below (p. 384) it had an almost axiomatic status within abbacus mathematics.

It is followed, in Jacopo’s Tractatus (pp. 242, 422) as well as the Florence curriculum
by a definitely commercial subject: shortcuts to be used in the calculation of simple
interest. Interest was habitually specified as denari per month and per lira, and the
problems dealt with (all corresponding to previously stated general rules) are to find
– how much is earned by 100 £ in six months if the £ is lent at 3 δ per month;
– how many £ will earn 1 δ in a day if 1 £ is lent at 3 δ per month (the month being

counted at 30 days);
– how many £ will earn 1 δ a day if 100 £ are lent at 12 £ per year;
– in how much time 100 £ will be doubled if lent (at simple interest) at 3 δ a month;
– in how much time is doubled 1000 £ if 100 £ are lent at 6 £ per year;[24]

– how much does 100 £ earn per day if they are lent at 12 £ per year.
All rules are stated without argument; for the third problem the unexplained rule is thus
to divide 150 by the number of £ earned per year by 100 £.

It is sometimes believed that the abbacus books could not deal with interest calculations
because interest-taking was considered usury and hence forbidden by the Church; the
preceding shows that this was not the case.[25] As to interest-taking in Florentine
commercial practice, one may consult [Sapori 1955: I, 236–240]. There we notice that
3δ per £ per month (15 % per year) was in the high end of the acceptable, but still within
the limits.

Another sort of calculational shortcuts follows (pp. 246, 423). At first comes a general
rule:

If some computation was given to us in this way, and let us say that the load[26] ofpepper,

24 In this case, the preceding rule which the question is supposed to illustrate speaks of a different
problem type: “if 100 £ earn me so and so many £ per year, how many £ will earn me 1 δ per
day?” The same confusion is found in V. Two possible explanations are at hand: either Jacopo
copied from a source and skipped an example and the rule for the subsequent example; or all three
extant manuscripts descend from an archetype already copied from Jacopo’s original text with a
similar omission. Without being able to offer strong arguments (beyond the absence of other shared
demonstrable omissions) I favour the first possibility.

25 A rare expression of doubts caused by the sinfulness of usury is found in the encyclopedic
manuscript Florence, BNC, Palatino 573, fol. 258r [ed. Arrighi 2004/1967: 183]: since the soul
of the one who practices usury ends up in Hell and his body in prison, the author promises to deal
with the topic with brevity – which he then does over 104 folio pages (counting letters around one
twelfth of the whole Liber abbaci )!

26 Carica. The load of 300 pounds or 3 quintals was a Provençal and the usual French unit. The
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or any other thing, which is 300 pounds, is worth so many £, or so many ß, or so many
δ, and we want to know what the pound will be worth. Then you should know that for
each £ that the load is worth, the pound is worth 4/5 of a denaro, and for each soldo that
the load is worth, the pound is worth 1/25 of a denaro, and for each denaro which the load
is worth, the pound is worth one three-hundredth of a denaro.

Examples, inversion, variations for a different value of the load and for other weight units
follow – all of it evidently very useful for quick calculation in practical trade, where the
rule of three would be utterly cumbersome for the determination of the price of a pound
if, for instance, the load was told to cost 13 £ 8 ß.

normal Florentine load was 400 pounds. The exact number of pounds to a quintal might vary (a
Barcelona quintal consisted of 104 pounds), as might also the weight of the pound. See [Høyrup
2007: 68].



Mixed problems

These two quite orderly sections, both of evident commercial relevance, are followed
(pp. 251, 426) by a messy collection of 39 mixed problems, of which some are still
commercial in substance as well as dress, some are recreational problems – mostly
traditional, and making use of methods (such as the single false position, the rule of three
and the inverse rule of three) that could also serve commercial calculation.

We may look at some examples. The very first problem (pp. 251, 426) deals with
a partnership (compagnia ), but it is not solved by means of the usual partnership rule.
Instead it runs:

There are three partners who make partnership together. And one partner puts into the
principal of the partnership £ 150, and the second partner puts into the principal of the
partnership £ 230, and the third partner puts into the body of the partnership £ 420. Now
it occurs after a certain time that they have earned £ 100 and want to divide. Say me how
much comes to each one as his share, remaining untouched the capital of each of these
three partners. Do thus, first join together all that which they have put into the principal
of the partnership, that is, the £ 150 and £ 230 and £ 420, which in all are £ 800. Now
divide that which they have earned, that is, £ 100, by 800, from which results ß 2 δ 6,
and as much comes per £, that is, ß 2 δ 6. Now multiply 150 times ß 2 δ 6, which make
£ 18 ß 15, and so much shall the first partner have, who put into the principal of the
partnership £ 150, that is, 3 18 ß 15. Now multiply 230 times ß 2 δ 6, which make £ 28
δ 15, and so much shall the second partner have, who put into the principal of the
partnership £ 230, that is £ 28 ß 15. Now multiply 420 times ß 2 δ 6, which make £ 52
ß 10, and as much shall the third partner have, who put into the principal of the partnership
£ 420, that is, £ 52 ß 10. And it is done. Now join together all these parts, that is, £ 18
ß 15, and £ 28 ß 15, and £ 52 ß 10, which make in all £ 100. We have thus divided well,
and in this way and by this rule do with whatever partnership it be and whatever each
one has put into the principal of the partnership, and you see how much comes per £.

The “partnership rule” – the parallel application of the rule of three – would have
prescribed a different procedure. The share of the first partner would have been found
as 150 100/800 £, that of the second as 230 100/800 £, that of the third as 400 100/800 £. The
advantage of this procedure (and in general of the rule of three) is that it avoids the
multiplication of rounding errors (mostly, the multipliers involved would be larger than
1); the disadvantage is that the intermediate results (230 100, etc.) have no intuitively
meaning (as revealed by their dimension £2 ). The intermediate result of the present
procedure, instead, is meaningful, and explained to be the gain falling to each invested
£. We may assume that Jacopo choose the alternative way for pedagogical reasons, but
since he does not explain we cannot know. In any case he took advantage of the nice
numerical parameters and the absence of rounding errors.

In contrast we may next consider a problem (pp. 259, 429f ) where the partnership
rule proper is not only applied but seen to be a standard structure onto which other
questions can be mapped – a functionally abstract representation of proportional
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sharing.[27] With occasionally varied parameters, the problem occurs in many abbacus
texts; as pointed out by Moritz Cantor [1875: 146–149], it is first found in an ancient
Roman jurisprudential text (Dig.2.13) – but since it stands there as a pure hypothesis (“If
it be written thus ...”) and does not agree with the normal principles of Roman Law, one
may guess that the second-century jurist Salvius Julianus draws upon an already circulating
piece of recreational arithmetic.[28]

A man is ill and wants to make his will. And he has a wife, who is pregnant. And the
good man decides in this way, and says to the wife, if you get a male child, I leave to
him two parts of what I have, and to you the third; and if it happens that you get a female
child, then I leave to her the third of everything I have, and to you I leave the two parts.
And the good man departed from this life, and after a certain time the wife gave birth
and made a male child, and a female. Tell me in which way one shall divide this pos-
session, since one cannot divide in the way the father left to the wife and the children.
Do thus, and this is its rule, firstly make a position of one and say thus, when the girl
should have one, the wife were to have two. And when the mother were to have two,
the boy were to have four. Thus, of whatever possession one were to divide between them,
of every 7 the male child should have 4 and the wife two and the female girl one. We
have thus brought this computation to a partnership, and we say thus, there are 3 partners
who have made partnership together. And one partner puts in 4, the other partner puts
in 2, and the third puts in one. And they have earned as much as that which the bequest
was. How much comes to each? And this is done after that way of the partnership which
we have shown earlier. Now let us posit that this bequest were 1400 gold fiorini. Say me,
how much shall the mother have of it, how much the male child, and how much the female.
Do thus, join together 4 and 2 and 1, which makes 7, and this is the divisor. Now multiply
4 times 1400 gold fiorini, it makes 5600 gold fiorini, and divide in 7, from which results
800 gold fiorini. And so much shall the male child have, that is, 800 gold fiorini. Now
multiply 2 times 1400, it makes 2800 gold fiorini, and divide in 7, from which comes
400, and so much shall the mother have, that is, 400 gold fiorini. Now multiply 1 times
1400, it makes 1400, divide by 7, from which comes 200. And so many gold fiorini shall
the female child have, that is, 200. And it is done, and in this way and by this rule you
may divide whatever bequest that he left.

This explicit use of the partnership as a functionally abstract structure is not widespread
in abbacus mathematics;[29] in the early period it was characteristic of Jacopo and a
few other treatises linked to the Provençal environment [Høyrup 2007: 129f ]. More

27 We shall encounter another instance of this use of the abstract model below, p. 53 (in V only,
eliminated in M+F).

28 Quite similar structures are indeed to be found in even older Chinese mathematical texts – both
the Suàn shù shū from 186 BCE or earlier [ed. trans. Cullen 2004: 45] and the Nine Chapters on
Arithmetic [ed. trans. Chemla & Guo 2004: 285–287], from no later than the first century CE.

29 The application of the rule to the twin inheritance problem throughout the period we are
considering certainly was.
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widespread, as we shall see repeatedly, is the use of the rule of three as the basic
representation of proportionality.

Other recreational problems are based on methods that have no evident commercial
bearing – thus problems of meeting and pursuit and of combined works. Both types are
widespread, and both are represented in the present collection of mixed problems. We
may look at one of the meeting problems (pp. 262, 431) – pursuit problems, in which
the two parties leave in the same direction, are absent from Jacopo’s treatise:

A man is in Rome, and wants to go to Montpellier and would go there in 11 days, neither
more nor less. And another man is in Montpellier, and wants to go to Rome, and would
go there in 9 days, neither more nor less. Now they leave at the same hour one from Rome
and the other from Montpellier. Say me know in how many days they will meet on the
way. Do thus and say, because one comes in 9 days and the other goes for 11 days, then
multiply 9 in 11, it makes 99, and divide 99 in 20, because 11 and 9 make 20, from which
results 5 less a twentieth, and after so much time the said men meet, that is, in 5 days
less a twentieth of a day.

A strict parallel follows “in order to show it more clearly”. There the calculation is
organized differently, agreeing with the way both problems are solved in V, where the
procedure is organized as follows (p. 262):

Do thus and say, because one comes to Rome in 9 days and the other goes to Montpellier
in 11 days, join together 11 and 9, which make 20. And this is the divisor. Now multiply
9 times 11, it makes 99. Divide in 20, from which results 4 and 19/20 .

“The divisor”, with definite article (il partitore ), indicates that a specific, pre-existing
method is followed (we already encountered it on p. 23 in the twin problem, and it is
indeed recurrent when the partnership rule is used). In the present case the rule in question
is that for “combined works”; the underlying reasoning (whether understood or not by
Jacopo) could be that in 9 11 days the first man can cover the distance 9 times, and the
second man can cover it 11 times – in total thus 9+10 = 20 times. The distance is thus
covered a single time by the two together in 9 11/20 days.[30]

Another favourite dress for the “combined works” in abbacus books is a ship with
several sails.[31] In Jacopo’s collection of mixed problems we find this version (pp. 268,
433):

30 Alternatively, the idea could be that one man covers 1/11 of the distance in a day, the other 1/9.
Using the rule for adding fractions one finds that they cover 9+11/9 11 of the distance in a day, and
hence the whole distance in 9 11/9+11 days. This argument is made explicit in an analogous problem
in the Liber habaci [ed. Arrighi 1987: 144], on which below, p. 173.

31 The classical representative of the problem type, a cask or other container filled or emptied through
several channels, is also found in M and F [ed. Høyrup 2007: 433] but not in V. Since the channels
are mostly more than two (thus also here), the formula is slightly different.
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A galley is in Genua and wants to go to Aigues-Mortes. And the said galley has two sails
such that, with one sail it would go there in 7 days, and with the other sail it would go
in 9 days. Now it occurs that I hoist up both sails at a time. Say me in how many days
the galley will have made its voyage from Genua to Aigues-Mortes, operating each of
these sails by its force. Do thus, say, because with one sail it would go there in 7 days,
and with the other it would go in 9 days, then join together 9 and 7, they make 16. And
similarly multiply 7 times 9, they make 63, and divide 63 by 16, from which comes 4
less 1/16 , and in so many days will the galley have reached Aigues-Mortes, that is, in 4
days less 1/16 .

A problem type with many representatives, in Jacopo’s collection as well as the
abbacus tradition in general, is a quantity divided into parts, of which one is given
absolutely and the other or others relatively. They may deal with a tree partially above
ground and partially underground; with the parts of a fish, with the components of a goblet
or the components or contents of a purse; etc. We may look at the fish variant (pp. 261,
430):

A fish, whose head weighs the third of the whole fish, and the tail weighs the 1/4 of the
whole fish. And the body in middle weighs ounces 8. Say me, how much weighs the head
alone, how much weighs the tail, and how much the whole fish. Do thus, say, 1/3 and
1/4 one finds in 12. And seize the 1/3 and the 1/4 of 12, they are 7. And say, from 7 until
12 there are 5, and this is the divisor. Now because the body in middle weighs 8 ounces,
then multiply 8 times 12 ounces, they make 96, and divide by 5, from which comes ounces
19 and 1/5 , and as much weighs the whole fish, that is, ounces 19 1/5 . If you want to know
how much weighs the head alone, then take 1/3 of 19 and 1/5 , which is 6 and 2/5 , and as
much weighs the head, that is, ounces 6 and 2/5 . If you want to know how much weighs
the tail, then take 1/4 of 19 and 1/5 , which is 4 and 4/5 , and as much weighs the tail, that
is, 4 ounces and 4/5 of an ounce. And it is done. If you want to prove it, join together
what the head weighs, that is ounces 6 and 2/5 , and what the tail weighs, that is, ounces
4 and 4/5 , and that which the body in middle weighs, that is, 8 ounces, which in total are
ounces 19 and 1/5 . We have thus done well. Thus are made all the similar.

The underlying idea is a single false position, even though the trick is not named. Since
1/3 and 1/4 are both found in 12 (as integers), the total weight is posited to be 12. If so,
the weight of the head would be 4, and that of the tail would be three, leaving 5 for the
body in middle. Now to these 5 correspond 8 ounces; the correspondent of 12, the total
weight, is then found by means of the rule of three, as 8 12/5 . The weights of head and
tail are found in the same way.

As pointed out by Fibonacci in the Liber abbaci [ed. Boncompagni 1857: 173; ed.
Giusti 2020: 296],[32] a different approach is possible. He explains a tree example thus:

32 In [1857], Baldassare Boncompagni made an edition of the Liber abbaci based on a single good
but not perfect manuscript. In 2020, Enrico Giusti published a new, critical edition. Since the former
is easily accessible on the web, for instance (2 May 2023) at the addresses
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There is a tree, of which 1/3
1/4 is underground. And they are 21 palms. It is asked how

much is the length of this tree. Since 1/3
1/4 can be found in 12, understand this tree to

be divided into 12 equal parts; of which the third, and the fourth, that is 7 parts, are 21
palms; therefore, as 7 are to 21, thus are proportionally 12 parts to the length of the tree.
And therefore, when four numbers are proportional, the multiplication of the first in the
fourth is equal to the multiplication of the second in the third. Therefore, if you multiply
the second, 21, by the third, known to be 12, and similarly divide by the first, namely
by 7, 36 results as the fourth, unknown number, that is, for the length of that tree; or
because 21 is the triple of 7, take the triple of 12, and you will similarly get 36.

However, the early abbacus school was not familiar with even the most elementary
proportion theory; Fibonacci explains the procedure in terms of scientific (“magisterial”)
mathematics. Afterwards he explains the procedure of practical commercial reckoners:

There is another methods which we use, namely, that for the unknown thing you posit
a freely chosen number, that can be divided in whole numbers by the fractions that are
posited in this question.

And then he goes on with this single false position, and calculation according to the rule
of three (not named, as Fibonacci never gives a name to this procedure). Since this is
not the method just taught, this “we” cannot be an authorial plural, it must refer to a
community of which he considers himself a member – the “proto-abbacus” community,
we may call it.

Other classical recreational problems are dressed in ways that seem to connect them
to commercial practices of the day but do not correspond to anything that would happen
in the world of real trade; their role is to train the mathematical mind and, at times,
particular methods.

One of them is of the type known as “the lazy worker” (pp. 266, 430):

A master undertakes to construct a building in 30 days. And the day where the master
works he shall have from the gentleman ß 5. And the day where he is not working he
shall give the gentleman ß 7 back. Now the master has worked so much and has been
so much away from work that he shall have nothing from the gentleman and shall give
nothing back. Say me, how much the master was not working, and how much he worked,

https://archive.org/details/bub_gb_CrdUBgtAZFoC/page/n3/mode/2up
https://archive.org/details/bub_gb_w86fLKi88pYC
https://archive.org/details/scrittidileonard00bonc/page/n181/mode/2up

and
https://archive.org/details/bub_gb_G4IL1D5PUsoC

while the new edition may not be easily accessible in libraries for quite some time, further references
to passages in the Liber abbaci (some 250 in number) will for brevity have the form [Bm;Gn ],
standing for page m in [Boncompagni 1857] and page n in [Giusti 2020] (indicating the pages where
the passage begins if it extends over several pages). Readers are exhorted to persuade their libraries
to procure Giusti’s edition.
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that is, how many days. Do thus, first join together 7 and 5, which make 12 ß, and this
is the divisor. Now multiply 30 times 5 days, they make 150 days, and divide in 12, from
which comes 12 1/2 days, and so much he was not working, that is, 12 1/2 days. And similarly
multiply 7 times 30 days, they make 210 days, and divide in 12, from which results days
17 and 1/2 , and so much he worked, that is, days 17 1/2 . Now we shall say that the master
worked days 17 1/2 and was not working days 12 and 1/2 , which in all are 30 days. He thus
made the said building in 30 days. If you want to prove it, say thus, the master worked
days 17 1/2 and took ß 5 per day, then he took in all £ 4 ß 7 δ 6. And so much he took
from the gentleman, that is, £ 4 ß 7 δ 6. And say, the said master was not working days
12 1/2 and gave back to the gentleman ß 7 per day, which in all are £ 4 ß 7 δ 6. He thus
took as much from the gentleman as he gave back to him. And it is well done.

The basic trick is obviously the same as the one used in the double false position and
in alligation; the reference to “the divisor”, and thereby to a standard method, suggests
that the creator of the problem thought of one or the other (not necessarily Jacopo, who
may have copied uncritically, like not a few compilers of mathematics textbooks from
Antiquity until present times).

Another problem where the double false position might have been used by other
authors but is shunned by Jacopo deals with the packing of cloth in bales (pp. 268, 433).
400 pieces of cloth are to be packed in 38 bales, of which some should contain 10 and
some 11 pieces. The prescription only states the numerical steps to be taken, but the idea
is quite simple: that if all bales contained 10 pieces, only 380 pieces would be packed.
Therefore 20 of the bales must contain an extra piece.

There are two more recreational problems. One of them (pp. 271, 434) is of the
classical “Chinese box” type: Somebody picks oranges in a garden which he has to leave
through three guarded doors; to each doorkeeper he has to hand over half of what he has
and one more, and in the end 3 oranges should be left. The solution goes by stepwise
backward computation. Other abbacus books offer problems with the same mathematical
structure while speaking instead of commercial travels in several steps with costs or
customs payment (see [Tropfke/Vogel et al 1980: 582–584], and below, p. 88); but even
then the mathematical problem is clearly recreational – no merchant would ever need this
backward calculation.

Another question (pp. 263, 431) does seem to speak of trade: two merchants are
transported by ship, one with 20, the other with 24 sacks of wool. Since they cannot pay
the freight in coin, each gives a sack to the master of the ship to sell, asking him to take
what is owed and to give back the rest; from the amounts the two merchants receive back
the price of a sack as well as the total freight is determined. The recreational character
of the problem is clear, firstly from the mathematical problem itself, which would never
present itself to real-life merchants; secondly by the solution, which presupposes that the
merchants themselves travel for nothing.

Certain problems really prepare directly for commercial life. A number of these are
based on the intricacies of the monetary system. The first of them runs as follows (pp.
253, 427):
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I have to make in Bologna a payment of £ 100 of bolognini piccioli. And in Bologna the
bolognino grosso is worth δ 13 and 1/3 of bolognino picciolo. And in Florence the said
bolognino is worth δ 15 1/4 . And in Bologna the gold fiorino is worth ß 31, and δ 6 of
bolognini piccioli. And in Florence the said fiorino is worth ß 39 δ 6 of the coin of
Florence. Say me what is better for me to carry to Bologna, starting from Florence, in
order to make the said payment, either gold fiorini, or bolognini grossi, and how much
it will be better for me at the said libre 100. Do thus, know firstly how many bolognini
grossi it suits him to carry in order to make the said payment. And multiply 100 times
15 and 1/4 , which makes 1525, and divide by 13 1/3 , from which comes £ 123 ß 12
δ 11 25/37 of bolognino [error for £ 114 ß 7 δ 6].[33] And so much will it suit him to carry
in bolognini grossi, that is, £ 123 ß 12 δ 11 25/37 . Now let us know how much it suits him
to carry in gold fiorini, and multiply 100 times 39 and 1/2 , they make 3950, and divide
3950 by 31 and 1/2 , from which comes £ 123 ß 7 δ 9 [error for £ 125 ß 7 δ 11 15/63 ],[34]

and so much will it suit him to carry in gold fiorini, that is, £ 123 ß 7 δ 9. And it will
thus be better to carry gold fiorini than bolognini, as much as there is from 123 £ 7 ß
δ 9 until 123 £ ß 12 δ 11 and 25/37 . And we shall thus say that it will be better for him
to bring gold fiorini than bolognini grossi, and on the whole payment of the said 100 £,
it will be ß 5 δ 2 and 25/37 precisely better for him.

It seems that the compiler of M+F has recalculated, made a mistake, and then trusted
his own calculations. Apart from that, the solution is blameless; in order to see that we
should take into account that the relation between £, ß and δ is the same in the monetary
system of the two cities (namely 240 : 12 : 1), and that the ratio between the Bologna
and the Florence soldo is determined by the values of the gold fiorino and the bolognino
grosso (both actual, physical coins) expressed in the two kinds of soldi respectively denari.
Evidently, the reader is supposed to understand this immediately.

A whole handful of problems deal with the difficulties arising from the complex
monetary system; among these, one (pp. 277f, 436f ) speaks specifically about how
payments are made in Sicily and Puglia, and another one (p. 437, absent from V) about
the practice of the fairs of Champagne.

These fairs had been of supreme importance for European long-distance trade in the
12th and 13th centuries; the presence of the corresponding problem in the revised version
of Jacopo’s Tractatus may be taken as evidence that its compiler wanted not only to adjust
it to the school curriculum but also to include material of direct mercantile interest. The
contents of the problem confirms this:

33 The correct result is found in V; the wrong result shared by M and F corresponds to a division
by 12 1/3 instead of 13 1/3 .

34 Apart from a writing error probably due to a copyist ( 15/36 instead of 15/63 ), V has the correct result.
The wrong result of M and F appears to be the outcome of at least two errors. Possibly, 3950/31½

was transformed into 7900/64 instead of 7900/63 , and the outcome £ 123 ß 8 δ 9 then miswritten as
£ 123 ß 7 δ 9.
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In the fairs of Champagne purchases and sales and all payments are made in provisini
forti,[35] and provisini are sold the dozen. And of this we shall give an example. The
dozen of forti, that is, 12 libre, is worth libre 37, soldi 10. Say me, how much will 1443
libre of forti be worth. Now know that you should do thus, and say thus, 1200 libre are
one dozen of hundreds, hence the 1200 libre of forti will be worth libre 3750. Now libre
243 are saved for you, and the 240 libre are two dozens of tens, and each 120 libre of
provisini are worth libre 375, hence two dozens are worth libre 750, and you gave in total
libre 4500. And we have to make the 3 libre, which are worth the 1/4 of libre 37, soldi
10, that is, libre 9, soldi 7, denari 6. And you have in all libre 4509 soldi 7 denari 6.
And it is done, and we shall say that libre 1443 of forti are worth libre 4509, soldi 7,
denari 6 of whatever money you posit at the rate of libre 37 and 1/2 the dozen of provisini.

The method here introduced was to be known among German Rechenmeister as
Welsche Praktik.[36] It asks for much less use of paper and paper algorithms than the
rule of three (whose answer is (1443 37 10/20 )/12). A trained merchant would probably
be able to make the partition 1443 = 1200+240+3 mentally and keep it in mind. If not,
the converted payment could be made piecemeal.

The welsche Praktik is used again in a later problem (p. 439), discussed in [Høyrup
2007: 87f ]. This problem about cloth bought in Florence and sold in Nîmes involves both
the relation between the length metrologies of the two locations and the ratio between
fiorini and tornesi. The modern reader may note with satisfaction that even the medieval
calculator gets lost here, mixing up the rule of three and the inverse rule of three.[37]

35 That is, minted in the Champagne town Provins [Travaini 2003: 37].

36 At the time, welsch might refer to the Italian and French regions, preponderantly perhaps the
latter. The Rechenmeister may thus have thought of the commercial practices of Flanders and
northern France. But it might also be a practice of Italian merchants which rarely made its way
into the writings of abbacus masters, and never systematically, as was to happen in 16th-century
German writings.

The former possibility could be suggested by the appearance of the method together with a
reference to the Champagne fairs; the latter, on the other hand, would be a parallel to the appearance
of tollet calculation among the Rechenmeister (below, p. 364), which indubitably is of Italian origin
(the name comes from Italian tavoletta ) but was a technique used by merchants and shunned by
the abbacus masters. Though a relatively late witness, Stifel translates the name as praxis italica
in the Arithmetica integra [1544: 83v].

In spite of its practical advantage, Welsche Praktik as well as tollet may indeed have been
considered mathematically undignified by professional teachers of mathematics, however much
mathematicians of our times might think the same about much abbacus mathematics. The proper
practice of the abbacus school teachers was after all not trade but teaching, and as teachers they
may have preferred mathematical coherence (or elegance, or what else we may call it).

37 The rule of three solves problems of type a : p = A : P, where a and A have the same dimension
(for instance volume or weight) and p and P a different dimension (for instance, price). The inverse
rule serves for problems of type q w = Q W, where q and Q are of one kind (for instance, the
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None the less, one problem shared by V and M+F (pp. 252, 427) deals with
discounting in the way it would probably be dealt with in practical life and not in the
mathematically most elegant way:

A merchant has to give to another one £ 200 two and a half month from now. The one
who shall receive the said £ 200 says, give them to me now, and reduce your money at
a rate of δ 2 per lira per month. Say me, how much he should give him in advance for
the said 200 £. Do thus, say, in two months and a half, at 2 δ per lira the lira is worth
δ 5. Do thus, put yourself at the 195 £, and know how much the said 195 £ are worth
in interest, and they are worth £ 4, ß 1, δ 3, and is in all £ 199, ß 1, δ 3. ß 18 δ 9 are
lacking there, that in interest are worth δ 5. Now detract δ 5 from ß 18 δ 9, ß 18 δ 4
remain. Now join ß 18 δ 4 above £ 195, and you have in all £ 195 ß 18 δ 4, it is done.
And we shall say he shall pay him £ 195 ß 18 δ 4 in advance for the said £ 200. And
in this way do all the similar.

We may tend to observe that 1 £ = 240 δ grow to 245 δ in five months. Therefore, the
true answer has to be 240/245 200 £. The medieval calculator could formulate the same
according to the rule of three, and get the equally unhandy 240 200/245 = 9600/49 . The present
approximate iteration is much more likely to correspond to what was done in practice
(and perhaps to what we would do if we were requested to perform the complete
calculation on paper). In the first approximation, we may observe that 1 £ = 240 δ grows
to 245 δ in 2 1/2 months. Even this is slightly unhandy, and since it is only a preliminary
step the text instead supposes that 200 grow to 205, or that 195 grow to 200. Then it is
calculated that the value of 195 £ after 2 1/2 months is 199 £ 1 ß 3 δ – 18 ß 9 δ below
the requested 200 £. But 18 ß 9 δ is almost 1 £, and therefore carry an interest of 5 δ
in 2 1/2 months. Detracting these 5 δ we may claim that 18 ß 4 δ also carry an interest
of approximately 5 δ, and that an advance payment of 195 £ 18 ß 4 δ is adequate; the
error is obviously a fraction only of 1 δ (actually 0.40... δ).

The 15th-century Libro di conti e mercatanzie [ed. Gregori & Grugnetti 1998: 95]
(probably copying from an earlier treatise) contains an analogous calculation, showing
the equivalence of the solution by means of the rule of three and by (here exact) iteration
in 7 steps, stopped only when the correction vanishes. It is concluded that the solution
by means of iteration is più breve, “shorter” (the calculation by means of the rule of three
leads to a division by 22 7/20 ).

Two more topics of genuine commercial interest are dealt with (simplified so as to
allow the application of simple arithmetic): Alloying and washing of wool.

One alloying problem (p. 429, no counterpart in V) runs as follows:

The mark of silver, which is 8 ounces, costs me ß 66 of tornesi. Now

quality of an alloy) and w and W of a different kind (for instance, weight), which corresponds to
a proportion q : Q = W : w. In the rule of three, the intermediate product in the rule of three
(p A ) has no concrete meaning, in the inverse case it has (in the example, [ounces silver per pound
of alloy] [pounds of alloy], that is, ounces silver in total, cf. the example on p. 51.
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it happens that I have the said silver melted and refined. And when
I take it from the fire I weigh it and find that each mark decreases by
3/4 of an ounce, that is, that each mark becomes ounces 7 and 1/4 . Say
me how much it suits me to sell the mark in order to reconstitute my
capital. Do thus, say, 8 ounces of silver are worth ß 66; what will
ounces 7 and 1/4 be worth? Multiply 8 times ß 66, they make £ 26 and
ß 8. And divide by 7 and 1/4 in this way. Say, 4 times 7 and 1/4 make
29. And say, 4 times 26 £ and ß 8 make £ 105 and ß 12, and divide
£ 105 and ß 12 by 29, from which results ß 72 and δ 9 and 27/29 of a
δ. And at so much will it suit him to sell the mark of silver in order
to reconstitute his capital, that is, ß 72 and δ 9 and 27/29 of a δ. And
it is done. Thus do all the similar.

The problem is a simple case of inverse proportionality, and solved in a simple way,
referring neither (as V mistakenly does in several similar cases though without erring
mathematically) to the language of the rule of three, nor to the inverse rule of three (none
of the two versions of the treatise ever do so with any name). Q being the price per ounce
of the refined silver, it simply uses that the total value should not change, that is, 66 8 =
Q 7 1/4 (the value of the copper in the alloy being disregarded).

The other alloying problem (pp. 256, 428) is strictly analogous: gold containing 2
ounces of copper per pound is paid back with gold containing 3 ounces of copper per
pound, the copper considered worthless.

Even the wool-washing problem (pp. 279, 437) is similar: 100 pounds of wool, bought
for 10 £, becomes wet, and when dried its weight is reduced to 95 pounds. At the end
there is a reference to the rule of three which is not found in the counterpart in V.

We may wonder at the story, but other texts betray what really happens and why it
is commercially relevant: raw wool is dirty, and has to be washed; in this process, it loses
weight – namely the weight of the dirt.

Finally, four of the mixed problems are geometric in character – several of them also
in the view of fellow abbacus writers, who would deal with such problems in a geometry
section.

First we may look at one about cloth (pp. 270, 434):

A man wants to dress [in woollen cloth] and finds cloth of cubits [braccia ] 11, which
is sufficient for a robe, and the said cloth is palms 3 and 1/2 broad. And he finds another
cloth which is palms 5 and 1/2 broad. Say me, how much will be enough to make a robe
of this which is palms 5 1/2 broad at the same rate. Do thus, multiply 11 times 3 and
1/2 , they make 38 1/2 , and divide 38 1/2 by 5 and 1/2 , from which comes 7, and we shall say
that 7 cubits of cloth will be enough to make the robe.

It looks at first as if the text finds the area of the cloth in question and then divides by
the breadth of the second kind of cloth in order to find the corresponding length. However,
the units in the two dimensions are not the same. Maybe the compiler did not bother about
this difficulty – explicit dimension analysis, after all, was half a millennium in the future;
but maybe he merely used the technique of the inverse rule of three.
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In V, the inverse rule of three is indeed used – and as always in this manuscript, the
terminology used (the similar/not similar) is that of the direct rule of three, which at several
points has baffled the original compiler of M+F. Most likely, this time he did not fall
into the trap.

The next geometric problem certainly deals with area calculation (pp. 276, 436)

A church, or indeed a building [palazzo ],[38] is cubits 120 long, and cubits 36 broad,
neither more nor less. And I want to flag it with flags or slabs that are all of one and the
same magnitude. And each slab is long half a cubit and broad a quarter of a cubit. Say
me how many slabs are needed to flag the said church or palace, neither more nor less.
Do thus, firstly bring to square cubits the church or palace, and multiply the length against
the breadth, that is, 120 times 36, they make 4320, and so many square cubits is the whole
floor of the palace, that is, 4320. And similarly bring to square cubits the slab, and multiply
the length of the slab against the breadth, that is, a half times 1/4 , it makes 1/8 , and we
shall say that 8 slabs enter in each square cubit. And we want to know how many slabs
enter in cubits 4320. Multiply 8 times 4320, which make 34560, and we shall say that
in the whole floor of the church or palace enter 34560 slabs, neither more no less. And
it is done. Make thus the similar.

If you want to prove it, say thus, in the length enter 240 slabs, and in the breadth
4 slabs for each cubit, multiply thus 4 times 240, they make 960, and so many slabs enter
in breadth for each cubit, that is, 960. And you want to know how many enter in 36 cubits.
Multiply 36 times 960, they make 34560. We thus find our computation again.

The method by which the problem is solved asks for no explanation, but it still invites
a commentary. We observe a particular kind of proof, namely a calculation by a different
method; such checks, not only of the result but, so to speak, also of the method, turn up
repeatedly in abbacus texts.

Finally, two problems deal with volumes; first this one (pp. 269, 433):

Somebody lends to a friend of his a chest full of feeding grain. And this chest is in all
directions 4 cubits, that is, long and broad and high. And after a certain time had passed,
the one who had lent the grain asked his friend, who said, I do not have a chest made
as the one which you lent me, but I have two chests, each of them in all directions 2 cubits,
that is, 2 cubits in height and two cubits in breadth and 2 in length. Say me if he is paid
with these two small chests for his large chest, or how many times he shall give them
full. Do thus, firstly bring to square cubits the large chest, and multiply for the length

38 Una chiesa overo palazzo. V has una sala overo piazza, which agrees much better with the
reference to a length and breadth only – when referring to a “hall” or a “square” it is indeed possible
to think only of the floor that is to be paved; for a “building” with several rooms this is less near
at hand. The compiler of M+F seems to have misread piazza as an abbreviated palazzo
(p’lazzo ), and to have replaced V’s “hall” by a “church” under the influence of problems he knows.
The problem type is indeed borrowed from the medieval post-agrimensor tradition, found in the
Carolingian Propositiones ad acuendos iuvenes [ed. Folkerts 1978: 62] as well as in the Geometria
incerti auctoris IV.38 [ed. Bubnov 1899: 355]. Both of these speak of a basilica.
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and the breadth 4 times 4, they make 16. And for the height multiply 4 times 16, they
make 64, and so many square cubits is the large chest, that is, 64 cubits, Now we bring
to square cubits the large chest, that is that we say it is 64 square cubits. And similarly,
we bring to square cubits the small chest. And we multiply for the breadth and the length
2 times 2, they make 4, and for the height multiply 2 times 4, they make 8, and so many
square cubits is the same chest, that is, 8 cubits. Now divide 64 by 8, from which comes
8, and we shall say that he ought to give back 8 small chests full of grain for one of the
large ones. And it is done.

This problem type is rather common in abbacus books, with varying numbers but mostly
powers of 2 for the sides, mostly cubic chests, and mostly more or less explicit hinting
at an intended fraud. As confirmed by other writings, stereometry was at the limit of
mathematical intuition. The failing distinction between square and cubic cubits – in
principle explainable as a conceptualization of volumes as made up of “thick surfaces
”, surfaces provided with a standard thickness, which however is never made explicit
– will not have helped.

Another stereometric problem determines the number of ashlars of given dimensions
that go into a wall of given dimensions. The solution follows the same pattern as the
determination of the number of slabs in the church floor, omitting only the proof.



Practical geometry with approximate determination of square roots

The chapter on practical geometry is much more orderly, and is announced in these
words (pp. 284, 440):

In the name of God, amen. Here we shall begin to speak of all modes of measures, and
firstly we shall speak of the compass-made round. And about this we shall show an
example by proper rule.

We observe, firstly, that Jacopo (also in V) speaks of measures, not of geometry, as
one might expect if the Latin post-agrimensor tradition had been in the background (or
Fibonacci’s “practice of geometry”, for that matter, the Pratica geometrie ).[39]

Secondly, we take note of the use of non-technical terminology, “round” (tondo ),
not “circle” (cerchio ); there are several similar examples, though sometimes the technical
term is used first.

The promised first example runs like this:

There is a terrain, which is all round by compass, and its
circumference, that is, that which it goes around, 44 cubits.
Say me how much is its diameter, that is, (how much it is)
by the straight in middle. This is its proper and legitimate rule.
Always, when you know the circumference of a round, and
you want to know how much it is by the straight in middle,
then divide its circumference by 3 and 1/7 , and that which
results from it, so much will its diameter be, that is, the
straight in middle. And similarly when you know the straight
in middle of a circumference and you want to know in how
much it goes around, then multiply the straight in middle by 3 and 1/7 , and as much as
it makes, in so much does the said round go around. Thus, as our rule says, we should
divide the circumference of the round, that is, 44, by 3 and 1/7 . And say, 7 times 3 and
1/7 make 22, and say, 7 times 44 make 308. And it is as much to divide 308 by 22 as
44 by 3 and 1/7 , from which 14. And we shall say that the said circumference shall be
14 by the straight in middle. And it is done, and do in this way and by this rule with all
the circumferences, when you want to know the diameter, such as I show you the form
here.

As we see, the Archimedean approximation to the ratio between perimeter and diameter
is taken to be plain exact truth; this is so in all abbacus writings. None know about
arguments in the Archimedean style. Instead, V (p. 285) has its own kind of demonstration
before the words “thus, as our rule says ...”:

And if you should want to know for which cause you divide and multiply by 3 and 1/7,

39 Paolo Gherardi’s Libro di ragioni, written in Montpellier in 1327, does distinguish between rules
di misure and di giomatria [ed. Arrighi 1987], where the latter might indeed refer back to the Latin
post-agrimensor tradition; but this seems to be unique, and therefore cannot count as firm evidence
of anything.
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then I say to you that the reason is that every round of whatever measure it might be is
around 3 times and 1/7 as much as is its diameter, that is, the straight in middle. And for
this cause you have to multiply and divide as I have said to you above.

We may not find this demonstration very persuasive, but we should observe the
presence of the idea of demonstration, an appeal to a general principle. We may indeed
claim that the Archimedean approximation serves as an axiom (cf. below, p. 384), though
obviously not a part of any axiomatic system.[40]

Next follows the reverse calculation, the determination of the circumference from
the “straight in middle”, taken to be 19 cubits.

As third comes the determination of the area (terreno ) when the circumference is
22 cubits. At first the diameter is found to be 7 cubits, next the area is determined as
the product of circumference and diameter divided by 4.

This primacy of the perimeter does not characterize abbacus geometry broadly. Jacopo
shares it with two other treatises also written in Provence, one (the Liber habaci – below,
p. 173) around 1309, the other (the Trattato di tutta l’arte dell’abacho; above, p. 12) from
ca 1334.[41] – clear evidence that Jacopo had gone to Montpellier in order to learn from
the local environment, not only with the aim to disseminate Florentine knowledge (a point
we shall return to).[42]

Two problems teach how to find the diagonal of a right triangle and the hypotenuse
of a square (pp. 286, 441):

A terrain with three edges, the two edges straight and the other edge skew, of that size
that one side, that is, the straight side, is 30 cubits. And the other side is 40 cubits. Say
me how much the skew side of the terrain will be, that is, from the tip of one side of the
terrain to the other. Do thus, multiply 30 times 30, they make 900, and multiply 40 times
40, they make 1600. Now join together 900 and 1600, they make 2500. Now find the
root of 2500, that is 50. And we shall say there are 50 cubits from one tip of the terrain

40 We are thus far away from the Euclidean system. Not necessarily very far from what Hippocrates
of Chios had done in his analysis of lunes, however. Hippocrates appears in the same way to take
as foundations in need of no further argument such things as the Pythagorean rule and the
proportionality of areas to the square of a linear dimension – thus things which Near Eastern practical
geometers had known and used for well over a millennium; cf. [Høyrup 2019c: 163–177].

41 Apart from that, I have observed it in two 15th-century writings, not properly abbacus treatises:
a Praticha di geometria e tutte le misure di terra [ed. Arrighi & Nanni 1982], written in the earlier
15th century by Tommaso della Gazzaia, a nobleman from Siena, “for his pleasure, taking delight
in the science of geometry” [Van Egmond 1980: 187], and also in other respects close to Jacopo
and thus probably (given the respective dates) borrowing from him; the other a Praticha di
gieometria [ed. Arrighi 1970a] written by the military engineer Giorgio Martini around the mid-15th-
century, sharing some particularities with Tommaso della Gazzaia.

42 His way to present the rule of three is Italian, however, is not Provençal – cf. the analysis of
Ibero-Provençal ways below, p. 176 onward.
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to the other, as I show you its diagram [forma ] here.
A square terrain, which is 10 cubits by each face. I want to know

how much there will be from one corner[43] of the terrain to the other,
measuring across. Do thus, multiply 10 times
10,[44] they make 100, and double 100, they
are 200.[45] Now find the root of this number,
that is, of 200, which is 14 and 1/7 . And it is
done. And we shall say that this terrain is,
measuring [quadrare ] by the edge, 14 cubits and
1/7 . And in this way make all the similar.

V specifies that 14 1/7 is “the closest, because precisely it cannot be found”. As we shall
see, and as confirmed by other texts, this is a technical term for the first approximation
obtained by the standard method,

n 2 r n r

2n

Later in the chapter there are other problems involving the Pythagorean rule, and a
section teaching how to find “the closest” approximation to a square root. But first there
is an intruder that has little to do with measure or geometry[46] (pp. 287, 441):

A serpent is at the foot of a tower, which tower is 30 cubits high, and the said serpent
wants to climb to the top of the tower. And each day it climbs a third of a cubit, and in
the night it descends a fourth of a cubit. Say me, in how many days the serpent will have
climbed to the crown of the tower. Do thus, say, 1/3 and 1/4 are found in 12, and multiply
12 times 30, they make 360. Now take 1/3 of 12, which is 4, and take 1/4 of 12, which
is 3. Now detract 3 from 4, one remains, and divide 360 by 1, from which comes 360.
And we shall say that in 360 days will the serpent climb the tower, as I show you in
drawing. And you could also make the said computation in a different way and say, 1/3
and 1/4 are found in 12, a third is thus 4/12 and a fourth is 3/12 . The 1/3 is thus 1/12 more
than 1/4 . And because 1/3 is 1/12 more than a fourth, the serpent advances every day 1/12

43 Canto, the term here translated “corner”, is used (alternatingly with the synonym cantone ) in
the preceding problem about the side, and there translated “edge”. The terminology is obviously
vacillating, not yet technical.

44 Here, V has the misleading explanation “multiply one face of the terrain against the other, that
is, 10 times 10”.

45 V insists on the misunderstanding, “further multiply the other two, 10 times 10”.

46 The problem type is known under the name leo in puteo, “the lion in the pit”, after the earliest
known version offered in the Liber abbaci [B177;G302]. Afterwards Fibonacci offers another version
speaking of two serpents, one coming from the top of a tower and the other from the ground, both
with alternating motion.
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of a cubit. In 12 days it thus advances 1 cubit. And we want it to advance
30 cubits. Multiply 12 times thirty, they make 360. And it is done. It thus
comes in one way as in the other.

First of all we notice that the solution misses the recreational prank
of the problem: after 357 days, the serpent has advanced
357/12 = 29 9/12 cubits. The next day it reaches the top; it then probably does
not slide down any longer, but in any case this is immaterial for the
answer: after 358 days, the serpent has reached the top. The use of the
dress simply as a pretext for subtracting one fraction from another and
then dividing by the outcome is no particularity of the compiler of M+F,
it is shared not only with V but also with abbacus books in general (we
shall encounter an exception below, p. 170), and even with the Liber
abbaci, which however formulates itself in terms of a single false position.

Noteworthy is also that we encounter a second instance of the check
of the method, not merely of the result. The second way of the text is
identical with that of V. The first, instead, is independent, or perhaps inspired by a different
source.

After this arithmetical aside, the text returns to measures, first the measure of a
rectangular area (pp. 288, 442):

A terrain which by its two larger faces is 60 cubits, as you see drawn,
and by the other two it is for each face 17 cubits, say me how much is
this whole terrain in area [quadro ]. Do thus, because it is by one face
60 cubits and by the other face 17 cubits, then multiply 17 times 60, which
make 1020. And we shall say that this whole terrain is 1020 square cubits.
And always, when you want to bring to area whatever terrain it may be
with equal sides, as we have said, then multiply the length against the
breadth.

This straightforward rule invites a linguistic observation: Jacopo has no specific term for
a rectangle, technical or otherwise. Once a “terrain” is specified (in drawing and measures)
to be quadrangular and to have equal opposing sides, then it is assumed by default to
be rectangular. Such default understanding is much more common in mathematical thinking
(even ours) than we are usually aware of: who, even among those who have learned in
school about negative, broken and irrational numbers, would ever think of anything
belonging to these categories when asked to “think of a number”? Even the mathematician
will assume without reflecting that the one who asks means “a positive integer”, and will
at most think of –√π as a provocation.

After this, Jacopo returns to the tower, but now as a dress asking for application of
the Pythagorean rule (pp. 289, 442):

A tower, which is 50 cubits high. And at the foot of this tower there is a moat, which
is 30 cubits broad. Now I want to carry a rope or string which reaches from the border
of the moat until the crown of the tower. Say me how long the said string will be. Do
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thus, say, since 50 cubits is the height of the tower, then multiply 50
times 50, they make 2500, and because the moat is 30 cubits broad, then
multiply 30 times 30. they make 900. And join together 2500 and 900,
they are 3400. Now find the root of 3400, which is 58 and 9/29 , and so
long should the rope be that reaches from the border of the moat until
the crown of the tower, that is, cubits 58 and 9/29 . And it is done. And
here I show you the diagram in order to understand better.

The calculation itself asks for no explanation. Once again, nothing
is said about the approximate character of the square root; in V (p.
289), even this time, we find “that is, the closest, and closer one
cannot find”; but even in V, the explanation only comes later.

A similar problem follows, in which the height of the tower is
told to be 40 cubits, and the length of the rope 50 cubits, the breadth
of the moat being asked for.

Before explaining how to find “the closest” square root, Jacopo
inserts another circle problem (pp. 290, 442):

A compass-made round which goes around in 100 cubits. Do thus,
and that is its proper rule, divide 100 by 3 and 1/7 in this way, say,
7 times 3 and 1/7 make 22, and say, 7 times 100 make 700. And as
much is to divide 700 by 22 as 100 by 3 and 1/7 , from which comes
31 and 9/11 . And so much is this round by the straight in middle, that
is, cubits 31 and 9/11 of a cubit, such as I show you drawn in the
diagram.

This, of course, is a repetition of what has been shown already (see above, p. 34).
V (p. 290) is aware of that (“I have also said it to you above, (for) every round, if one
wants to know how much is its diameter, one shall divide by 3 and 1/7 ”), and also has
a detailed explanation of the division (transforming 3 1/7 into 22 seventh, and 100 into
700 seventh). All these reasons for the repetition have been left out in M+V.

Then comes the explanation of what a square root is and how it can be found or
approximated (pp. 291, 443):

This is a rule which shows us how to find the root of every number of which one can
find the root, or indeed the closest root that one can find. And this we shall show by proper
rule.

First we say thus, as example: The root of 4 is 2 because 2 times 2 make 4. And
the root of 9 is 3 because 3 times 3 make 9. And the root of 16 is 4 because 4 times 4
make 16. And the root of 100 is 10 because 10 times 10 make 100. And the root of 169
is 13 because 13 times 13 make 169. And the root of 10000 is 100, because 100 times
100 make 10000. And thus happens with every other number which you multiply in itself,
this same number is the root of its multiplication, as you have understood.

Now we shall say in which way the root can be found for every number for which
it can be found, namely the closest root. Know that you shall do thus. You shall find a
number which, when multiplied by itself, is closer to the number of which you want to
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find root than any other number. And then divide the remainder by the
double of that number which you multiplied. And in this way one finds
true or closest root.

And to this we shall say the example, and we shall say thus,
find me the root of 10. Do thus, say, 3 times 3 make 9. And say,
from 9 until 10 there is 1. Now divide 1 by the double of 3, that
is, by 6, from which comes 1/6 . And join 1/6 above 3, they are 3
and 1/6 . And we shall say that the root of 10 is 3 and 1/6 , that is,
the closest root than can be found. And in this way and by this rule
you can find root to every number, or indeed the closest root that
can be found, by the rule stated above.

V is more detailed, both in the exposition of the rule for finding
the “closest root” and the example. Neither V nor M+F, however,
contains the least hint of an explanation why the rule works; this is
characteristic of the abbacus tradition as a whole, as is the expressed
belief that the “closest root” is indeed as close as one can get. If they had also presented
the possibility to approach from above (say, approximating √15 as 4– 1/2 4 = 3.875 instead
of 3+ 6/2 3 = 4 – the true value is 3.87298...), they would have discovered that this is not
true (not to speak of the possibility to iterate the process); but they very rarely do.[47]

For geometrical use (or pretended use), what they offer was probably quite sufficient.
We may appreciate the drawing of a plant with root; in V it is much more beautiful.
Two more examples follow, the determination of the “closest roots” of 67 and 82.

Then follow applications of the formulas for finding areas and volumes. First rectangular
areas (pp. 295, 444):

A terrain which is 567 cubits long, and 31 cubits broad, as I show you drawn opposite
by diagram. And I want to build on all of it. Say, I want to build on all of it with houses
that are each 11 cubits long and 7 cubits broad, neither more nor less. Say me how many
houses you can lodge there so that you fill the whole terrain. Do thus, first bring to square
cubits the whole terrain, and multiply the length against its breadth, that is, 31 times 567,
that make 17577. And so many square cubits is the whole terrain, that is, cubits 17577.
And similarly bring the house to square cubits, and multiply the length against the width,
that is 7 times 11, they make 77. And so many square cubits is the house, that is, 77 cubits.
Now, if you want to know how many houses can be lodged there, then divide 17577 by
77, from which comes 228 and 3/11 . And it is done. And we shall say that in this whole
terrain 228 houses and 3/11 of a house can be made, neither more nor less. And in this
way make the similar.

As in the serpent-problem, we observe that the dress is not taken seriously: 7 divides 567,
but 11 divides neither 567 nor 31. It is therefore not possible to fill the terrain with houses

47 Below (p. 44) we shall encounter a case where Jacopo copies a calculation which starts with an
approximation from above, and even goes on with a (mistaken) second approximation. But Jacopo
seems not to understand what goes on.
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of the requested dimension. Apart from that, the text is quite
straightforward, and correct.

The problem type comes from the Latin post-agrimensor tradition.
Three versions occur in the Propositiones ad acuendos iuvenes [ed.
Folkerts 1978: 60f ]. In one case, houses there have to be built within
a trapezoid, in one within a triangle, and in one within a circle; the
houses are rectangular, that is, unable to fit precisely. The problems in
Geometria incerti auctoris IV.35–37 [ed. Bubnov 1899: 354f ] are
similar, and so are those of the Artis cuiuslibet consummatio I.34–36
[ed. Victor 1979: 212–218]. From the latter treatise the triangle- and
the circle-version went into the late-13th-century vernacular (Picardian)
Pratike de geometrie (I.34,36, ed. [Victor 1979: 504, 506]), which we
shall encounter again in note 49.

When volumes are dealt with, Jacopo’s intuition fails (pp. 296, 444):

A square well, which is 2 cubits by each face, and is
50 cubits deep, and it is quite full of water. Now it
happens that a square column falls into it, which by
each face is 1 cubit and which is 25 cubits long. Say
me how much water flows out of the said well
because of this column which falls into it. Do thus,
first bring the well to square cubits, and multiply 2
by 2, they make 4. And for the depth multiply 4 by
50, they make 200. And so many square cubits is the
whole well, that is, 200 cubits. Now, similarly bring
the column to square cubits, and multiply 1 by 1, it
makes 1. And for the length multiply by 25, it makes
25. And so many square cubits is the column, that is,
25 cubits. Now divide 200 by 25, from which comes
8. And we shall say that 8 square cubits of water flow
out of the well because of this column which falls into
it, such as I show you the diagram of the well and the
column.

The fallacy is shared with V. Since the compiler of M+F has intervened actively in the
text, this means that the elementary mistake committed by Jacopo has been accepted by
somebody who was thinking through its subject-matter.[48] Stereometry was evidently
not the strong point of abbacus mathematicians. We observe in this connection that there
is still no distinction between the units for area and volume, both are measured in “square
cubits”.

The origin of the error can be understood from similar problems in the Liber

48 V, on the other hand, may descend from Jacopo’s original by professional scribal copying.
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mahameleth (Latin version ca 1160, [ed. Vlasschaert 2010: 397; ed. Sesiano 2014: 536],
cf. below, note 76) and the Liber abbaci [B403f;G618–620]. In these, together with the
dimensions of the column and of the well (in both actually a cistern) the contents of the
latter measured in barrels is given, and the quantity of outflowing water measured in
barrels is to be determined. In both, as here, the ratio between the two volumes is found
(here, 8), and this is then used to convert the volume of the immersed body into hollow
measure measured in barrels. There can be little doubt that this problem type, known in
Iberian area around 1160, reached the Provençal area and Jacopo from there, and was
miscopied without understanding by Jacopo or some predecessor of his (and, in the latter
case, re-copied without understanding by Jacopo and again by the compiler of M+F).

The next problem (pp. 297, 445) is also fallacious:

A terrain with five equal faces, as you see it drawn here, which
is called a pentagon, and by each face it is 8 cubits. Say me, how
much is this whole terrain in area. Thus is its rule, multiply one
of its faces by itself, that is, 8 times 8, they make 64, and multiply
3 times 64, they make 192. And from 192 detract one of the faces,
that is, 8, 184 remain. And it is done, and we shall say that this
whole terrain is 184 square cubits. and in this way and by this rule do whatever the terrain
is by face, if the faces are equal and if there are 5 faces, multiply always one of the faces
in itself and then make three times this multiplication, and from the total detract one of
the faces, and the remaining will be this whole terrain, as we have said.

This strange formula – immediately understood to be impossible by anybody who knows
about dimensional analysis (or its foundation in metrology, given that a change of unit
will change the outcome) – comes from the Latin post-agrimensor tradition, and ultimately
from the ancient theory of polygonal numbers. The n th pentagonal number is indeed
1/2 (3n2–n ), a formula taken over by Jacopo with omission of the factor 1/2 – most likely
by a predecessor of his[49]).

49 In V the factor 3 is indeed explained as the number of remaining sides, which presupposes that
the product of one of the faces by itself is replaced by the product of two of the faces (cf. also
note 44). Several variants of the formula must have been current in Provence – Paolo Gherardi,
writing in Montpellier in 1327 [ed. Arrighi 1987: 61], has the “correct” formula (3n2–n )/2. The
Trattato di tutta l’arte dell’Abacho (Tf, fol, 137r–v ) gives two procedures, first per l’arte di
rismetricha, then per giometria. The former prescribes to multiply 8 by 8, then by three, and then
to subtract the square of a side, leaving in total 128. The latter prescribes to multiply half the side
by the measured height (claimed to be 6 9/22 – it should be 5.5055...) and then by 5, which yields
128 2/11 , almost the same. This can only come from a repair of “Jacopo’s formula”, made by
somebody who had a better intuition of dimensional homogeneity. Since the Trattato di tutta l’arte
betrays no general familiarity with Jacopo’s Tractatus, a shared source for the mistake imposes
itself.

The method per giometria is shared with the Picardian Pratike de geometrie [ed. Victor 1979:
489], which however does not propose a value for the height. Since references to genuine measuring
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When dealing with a cone-shaped pavilion, Jacopo also runs into trouble (pp. 298,
445):

A pavilion, whose mid-pole [V: the post that supports it] is 40 cubits, and the cloth from
the peak of the pole until the lower border of the pavilion is cubits 50. Do thus, say, know
how much is all this cloth, and how much ground the said pavilion occupies under itself.
Do thus, say, because the cloth is 50 cubits long, then multiply 50 times 50, it makes 2500.
And because the pole is 40 cubits long, then multiply 40 times 40, it makes 1600. Now
detract 1600 from 2500, 900 remains, and find the root of 900, which is 30. And double
30, they make 60, and so much is broad the pavilion by the straight in middle, that is,
60 cubits. Now multiply 60 times 3 1/7 , which makes 188 4/7 , and so much
is the whole circle of the pavilion around. Now, if you want to know how
much ground it occupies under itself, then divide the straight in middle of
the pavilion by half, that is, 60, from which comes 30. And similarly divide
in half the circle of the pavilion, that is, 188 4/7 , from which comes 94 and
2/7 . Now multiply 30 times 94 and 2/7 , which make 2828 and 4/7 . And the
said pavilion occupies so much under itself, that is square cubits 2828 4/7 .
Now if you want to know how much is all the cloth, divide the diameter,
that is, 60, by 1/2 , from which comes 30, and multiply 30 times 50, they
make 1500, and so many square cubits is all the cloth of the said pavilion,
that is, 1500 cubits. And it is done, as you see drawn in diagram.

The diagram in M is not very informative, as we see. The counterpart in V (next page)
is somewhat more convincing.

The fallacious answer to the second question is shared, however. Jacopo confirms
that he had no spatial intuition, nor experience with cutting cloth to fit a conic shape –
and the compiler of M+F no more.[50]

The answer to the first question is found in agreement with Jacopo’s basic formula
for the circular area, semi-diameter times semi-periphery, characteristic of Provence. We
may conclude that he found the problem here, and guess that his source shared his failing
spatial competence, which agrees well with what is said in note 50.

Even the next problem (pp. 300, 445), dealing with the simple plane geometry of

(as distinct from calculation on the basis of measures already known) are extremely rare in the
so-called “practical geometries”, a connection (hardly direct descent) is none the less almost certain;
cf. [Høyrup 2009c].

50 This lack of spatial understanding did not lead Jacopo to invent a wrong solution – only to copy
one uncritically. The same fallacy (and the same doubly mistaken formula for the area of a regular
pentagon) is found in a geometry contained in the Latin manuscript Munich, Clm 26639 [ed.
Kaunzner 1978: 36, 39]. As argued by Kaunzner, at least the geometrical part of the manuscript
was written in the outgoing 15th century, but nothing in its texts betrays inspiration from the abbacus
tradition.
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a “shield” shaped as an equilateral triangle,[51] appears to be copied without full
understanding:

A shield, that is, a triangle, which by the straight in middle is 5 cubits, say me, how much
will the said shield be by each face. Do thus, multiply 5 times 5, they make 25, and divide
25 by 3, from which comes 8 and 1/3 , and join 8 and 1/3 above 25, they
are 33 and 1/3 , know that the said triangle will be root of 33 and 1/3 by face.
Find the root following the rule we have said, which root we say to be
5 and 5/6 less 17/54 not precisely, and so much will the shield be by face.
I show you the diagram in order to understand better. Make thus all the
similar. And this is understood about a shield which has faces equal in
measure.

The first step (shared with V) presupposes awareness that the half-side of an equilateral
triangle equals 1/√3 times the height. This is not difficult to show – according to the
Pythagorean rule the square on two half-sides equals the sum of the square on one half-side
and the square of the height; but if Jacopo understood this, he would probably tell – when
it is within his reach he likes to explain things that are not quite straightforward. The
problem is thus likely to have been borrowed wholesale. The second part, the determination
of the approximate square root, supports this conclusion, since it is not done according
to the rule taught at an earlier moment.

Here, however, a comparison with the corresponding lines in V (p. 298) is informative:

Now find its root, that is, of 33 and 1/3 , which comes to be 5 and 7/9 less 4/18 .

This looks suspicious. Why “ 7/9 less 4/18 ” and not just “ 5/9 ”? Calculation according
to the method that was taught would give

51 The cyclopic dimensions of the “shield” (schudo ) in question – the cubit is ca 50 centimetres –
shows that the word serves as a semi-technical geometric term and does not refer to a real piece
of armour.
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If we use the same method but approximating from above, observing that 33 1/3 =
36–2 2/3 , we get
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So, 5 7/9 is a first approximation reached through approximation from above.[52] Now,
(5 7/9 )2 = 33 31/81 = 33 1/3 + 4/81 . The correct second-order approximation (again from above)
would be
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Instead, the author simply subtracts the excess, obviously not understanding why the usual
approximation works. And then either he, Jacopo, or some further copyist on the way
toward V, miswrites 4/81 as 4/18 .

The compiler of M+F has obviously seen that something was wrong, and tried his
own hand. The usual first approximation from below gives him 5 5/6 . Since (5 5/6 )2 =
34 1/36 = 33 1/3 + 25/36 , a correct second-order correction (from above) would be a subtraction
of ( 25/36 )/(2 5 5/6 ) = 5/84 . How this has become a subtraction of 17/54 I cannot explain[53] –
but at least we see that the compiler knows about the possibility of a second approximation,
improving on the “closest root”.

Another problem about a “shield” follows, now with height 9 cubits. The first part
of the calculation goes as before, leading to the extraction of √108, this time found as
10 2/5 according to the method that was taught for the “closest root”. V instead repeats
the blunder of the first shield problem, subtracting the excess from the “closest root”.

After this, Jacopo (in both versions) gets back to something he appears to
understand (pp. 301, 446):

Two lances which are stuck in one plane, and one lance is 10 cubits long, and
the other is 17 cubits long, and from one lance to the other there are 20 cubits.
Say me how many cubits there will be from one of the points to the other of
the said lances. Do thus, detract 10 from 17, 7 remain, and multiply 7 times
7, they make 49. And similarly multiply 20 times 20, they make 400, and join
together these two numbers, that is, 49 and 400, they make 449. And find the
root of 449, which is 21 and 4/21 . And we shall we say that from one point
of the lance to the other there are cubits 21 and 4/21 of a cubit. And it is done.
I show you the diagram.

52 It is possible that 33 1/3 has been reexpressed as 100/3 = 300/9 , and the root of 300 = 324–24 then
found by approximation from above as 18– 24/2 18 . The outcome is the same.

53 In [2007: 22], calculating badly I suggested (2 5 5/6 )/36, which is indeed 17½/54 .
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The mathematics asks for no commentary – but we may take note of the dress which,
like the towers with moat and the pavilion, reminds us that the artisans and merchants
who sent their sons to the abbacus school lived under the conditions of endemic
warfare.[54]

The next problem, also a rather simple application of the Pythagorean rule, is
characteristic of Jacopo: it borrows a traditional dress but uses it for a different
mathematical purpose (here, as repeatedly, a much simpler purpose; pp. 301, 446):

There are two towers in a plane, as I show you drawn. And one tower is 20 cubits high
and the other is 25 cubits. And in the middle between these two towers there is a goblet,
as you see drawn. And from one tower to the other there are 100 cubits. And on top of
each one of these towers there is a dove, which wants to go drink from this goblet. And
from one tower to the other there is 100 cubits, and they set out at one and the same hour,
and fly equally, one as the other. Say me how much earlier one will be there than the
other to drink from the goblet. Do thus, say, because from one tower to the other there

is 100 cubits, then divide 100 by half, from which comes 50, and multiply 50 times 50,
they make 2500. And because one tower is 20 cubits high, then multiply 20 times 20,
they make 400. And join 400 above 2500, and you have 2900. Now find the root of 2900,
which is 54 less 4/67 . And in so much will the dove come to drink which is on the tower
that is 20 cubits high, that is, in 54 cubits less 4/67 of a cubit. If you want to know when
the other dove will be there, then multiply 25 times 25, they make 625. And similarly
join above 2500, they are 3125. And find the root of this, that is, of 3125, which is 56
and 1/112 , and in so much will the other dove be to drink of the goblet, that is, in cubits
56 and 1/112 . Now detract from 56 and 1/112 , 54 and 4/67 , 1 and 73/77 remains, and in so much
will one dove be earlier to drink of the goblet than the other, that is, cubit 1 and 73/77 of
a cubit, that is, the one that is on the tower of 20 cubits.

Traditionally, the dress of the two doves on two towers is used for a different purpose:

54 Obviously, from this and so many other texts it appears that these conditions were taken for
granted. In the words of the Danish poet Otto Gelsted, “Under the crumbled walls / rot the forgotten
corpses. / On top of the heaps / the children play at war“. (Note added in April 2022, another
moment of war reaching the “Western” media.)
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instead of giving the position of the goblet, it is stated that the two doves not only set
out but also arrive at the same moment – that is, the distances from the tops of the towers
to the goblet are the same. The solution builds on application of the Pythagorean rule
to two equilateral triangles that have one side (namely the hypotenuse) identical and the
sum of two corresponding sides given (here the distances of the goblet from the towers).
The same trick serves in the determination of the height of a triangle with given sides.
That is observed by Mahāvı̄ra in his ninth-century Ganita-sāra-sangraha (VII.201½–203½,
ed. trans. [Raṅgācārya 1912: 249f ]), whereas Paolo Gherardi has a correct but only halfway
argued solution in his Libro di ragioni [ed. Arrighi 1987: 65–67]. The Liber habaci
(equally Provençal, we remember) has a sham solution which only works for its specific
parameters, while the Columbia Algorism (late 13th century, as we shall see on p. 166,
and linked to the Ibero-Provençal region) prescribes a correct calculation without any
argument (while replacing the doves by falcons and the cup by a duck). This may have
been too difficult for Jacopo (and most abbacus writers). Instead, as we see, he changes
the problem in such a way that nothing but simple use of the Pythagorean rule is required.
We may wonder that he measures time as length, but as familiar from 14th-century
Aristotelian natural philosophy, velocity (“motion”) was not a developed, quantified notion;
Jacopo’s choice is after all the best he can make.

Less adequate are the determinations of the square roots. V (p. 303) claims the root
of 2900 to be 53 9/106 , while the usual “closest root” is indeed 53 91/106 (almost certainly
a writing or copying error). M and F instead approximate from above, which should give
54– 4/27 . M instead has an indubitable “54 less 4/67 ”, while F [ed. Simi 1995: 32] gives
“4 less 4/77 ”. V correctly approximates √3125 from below as 55 10/11 (p. 303), while M

as well as F try an approximation from above (in principle a good idea). This should give
56– 1/112 – but both write “56 and 1/112 ”. The difference found by both, which on the
conditions of F should be (56+ 1/112 )–(54– 4/77 ), is given as 56–(54+ 4/77 ). We may conclude
that the common archetype for these two manuscripts (not necessarily the text of the
original compiler) had 4/77 and not 4/67 – but also that the familiarity of the compiler with
approximations from above was more than counterbalanced by other shortcomings of his.
In German, there are two terms for this kind of misrepair of a text: Verschlimmbesserung
and Verballhornung. For some reason, there seems to be no established correspondingly
colourful equivalent in English.

A problem follows in V as well as M+F (pp. 303, 447) about a rather impossible
building – gutters (piovetoi ) being put in a position where they cannot serve to collect
the rain falling on the roof. Instead they serve as pretext for another application of the
Pythagorean rule, leading to the extraction of √569. V approaches from below, which
gives 23 20/23 , and adds the same erroneous correction term as in the shield problems (here
( 20/23 )2 = 400/529 ). This time M+F do not venture into independent calculation but simply
omit the additional term.

M+F close the chapter by showing how to extract the (“closest”) root of 101. This
has no counterpart in V.
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All in all, Jacopo’s “practical geometry”, in either version, has little to do with the
genuine practice of surveyors or with the use of their measurements in the determination
of rent or taxes.



The coin list

The next section[55] brings us back to what is needed in commercial life – more
precisely, in exchange reaching beyond local trade. Its introduction runs (pp. 331, 448):

In the name of God, Amen. Here are written all modes of alloys of coins, and similarly
all alloyings of gold and silver and copper, how are alloyed one coin or bullion of gold
in ingots, or silver of all rates.

And we begin thus. You shall know that one ounce of fine gold is 24 carats. And
the baser the gold, the less carats are there in the ounce.[56] And the better the gold,
the more carats are there in the ounce. And similarly happens with silver, but silver is
alloyed at ounces, or indeed at denari of weight. And the silver that holds 12 ounces per
pound is fine silver and good and pure.

A list of coins of 6 pages (fol. 42r–44v in M) follows. It may at first astonish a modern
reader that only the fineness and not the value in terms of some standard is indicated.
The explanation is obvious, however: as long as the value of a coin was its metal value
and not guaranteed by some central bank, the only thing that was certain was the fineness
(unless the coin was counterfeited). The quantity of metal had to be controlled by weighing,
since some small clipping (or simply honest wear at the touchstone) might have reduced
it. We may look at an extract:[57]

fiorini of gold from Florence are alloyed at carats . . . . . . . . . . . . . . . . . . 24 per ounce
Augustales of gold are at carats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1/2 per ounce
Perperi pagliolati are at carats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 per ounce
Dobre dell’Amira are at carats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1/2 per ounce
Dobre del Rascetto are at carats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1/2 per ounce
Castellani of gold are at carats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1/2 per ounce
Alfonsini of gold are at carats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1/2 per ounce
Tornesi of gold are at carats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3/4 per ounce
Old Bezants of gold are at carats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 per ounce
Old communal and intermediate Perperi of gold are at carats . . . . . . . . . . . 17 per ounce
Saracen Bezants of gold, of which 12 go per ounce, are at carats . . . . . . . . 15 per ounce

55 “Next” in M+F; in V, the geometry and the coin list are separated by several chapters of algebraic
character – see below, p. 181.

56 The established value of the carat was 4 grains, that is, 1/24 of a Roman solidus, and fineness
was measured as carats in a solidus, not of an ounce [Zupko 1981: 79]; cf. above, note 22. Since
this was always used as a relative measure (different from when the weight of diamonds is given
in carats), the definition given here actually changes nothing. The mistake, or whatever we will
call it, seems to be of French-Provençal origin, cf. [Høyrup 2007: 123f ].

57 The full lists of M+F as well as V (almost identical) are in [Høyrup 2007: 448–452, 331–336],
the latter with translation. The full list is also transcribed in [Travaini 2003: 104–108]. Lucia Travaini
further gives a full description of all the coins listed in this and a number of other coin lists (pp.
235–313); my commentary draws on this description.
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– 26 more gold coins follow –

Here are written what all silver coins contain.
Tornesi grossi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . are at ounces11 1/2 per pound
And it is to be understood that the pound is of 12 ounces of fine silver in all alloyings
Medals[58] from Tours, first class, are at ounces . . . . . . . . . . . . . . . . . . . 11 1/2 per pound
Medals [from Tours], third class, are at ounces . . . . . . . . . . . . . . . . . . . . . 11 per pound
Carlini and mergugliesi and barzellonesi are at ounces 11 1/4 per pound
Sterlings . . . . . . . . . . . . . . . . . . . are at ounces . . . . . . . . . . . . 11 denari 2 per pound
Venetiani from Venice . . . . . . . . . are at ounces . . . . . . . . . . . . . . . . . 11 3/4 per pound

– 14 more silver coins follow –

Here are written the alloyings of small coins
Parigini of first class are at denari 5 and grains 18 of alloy[59]

Parigini of second class are at denari 4 grains 16 of alloy
Parigini of third class are at denari 3 grains 14 of alloy
Old Tolosini “with the cross” are at denari 6 grains 18 of alloy

– 50 small denominations follow[60] –

First of all we notice the wide commercial network implied by the coins: Perperi
(from hyperperon ) is a Byzantine coin; pagliolati refers to the dynasty of Palaeologoi,
the “communal” were minted by the Nicaea dynasty during the crusader occupation of
Constantinople during the first half of the 13th century. Augustali had been minted in
Sicily by Frederick II of Hohenstaufen and Charles d’Anjou. Dobre (“double”, originally
double dinar) were minted in the Iberian Peninsula and in the Maghreb (“Amira” is
Almeria, Arabic al-Mariyya). Castellani were Castilian emulations of the dobre. Alfonsini,
minted by Alfonso VIII of Castile, were also emulations of a Moroccan dobre. “Bezant”
was used about the hyperperon in the Latin world, but also about the many imitations
from the crusader states and the Islamic Mediterranean (Jacopo’s “old bezants” are
probably from Egypt, his “Saracen bezants” from the Jerusalem Kingdom). Tornesi, as
we remember, are from Tours in France. Carlini were minted in Naples, mergugliesi in
Montpellier, barzellonesi in Barcelona. Sterlings were English (then as now), Parigini
were from Paris, tolosani from Toulouse. The many coins left out above are mostly from
the same region but add German areas.

Since the coin list is present in V as well as M+F (with minor variations, apart from
the final addition in M), we may safely assume that it was also present in Jacopo’s

58 Medaglia, from medius >medialia, is mostly a half-denaro, here however the half of a more
valuable unit.

59 “Denari of alloy” actually corresponds to ounces per (light) pound; cf. note 22.

60 34 of these, all dealing with Lombard coin, are a secondary addition and absent from F as well
as V. They have obviously been important in the environment where M (or some precursor later
than the shared compilation of M+F) was produced.
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original. Jacopo is likely to have copied an existing list – after all, he was almost certainly
neither a money-dealer not a banker. Since one of the coins, the rinforzati from Provence
(not present in the extract) was only coined from 1302 onward, while other coins from
1303 are not included [Travaini 2003: 102], the list he copied must have been a quite
recent list.



Alloying problems

The coin list calls for no mathematics beyond the numbers indicating fineness. The
last chapter in the treatise, about alloying, does. Indeed, it contains nothing but
mathematics: one will look in vain for technical advice about the refining or alloying of
bullion, and also find nothing about assaying.

All calculations are straightforward and well explained, and there are few repetitions.
The metrology is the same as in the coin list – ounces and carats for gold, pounds, ounces,
denari and grani for silver and copper.

V contains an explicit transition between the two chapters (p. 337):

Here end all the alloys of coins. Now we begin to make some computations of alloying.

M+F start directly with a problem (p. 452):

I have 60 ounces of gold which is 16 carats per ounce, and I want put it in fire and refine
it so much that it becomes of 21 carats per ounce. Say me how much these 60 ounces
will become in weight, taken out of the fire when it is of carats 21, neither more nor less.
Do thus, know how many carats of gold there are in the said 60 ounces which you put
in fire before, and multiply 60 times 16, they make 960, and so many carats was the gold
that you put to in fire before, that is, carats 960. Now if you want to know how much
it will become in weight, then divide carats 960 by 21, because you want it to become
of carats 21, from which comes 45 and 5/7 , and they are ounces. And we shall say that
the said 60 ounces which you put in fire at carats 16 per ounce, will become, when taken
out of the fire, ounces 45 and 5/7 of an ounce, and will be of 21 carats per ounce. And
it is done.

This is followed in M+F by a strictly analogous problem (absent from V) where the
resulting gold is requested to be of 24 carats. As we see, there is no reference to a general
rule (for instance, the inverse rule of three, which would be fully adequate, cf. note 37);
instead, the reasons for the single calculational steps are made clear.

After these two comes a mathematically simple problem of mixing, shared with V

(pp. 338, 452):

I have 7 ounces of gold, which is at carats 19 1/2 per ounce. And I have 9 ounces of it
which is of carats 20 and 1/4 per ounce. And I have 16 ounces of it which is of carats
21 and 2/3 per ounce. And I also have 20 ounces of gold of carats 23 3/4 per ounce. Now
I want to fuse all these four golds together and make an ingot of them, thus mixed together.
Say me how much this whole ingot will be in weight, and of how many carats of gold
per ounce it will turn out to be precisely. Do thus, firstly know how many carats of gold
you have in the first 7 ounces, which is of 19 1/2 carats per ounce. And multiply 7 times
19 1/2 carats, which makes 136 and 1/2 , that is, which are carats. And we shall say that
in the said 7 ounces there are 136 1/2 carats. [similarly for the other golds]. Now join
together all these carats, that is, carats 136 1/2 and carats 182 1/4 and carats 346 2/3 and carats
475, which in total are carats 1140 and 5/12 of a carat. Now similarly join together all the
gold, that is, ounces 7 and ounces 9 and ounces 16 and ounces 20, which in total are
ounces 52. Now divide all these carats, that is, 1140 and 5/12 , by 52, from which comes
carats 21 and 581/624 , which is well over 3/4 . And we shall say that this whole ingot will
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be ounces 52, and of carats 21 and 3/4 . And it is done.

At the end, V adds

And thus all the similar computations are done. And if you might want to fuse together
of 100 rates of gold and of different rates, then do always by this rule. And you cannot
go wrong.

This is evidently the reason to illustrate the principle by means of four different alloys;
the compiler of M+V either has not understood that purpose or, more likely, has found
the observation superfluous. Apart from that we may have a look at the rounding (present
only in M+F). Expressed as a decimal fraction, 581/624 is 0.931... , certainly well above
3/4 , and pretty much closer to 1. We may think the precision to be poor, but it may perhaps
have a decent reason. In the coin list, the fineness of gold coins is mostly given with a
precision of 1/4 of a carat. “Well over” 21 3/4 carats thus ensures that the ingot is presented
with no more than its actual value, while the closer approximation 22 carats would be
fraudulent. Like the welsche Praktik, the safe rounding may thus have been inserted with
the purpose of adapting the text to the conditions of the market.

The next problem (pp. 339, 453) is of the type referred to in note 4 as a model
explaining the principle of the double false position:

I have bullion which is at denari 11 of alloy[61] and bullion which
is at denari 4 of alloy. Now I want to make a coin that is at denari
7 of alloy, neither more nor less, and I want to alloy 100 marks of
it. Say me how much I should put of each of these two bullions in
these 100 marks so as to get 100 marks at denari 7 of alloy. Do thus,
say, the alloy which I want to make is at denari 7, and the highest
bullion I have is at denari 11. We shall thus say, from 7 until 11 there
is 4. And take marks 4 of the contrary bullion which is at denari 4
of alloy. And similarly say, from 7 until 4 diminishes 3, and take
marks 3 of the contrary, that is, of the one which is at denari 11 of
alloy. Now you have alloyed marks 7 of denari 7 of alloy. And you
have put marks 4 of the bullion which is of denari 4 of alloy, and
you have put marks 3 of the bullion which is of denari 11 of alloy.
And we wanted to alloy 100 marks. Therefore multiply 3 times 100
marks, they make 300 marks, and divide 300 by 7, from which comes
42 and 6/7 . And so much is needed of the bullion which is at denari
11 of alloy. Now multiply 4 times 100, they make 400, and divide in 7, from which comes
marks 57 and 1/7 of mark, and so much is needed of the bullion which is at denari 4 of
alloy. Now we have alloyed 100 marks of bullion, which is at 7 denari of alloy. And we

61 Cf. note 59 for the expression “of alloy”. In the present calculations, the denaro is taken to be
1/12 of a mark.
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have put 42 marks and 6/7 of bullion that is of 11 denari of alloy, and he[62] has put
there 57 marks and 1/7 of bullion which is at 4 denari of alloy. Now join together marks
42 and 6/7 and marks 57 1/7 , which are 100 marks. You have thus alloyed 100 marks of
it. And by this rule you can alloy as much of it as you wish. Let us now verify whether
we have alloyed well, and it is verified in this way. And say thus, in the said 100 marks
that you have alloyed at denari 7 of alloy, there enter denari 700 of alloy. Now let us
see whether we find again the said 700 denari. Say thus, we have alloyed and put there
marks 42 and 6/7 of a mark at denari 11 of alloy, in which there are 471 denari and 3/7
of a denaro. And you have put there marks 57 and 1/7 of bullion which is at denari 4 of
alloy per mark, in which there are denari 228 and 4/7 . Now join these denari together,
that is, denari 471 and 3/7 and denari 228 4/7 , which in all are denari 700. We have thus
alloyed well, since we precisely found again the said 700 denari. It would have been a
pity if we had found more or less.

The accompanying diagram comes from V and is absent in M and F. Another striking
difference is that V explicitly uses the partnership model for the determination of how
much each sort should contribute to the 100 marks (a capital of 7 and a profit of 100 to
be shared between partners having invested 4 respectively 3).

The charming closing remark is an innovation of the compiler of M+F – V closes
with a reference to the diagram.

The following two problem are analogues of the ingot-problem and of the one just
discussed. At the end (pp. 344, 455) comes this:

This is a general alloying of four bullions, and in the said way we may alloy gold and
silver and copper of whatever fineness they be and however much you may want to make
the alloy. And in this way you may alloy however many bullions or coins it may be. And
this we shall write hereby, and similarly we shall show it materially by diagram, how
the said alloying is made and how the bullions are to be taken.

First say, I have bullion of four kinds. The first is base bullion and is of denari 3 of
alloy, the second is of denari 4 of alloy , and the third is at denari 9 of alloy, and the
fourth is of denari 12 of alloy. And I want to make a coin that is at denari
7 of alloy, neither more nor less, and I want to alloy 30 marks of it. Say
me how much I shall put into these 30 marks of each of these bullions so
that the said 30 marks be alloyed at denari 7. Do thus, say, the alloy that
I want to make is at denari 7, and the best bullion I have is at denari 12,
therefore say, from 7 to 12 there are 5. And take marks 5 of the contrary,
that is, of the basest bullion, which is at denari 3 of alloy. And similarly
say, from 7 to 3 diminishes 4, and take marks 4 of the contrary bullion,
that is, of the best, which is at denari 12 of alloy. And further say, from 7 until 9 there
are 2, and take marks two of the bullion that is of denari 4 of alloy. And similarly say,

62 This sudden shift to the third grammatical person is present in M as well as well as F. Abbacus
masters in general were no great mathematicians, nor great masters of style. Unmotivated jumps
into the third person are still rare, but vacillation between “I do”, “you do” and “we do” are
pervasive – thus also in the present problem, and in its counterpart in V.
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from 7 to 4 diminishes 3, and take marks 3 of the bullion that is at denari 9 of alloy. Now
we have alloyed marks 14 of bullion at denari 7 of alloy, having put there marks 4 of
the bullion that is at denari 12 of alloy, and having put there 5 marks of the bullion that
is at denari 3 of alloy; and having put there marks 3 of the bullion that is at denari 9 of
alloy, and having put there marks 2 of the bullion that is at denari 4 of alloy. Now you
have known how much is needed of each of these 4 bullions. And we wanted to alloy
30 marks. Do thus, join together all these marks, that is, 4 and 5 and 3 and 2, they are
in all marks 14, and this is the divisor. Now, because you want to alloy 30 marks of it,
then multiply 30 times 4, they make 120, and divide 120 by 14, from which comes 8 and
4/7 , and so many marks of fine silver will enter in the said 30 marks. Now multiply 3 times
30, they make 90, and divide 90 by 14, from which comes 6 and 3/7 , and so many marks
are needed of the silver which is at denari 9 of alloy, that is, marks 6 and 3/7 of a mark.
[...]. Now join together all these marks which you have put together, and know whether
they are 30 marks, that is, marks 8 and 4/7 and marks 6 and 3/7 and marks 4 and 2/7 and
marks 10 and 5/7 , which in all are marks 30. We have thus alloyed 30 marks of it. And
in this way you may make all alloyings.
Explicit liber Tractatus algorismi. Deo gratias.

Evidently, this problem (shared with V) is strongly underdetermined; what is offered
is a possible solution. Most noteworthy is perhaps the reference to a diagram, which is
in neither M nor F but only in V – one of many indications that V is Jacopo’s original
version.

V, once again, has an explicit reference to the use of the partnership model. M+F

has eliminated it, but this time a trace remains, the reference to “the divisor” (cf. above,
p. 24).

The final explicit and reference to divine Grace is obviously not present in V, which
goes on with a collection of 32 mixed problems. But the routine religious tone is not rare
in abbacus texts. The commercial environment and its teachers may not have been much
influenced by the ecclesiastical prohibition of usury (relative as it was) – but sinning (in
this as in so many other environments and situations) did not prevent pious attitudes (cf.
above, note 25).

This was one abbacus book among many – and because it seems to be a recast of
an original – a recast meant to adapt the text to the school environment – probably as
representative as a single specimen can be, apart from the occasional Provençal colouring
and from the absence of algebra, included in many abbacus books (as also in Jacopo’s
original). However, even this absence (shared by many other abbacus books) reflects its
adaptation to the school environment. In any case, we shall return to the algebra contained
in V and to abbacus algebra in general in chapter IV.



III. Fibonacci and the Fibonacci story

From the references in the preceding chapter to analogues in earlier sources it is
obvious that abbacus mathematics had roots in preceding mathematical cultures. Since
Italian traders had direct interaction with neither Indian nor Chinese mathematics, the
most important inspiration must have come from the Arabic world. There are admittedly
some borrowings from Latin post-agrimensor geometry, and also some influence from
the Byzantine world, to which we shall return; but the overarching importance of the
Arabic influence is obvious already from the first part of the standard curriculum of the
abbacus school: the teaching of the Hindu-Arabic numerals and their use.

It is widely claimed in popularizations (in print and on the web) that Fibonacci was
the one who brought the Hindu-Arabic numerals to Europe.[63] Historians of mathematics
know better – after all, Jacopo’s title Tractatus algorismi refers to al-Khwārizmı̄’s
introduction to the topic, translated as Dixit algorismi rather early in the 12th century.[64]

Even historians of mathematics, however, have tended to believe that abbacus mathematics
descends from Fibonacci’s writings. Thus, Elisabetta Ulivi, one of best scholars in the
field, explained in [2004: 44] that

the name “abbacus school” designates those secondary-level schools that were essentially
dedicated to practical arithmetic and geometry and were in the tradition of Leonardo
Pisano’s Liber abbaci and Practica geometriae,

and in [2002a: 10] that libri d’abbaco

were written in the vernaculars of the various regions, often in Tuscan vernacular, taking
as their models the two important works of Leonardo Pisano, the Liber abaci and the
Practica geometriae.

These are comparatively weak statements – after all, “in the tradition” and “take as models”

63 Cf. this (which even mistakes Europe for “the world”):

Fibonacci is considered to be one of the most talented mathematicians of the Middle Ages.
Few people realize that it was Fibonacci that gave the world the decimal number system
(Hindu-Arabic numbering system), which replaced the Roman numeral system.

(https://www.thoughtco.com/leonardo-pisano-fibonacci-biography-2312397, accessed 3 February
2020, defunct 12 May 2023). It would not be difficult to put together a whole collar of idiocies,
but this single pearl should suffice.

64 According to André Allard [1992: xv], the manuscript of a descendant treatise was copied in
Toledo around 1143. [Folkerts 1997] contains a critical edition with German translation of the treatise
itself.
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are rather open claims. Much stronger was the assertion of Van Egmond [1980: 7] that
all abbacus writings “can be regarded as [...] direct descendants of Leonardo’s book”,
repeated [Van Egmond 2008: 303] in the statement that the “trattati o libri d’abbaco [were]
clearly modeled after LEONARDO PISANO’S Liber abbaci of 1202”. Raffaella Franci and
Laura Toti Rigatelli said in [1985: 28] that “the abacus schools had risen to vulgarize,
among the merchants, Leonardo’s mathematical works”, yet adding cautiously on p. 45
that

in Florence, in the 14th century, at least two algebraic traditions coexisted. One of them
was inspired by Leonardo of Pisa and was improved by Biagio the Old and Antonio de’
Mazzinghi, the other, the beginning of which is unknown until now, has Gerardi [i.e.,
the above-mentioned Paolo Gherardi / JH] as its first exponent.

As we shall see, there is nothing in Biagio’s and Antonio’s algebraic writings that
points to Fibonacci; but at least Franci and Toti Rigatelli had seen that not everything
in the abbacus tradition comes from Fibonacci. Arrighi [1987: 10] goes further in this
direction, suspecting Paolo Gherardi’s Libro di ragioni as well as the Liber habaci – in
toto, not only Gherardi’s algebra – to be either re-elaborations or translations of French
(that is, Provençal) writings (there is no algebra in the Liber habaci ). As we shall see
in the chapter IV, this is a perspicacious observation.

In chapter IV we shall see more: namely that Fibonacci’s presumed role in the
formation of the abbacus tradition is not as much an overstatement as an illusion. However,
in order to see that we shall need a closer view of the Liber abbaci. This will also
contribute other insights that will serve later – and finally provide necessary background
when we come to those “abbacus encyclopedias” which did take up material from the
Liber abbaci around 1460.

The Liber abbaci is very famous, but not rarely misrepresented; for that reason this
closer view will have to be quite extensive. It follows Fibonacci’s own order.



The Liber abbaci, the autobiography, and the meaning of the title

Nine complete or fairly complete manuscripts of the Liber abbaci survive, listed in
[Giusti 2020: xxix–xxxi]. The full edition made by Boncompagni in [1857] was based
on a single manuscript from the 14th century.[65] The English translation made by
Laurence Sigler and published in [2002] was based on this edition,[66] and Ji Zhigang’s
Chinese translation on that of Sigler. [Germano & Rozza 2019] is the first volume of an
intended complete critical edition with accompanying Italian translation (so far containing
only 5% of the complete text), while [Giusti 2020] (published when most of the draft
for the present chapter was written) is a full critical edition. In what follows, if no other
information is given, references to the Liber abbaci indicate the page numbers in
[Boncompagni 1857] and [Giusti 2020] in the format [Bm;Gn ], as already explained in
note 32.

The Liber abbaci is usually taken to have been written in 1202, and then revised in
1228. All manuscripts containing the beginning of the work give the date 1202 for the
first edition, which can therefore be relied upon.[67] The precision of 1228 is subject
to more doubt.[68] In any case, for my present purpose it is not important whether the

65 Now Florence, BNC, ms. Conv. Soppr. C. I. 2616. One other manuscript is judged by Giuseppe
Germano [Germano & Rozza 2019: 72, 79, 81] as well as Giusti [2020: xxix, xxxi] to be certainly
from the 13th century, and two others from the 13th–14th century.

About one of the latter (Vatican, Pal. Lat. 1343) I have wrongly claimed at several occasions
that it is incomplete, misled both by the electronic version I used in the Vatican Library reading
room and the CD which I bought from the Vatical Library later. Apart from a few lacunae, it is
actually complete – only the scan was incomplete. In the meantime the Vatican library has put
a full high-quality scan on the web (which I have used when needed), at the address

https://digi.ub.uni-heidelberg.de/diglit/bav_pal_lat_1343?ui_lang=ger
(last accessed 12 May 2023). Boncompagni, living in Rome in the Papal State, had studied this
manuscript [1852: 32]; he did not betray why instead he used a Florentine manuscript for his
edition – possible explanations are the lacunae in the Vatican manuscript, or the omission of many
of the marginal schemes and the sketchy character of many others.

When referring to this manuscript (henceforth VF), I shall make use of the most recent foliation.

66 Unfortunately, Sigler died in 1997, leaving his work on floppy disks which were kept so long
by the intended publisher without being used that their format was out of date when his widow
Judith Sigler Fell claimed them back, one even being lost. What was published was thus the fruit
of a recovered incomplete electronic text combined with immense work by Fell on Sigler’s
preliminary notes for the lost part and the formatting – see [Devlin 2017: 106–114]. Readers of
Heinz Lüneburg’s ungenerous review [2003] should take this into account (and also be aware that
Lüneburg commits blunders more serious than anything he can reproach Sigler).

67 With a minor doubt: in medieval Pisa, the year was counted from the Incarnation, meaning that
Pisa’s year 1202 – likely to be the one Fibonacci thought of – began at Julian 25 March 1201 and
ended at Julian 24 March 1202. “1202” is thus quite likely to be 1201. But he could have thought
of some other calendar, maybe even one whose “2002” went from our Easter 2002 to our Easter
2003. Similar doubts concern the dating of all Fibonacci’s works. Cf. [Ulivi 2011: 250f ].

68 Two of the manuscripts of certain or possible 13th-century origin (and one more) state that “here
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year is precisely 1228, so I shall henceforth speak of the second edition as being from
1228.

All known manuscripts descend from the 1228 edition – with one exception. Giusti
[2017] has discovered that in the manuscript Florence, Biblioteca Medicea Laurenziana,
Ms. Gaddi 36 (henceforth L; containing only chapters 12–15), chapter 12 is quite different
from the corresponding chapter in the other manuscripts. According to strong internal
evidence, it is older (part of the evidence is presented further on in the present chapter).
As argued by Giusti, it is likely to represent the original 1202 version; I shall henceforth
speak of it as such; as with the “1228 version” with a proviso – namely, that we cannot
exclude that L was actually the result of an intermediate revision of which we know
nothing (but see below, p. 83, on an observation that speaks against this possibility). In
any case, the copyist of L appears to have used at first a manuscript of this early version
and then, getting access to the revised version (a misfortune for historians!) switched to
that.

According to Giusti [2020: lxxxiii], all surviving manuscripts except chapter 12 of
L seem to derive from a single archetype ω, since all “show a series of omissions and
errors that cannot reasonable be attributed to the author”. Comparison of the two versions
of chapter 12 (taking into account the critical apparatus of both editions) reveals, however,
that the large majority of the ω-errors in chapter 12 are also found in L.[69] This leads
to a different conclusion: Fibonacci conserved a master copy of the 1202 version, and
inserted new material into it while removing what had become redundant or what he did
not like at second thoughts (we shall encounter an example below on p. 72) without
engaging in a complete rewriting. All manuscripts were made from this evolving master
copy.[70]

In the introduction to the Liber abbaci (following a dedication to Michael Scotus,
and thus probably the original prologue from 1202) we read the following:[71]

begins the Liber abbaci composed by Leonardo the Pisan of the sons of Bonaccio in the year 1202
[MoCCoIIo respectively 1202 ] and corrected by the same 28 [XXVIII respectively 28 ]”, while the
last manuscript of possible 13th-century date has “... corrected by the same in the year 1228” [Giusti
2020: xvii], which could be a copyist’s interpretation of the shorter variant. No other manuscript
gives discordant information, but indicating a year by XXVIII or 28 alone would be quite unusual;
on the other hand, the indication stands in parallel to the year of the original composition.

69 Leaving out the 32 cases where the passage in question in the 1228 version has no counterpart
in L, there are 71 agreements or near-agreement between L and ω and only 19 agreements of L
with the corrected 1228-text (many of which could be produced by an alert copyist discovering
the mistake in his original).

70 As we shall see in note 481, even Fibonacci’s Flos and Liber quadratorum appear to have existed
as master copies from which further copies (dedicated to different patrons) were made.

71 [B1;G4] – but Boncompagni, following his manuscript (which diverges from the others on this



– 59 –

When my father, appointed by his homeland, held the post of public scriba (notary or
representative) in the custom-house of Bejaia for the Pisan merchants frequenting it, he
arranged for me to come to him when I was a boy and, because he thought it would be
useful and appropriate for me, he wanted me to spend a few days there in the abbaco
school,[72] and to be taught there. Here I was introduced to that art (the abbaco ) by a
wonderful kind of teaching that used the nine figures of the Indians. Getting to know the
abbaco pleased me far beyond all else and I set my mind to it, to such an extent that I
learnt, through much study and the cut and thrust of disputation, whatever study was
devoted to it in Egypt, Syria, Greece, Sicily and Provence, together with their different
methods, in the course of my subsequent journeys to these places for the sake of trade.
But I reckoned all this, as well as the algorism and the arcs of Pythagoras, as a kind of
error in comparison to the method of the Indians (modus indorum ).

From this, two things may be derived. Firstly, that Fibonacci cannot have been born much
later than 1170 – he must have had time to be active before 1202 as a widely travelling
merchant. Secondly, that he learned his mathematics not only in Bejaïa in present-day
Algeria but also in Syria, Egypt and Sicily (strongly connected to the Arabic world), and
further in Constantinople (“Greece”) and Provence.

From the incipit (see note 68) we learn that a fuller version of the surname
“Fibonacci”, namely “of the Bonaccio family”, was already in use in the 13th century
(“Leonardo Pisano” could obviously only be used to identify him outside Pisa). We also
learn that the book was already supposed by then to deal with “abbacus”. Fibonacci himself
thought so too – in his Pratica geometrie [ed. Boncompagni 1862: 9, 24, 81, 148] he
speaks about it as “the abbacus book in a larger manner”, “our book on abbacus”, and
the “abbacus book”. We cannot be sure, however, that the word meant the same to
Fibonacci as to writers of the generations where the abbacus school had been established.
We have no traces of the terms abacus/abbacus except as referring to the reckoning board
before Fibonacci, so he may well have grabbed it for his own specific purpose.[73] The

account), gives a text that only refers to Egypt etc. as “places of business”, missing that Fibonacci
had gone there as a merchant. The pure mathematician Georg Eneström, wishing Fibonacci to belong
to his own kind, in [1906] used this as the basis for another brutal attack on Moritz Cantor.

The translation is due to Charles Burnett [2003: 87], who made a critical edition of the passage
and offers an extensive commentary. Passages in round brackets are Burnett’s explanatory additions.

72 “Abbacus school” renders studio abbaci, which may as well mean “study of the abbacus”. It cannot
be concluded from Fibonacci’s words that he frequented something like the later “abbacus school”.
We have indeed no information about how this kind of practical arithmetic was taught in the Arabic
world – be it then that Ibn Sı̄nā’s father “sent me to a vegetable seller who used Indian calculation”
[trans. Gohlmann 1974: 21] (but that was 200 years earlier and some 5000 kilometres to the East).

73 To be precise, at least not in Italy. Two manuscripts of a commentary to Elements X, probably
due to Gerard of Cremona, characterize it as abbacus [Busard 1997: 31]. The manuscripts are from
the 13th and 14th centuries, but they may repeat a 12th-century term. There is evidently no reason
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next time it occurs seems indeed to be in a document from 1241 or slightly earlier stating
that the Pisa authorities had assigned a pension to Fibonacci because of his “abbacus
estimations and accounting” (abbacandes aestimationes et rationibus ) in the service of
the city and its authorities [Bonaini 1857: 241].[74] It is quite likely that the authorities
had taken over Fibonacci’s word – perhaps already interpreting it in their own way.

The Liber abbaci does not help much, but it gives some hints. Firstly, chapter 13
is stated [B318;G499] to deal with “the elchatain rule [the double false position], by which
almost all abbacus questions will be solved”. The phrase “abbacus questions” points back
to [B166;G285], where it describes the contents of chapter 12: mixed, largely recreational
problems (see below, p. 77) – similar in genre to Jacopo’s collection of mixed problems
(certainly in neither details nor level).

Secondly, a root extraction “in the abbacus way” is explained on pp. 53f as a
combination of an algorithm for finding the integer part of the root of a multi-digit number
(seemingly a transfer to paper of an algorithm developed for a dustboard where deletion
and rewriting is possible) with the method for finding what later abbacus books speak
of as “the closest root”. The example is √743, and the result is 27 14/(2 27) . Here, “abbacus
way” clearly refers to a specific method and not to practical computation in general; the
two methods were well known in the Maghreb – they are described together in al-
Qalasādı̄’s Kašf [ed., trans. Souissi 1988: 57–60] (of later date, but an exposition of
inherited knowledge). The best guess is therefore that Fibonacci’s “abbacus” was meant
as an equivalent of Arabic mu āmalāt.[75] That semantic equivalence, if ever known
by anybody except Fibonacci himself (and if true), was soon to be forgotten in Italy; but
abbacus mathematics remained a close relative of mu āmalāt mathematics.

to connect this to Fibonacci’s very different usage.

74 The precise formulation should kill the hypothesis that he got it for holding an abbacus school.
The title magister given to him in the document proves nothing, it was used too widely about anyone
who was the “master” of others, whether of students, of serfs, of subordinate officials, artisans of
a craft, etc. See [Du Cange 1883: V, 168–173] and [Niermeyer 1976: 624f ]. If instead of dictionaries
we trust Fibonacci’s own use of the term magistraliter (see imminently), it may simply designate
him as a learned man, which he certainly was.

Evidently, aestimationes cannot refer to teaching. It should rather make us think of urban
surveying for the city, which a number of 14th–15th-century abbacus masters are also known to
have practised – three examples are mentioned by Ulivi [2004: 52f, 58]. Rationes is probably
“accounting”, cf. present-day Italian ragioneria [also ragioneria di stato ].

75 In general usage “mutual, business, social relations”, whence “mu āmalāt calculation” designates
the mathematics of practical life – my thanks to Ulrich Rebstock for suggesting a more elaborate
explanation than I had originally offered.



Some general characteristics of Fibonacci’s project

If “abbacus” is really meant to render mu āmalāt, then Fibonacci’s Liber abbaci is
not only an indubitable parallel to the Liber mahameleth probably written in al-Andalus
before the mid-12th-century and more or less freely translated into Latin by Domingo
Gundisalvi or in his environment around 1260;[76] even the title will then in a certain
sense be the same.

The parallel, however, does not depend on whether Fibonacci really meant “abbacus”
to translate mu āmalāt. Both the Liber mahameleth and the Liber abbaci had as their
aim to apply a theoretical perspective on practical arithmetic – representing, in Felix
Klein’s words and title [1908], Elementarmathematik vom höheren Standpunkte aus
(“Elementary mathematics from a higher vantage point”). At times, this aim shines clearly
through Fibonacci’s language, which distinguishes between doing something secundum
vulgi modus (“according to the way of common people” – for brevity “in the vernacular
way”[77]) and similarly, contrasted to doing it secundum artem, “according to the art”
or magistraliter. At times, “the art” is specified as “the art of abbacus”, in a way that
points in the same way as the above-mentioned “abbacus way” to determine a square root,
toward numerical methods used in the Maghreb. At one point [B215;G359], “magistraliter
according to the same art” follows a few lines after a reference to nostrum magisterium,
“our teaching” – namely of a numerical method of the same kind. But this instance is
clearly not to be generalized, and the regular meaning is different.

Four examples will suffice (there are more). Firstly, on pp. 63f, the vernacular way
of adding 1/3 and 1/4 is to find a reference magnitude whose 1/3 and 1/4 are integers, and

76 The prevailing opinion is that this Latin version is an original compilation. It is argued persuasively
by Jacques Sesiano [2014: xviii], however, that the work must have been produced in an Arabic
environment, and that the language of the original must have been Arabic, not Latin. Sesiano
suggests tentatively that it could be written by Johannes Hispalensis, John from Seville, before he
went to Toledo – namely because an indirect 15th-century quotation refers to him as hispanus and
of passages shared with John of Spain’s Liber algorismi. Serious arguments speak against this
suggestion. Some are formulated by Sesiano himself on the next page; to these comes that the
“Toledan Regule” (a second part of the Liber algorismi, ed. [Burnett, Zhao & Lampe 2007] has
a wholly different algebraic terminology than the Liber mahameleth – see [Høyrup 2021: 42–44].

That the text contains a reference to what is normally done by “the Arabs” does not disprove
an original Arabic authorship. It agrees with Gundisalvi’s free translation style – in his translation
of al-Fārābı̄’s Catalogue of the Sciences [ed. Gonzales Palencia 1953: 98] we thus find the
explanation that “the science of depths and heights, or of finding distances and many other things
of this kind, are contained in full in a book that is with the Arabs”. Combining this with the
discussion in [Burnett 2002b] of the identity/non-idenetity of John of Seville and John of Spain
it seems fairly safe conclusion that an Arabic original was written in al-Andalus and a free translation
produced around 1260, if not by Gundisalvi then by somebody close to him.

77 In the Pratica geometrie [ed. Boncompagni 1862: 1] Fibonacci himself indeed explains vulgaris
as being quasi laicali more, “so to speak as laymen do”. The counterpart there is represented by
“geometrical demonstrations”.
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then measure the sum by this same magnitude (that is what is taught in Jacopo’s Tractatus,
cf. above, p. 16; cf. also Fibonacci’s tree-example, above p. 26). The alternative (here
not given a name) is to find the sum as 1 3+1 4/3 4 . Secondly [B115;G198], the vernacular
way to multiply 5 ß 6 6/19 δ by 13 is to multiply the ß and the δ separately. Thirdly
[B127:G219], a composite exchange of money can be done stepwise (the vernacular way)
or by means of a scheme for composition of ratios (by art). Fourthly [B364;G563], 4+√√10
is found first secundum vulgarem modum, specified to be secundum propinquitatem, “by
approximation”, √√10 being approximated as “less than 1 4/5 ”.[78] Magistraliter, instead,

4+ = = .10 16 10 8 10 16 10 40960

The latter argument is accompanied by a line diagram, in which a line abc is divided into
ab = 4, bc = √√10. Since nothing is done with this diagram, it seems to be there just
because it belongs with the magisterial way.

78 Most likely, √10 is found to be approximately equal to 3+ 1/2 3 = 3 1/6 = 114/36 . Next, √114 will
have been found to be approximately 10+ 14/2 10 = 10 14/20 . Therefore, √√10 will be approximately
equal to 1 94/120 , slightly less than 1 96/120 = 1 4/5 .



Chapter 1 – introducing the Hindu-Arabic numerals

Fibonacci was not the first to teach Latin Europe about the Hindu-Arabic numerals;
as we have seen, even abbacus writers like Jacopo were to draw on Sacrobosco, who
continued a tradition inaugurated by the Latin translation of al-Khwārizmı̄’s treatise on
the topic. However, the foundation for this ascription of honour is obvious, namely that
Fibonacci starts by introducing the reader to them, first showing them and then indicating
(like Jacopo, cf. p. 12) their meaning in terms of what the reader would understand as
numbers proper – that is, numbers written with Roman numerals. This is supplemented
by a description of the system of finger-reckoning, followed by a corresponding depiction
(absent from some manuscripts). At the end of the first chapter comes tables for addition
and multiplication.



Chapter 2 – multiplication of integers

Chapter 2 [B7;G13] teaches the multiplication of integers with two or more digits;
here, the preceding instruction in finger reckoning comes to serve when intermediate partial
products are to be remembered. At the end comes, first, explanation of a purely mental
method, and then [B.19;G31] a presentation of another method, “very praiseworthy in
particular for the multiplication of large numbers”.[79] This latter method was to be
known in abbacus writings as multiplication a scacchiera, “in chess-board”, and even
Fibonacci refers to a chess-board. The method is close to what was known also in the
Maghreb, and asks for addition in diagonal (apart from that, the basic principle is the one
we use today). It is a paper algorithm, different from those inspired by the use of a dust-
or clayboard, and as such the only thing in this chapter recalling later abbacus writings
(but as we see a method which Fibonacci speaks of as already existing, and which for
instance Giovanni de’ Danti [ed. Arrighi 1985: 14] was to speak of in 1370 as arte vecchia,
“old art”.

79 This passage is misplaced in Boncompagni’s manuscript and hence also in his edition.



Chapters 3–4 – addition and subtraction

Chapter 3 [B18;G33] teaches the addition of multi-digit integers – including numbers
of libri, soldi and denari arranged in columns. The ultrashort chapter 4 [B22;G39] teaches
subtraction of a smaller from a larger integer (this time without monetary or metrological
applications).



Chapter 5 – division

Chapter 5 [B23;G43] is stated to deal with division involving integers, but also covers
auxiliary matters we would not automatically include under that heading – first of all the
writing of fractions by means of a fraction line, and the “ascending continued fractions”,
like “four seventh, and one half of a seventh”, written .[80] The fraction line is a

1 4

2 7

12th-century invention of Maghreb mathematicians, already used in the Liber mahameleth;
the notation for ascending continued fractions, also a Maghreb invention, is later and not
yet used in the Liber mahameleth, which instead uses words to render these composite
fractions, characteristic of Arabic mathematics.[81] Fractions of this kind can be continued
ad libitum – Fibonacci elsewhere goes until 10 levels.

Ascending continued fractions are used throughout the Liber abbaci as well as in
Fibonacci’s other writings. At the present point[B23;G44], Fibonacci introduces several
other notations (whether his own inventions or not is not clear):[82]

ο meaning + + +
2 4 6 8
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None of these seems very useful, and Fibonacci agrees in practice (using them very
rarely[83]).

Tabulated divisions follow [B25f ;G45–47], with divisors from i = 2 to 13 and
dividends 1 to 10i – for i≤4 with indicated remainder, for higher i with omission of
dividends that do not divide. Next it is explained how this serves for divisions of larger
dividends by single-digit and then two-digit divisors. “With enough of division by two-digit

80 Fibonacci takes over the Arabic right-to-left writing direction for numbers. In mixed numbers
he also systematically writes the fraction to the left (in all his works). In order to facilitate the
reading, in my translations I shall follow current habits, thus changing Fibonacci’s 1/2 2 into 2 1/2 –
and in order to distinguish fractions from ratios I shall write fractions with a slash, as stated above
in note ?. Within ascending continued fractions, for which no current habit exists, I shall follow
Fibonacci.

81 Explained for example by al-Qalasādı̄ in the Kašf [ed., trans. Souissi 1988: 48f ]. The appearance
of ascending continued fractions in various mathematical cultures until Fibonacci is described in
[Høyrup 1990a], the story from Fibonacci until Christopher Clavius is told in [Vogel 1982].

82 In the Boncompagni edition, the small circle is spoken of but actually omitted in the second line;
VF (fol. 11v ) inverts the positions of the circles in the two first lines, but they seem to have been
forgotten at first by the scribe and then pressed in afterwards. Later on, VF (e.g., fol. 115r ) agrees
with the other manuscripts [B312;G491].

83 I have observed the first type on p. [B61;G101] (which teaches how to multiply such fractions),
the second on p. [B312;G491], [B313;G491] and [B339;G531]. [B77;G130], explaining how to
add and subtract such numbers, speaks about both types. By mistake they are not written in
Boncompagni’s manuscript; in the others they are.
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numbers” [B36;G62], the way to divide by composite numbers by means of factorization
follows.[84] Here the ascending continued fractions come to serve. For instance, on p.
[B38f;G65], 1/951 is shown to be (317 being prime – Fibonacci shows it has no

1 0

3 317

adequate divisors, trying all primes below √317). When 749 has to be divided by 75 [B41;
G70], at first 1/75 is expressed as . Division of 749 by 3 yields 249, with remainder

1 0 0

3 5 5

2; division of 249 by 5 yields 49, remainder 4; division of 49 by 5 yields 9, remainder
4. Therefore, the total result is 9.[85] This use of factorization was also familiar

2 4 4

3 5 5

in the Maghreb – the same procedure is shown by al-Qalasādı̄ in the Kašf [ed., trans.
Souissi 1988: 42].

The chapter ends with a procedure for division by three-digit prime numbers that
cannot be factorized – still numeri hasam.

84 The factorization of a composite number is spoken of as its “rule” (regula ). Correspondingly
it is explained [B30;G53] that non-composite numbers in Arabic are called hasam. This is indeed
the technical-mathematical meaning of asamm, “deaf” in the Maghreb, though mostly not elsewhere
in the Arabic world [Souissi 1968: 220f; Saidan 1974: 368]; for a 12th-century exception from
Baghdād that suggests the Maghreb usage may have been more widespread than we know, see
[Rebstock 1992: 130 n. 194]. In “Greek” (apparently contemporary, Byzantine Greek) they are coris
canonos (which must stand for χωρις κανωνος), “We however call it ‘without rules [sine
regulis ]’” – an evident calque on the Greek expression, which according to Fibonacci was already
current within an environment which he here characterized as “we” (when introducing a new term
Fibonacci uses the future tense, “we shall call it”). The following lines show that Fibonacci also
knows the Euclidean terms for prime as well as composite numbers.

85 Boncompagni, and no doubt his manuscript, writes , without the necessary spaces. His text
244

3559

errs regularly on this account, the 14th-century copyist was obviously not too familiar with the
notation for ascending continued fractions, and also did not follow the computations systematically.
VF (fol. 17r ) is correct.



Chapter 6 – multiplication of mixed numbers

Chapter 6 [B47;G79] deals with the multiplication of mixed numbers. “Mixed
numbers” may contain an integer and one or several fractions – and here a fraction may
be simple or an ascending continued fraction, or even the first type “with circle” (above,
p. 66); for our present purpose there is no need to go into detail, since there is no specific
connection to what can be found in abbacus books.



Chapter 7 – addition, subtraction and division of mixed numbers

Chapter 7 [B63;G107] takes up the addition, subtraction and division of mixed
numbers, and the reduction of several fractions to one. On the whole, there is once again
no reason to go into details – yet with one exception.

This exception concerns part 7 of the chapter, dealing with the disgregation of fractions
into aliquot parts (also known as “unit fractions”). As well known, aliquot parts, including
2/3 , had been the standard way to express fractional quantities in Pharaonic Egyptian
mathematics, and they were taken over in ancient Greek practical arithmetic, and hence
also in the administration of the Byzantine Empire. For a while, the administration of
Syria and Egypt was continued in Greek after the Islamic conquest, and after the switch
to Arabic as administrative language in the outgoing seventh century [Robinson 2010:
209], accounting techniques including the writing of fractions may well have survived.
Then, around 1100, the Norman rulers of Sicily adopted Egyptian administrative practices
[Johns 2002]. So, among the places where Fibonacci states to have learned, at least Egypt
and Sicily are possible sources for his interest in aliquot parts. Much more likely, however,
is “Greece” (i.e., Byzantium). Six problems in the Liber abbaci either deal with something
supposed to have taken place in Constantinople, or they are stated to have been presented
to Fibonacci there. In three if them, the data contain no fractions [B190,274,276;
G324,440,443]. On p. [B188;G319], the data contain these fractions: 1/9

1/3 – 1/9
1/3 –

1/7
1/2 – 4/9

1/2 . On p. [B203;G340], the data make use of the fractions 1/8 – 1/10 . On p.
[B249;G405], finally, we find 1/5

2/3 – 1/480
1/6

2/3 – 1/688
1/6

2/3 – 1/420
1/7

2/3 – 1/810
1/27

1/10
2/3 . If we remember that 2/3 belonged since Pharaonic times to the category, this is

quite striking. All in all, Byzantium is thus most likely to be the location where Fibonacci
learned to find aliquot parts interesting. However that may be, Egyptian-style fractions
play no role in abbacus writings, and there is no reason to pursue the matter.



Chapter 8 – the rule of three

Chapter 8 is told to deal with “finding the price of goods in the major way” (per
maiorem guisam ). In abbacus terminology, that way would be spoken of as the “rule of
three”, but Fibonacci does not use this expression. Instead he explains [B83;G141] that

In all business, four proportional numbers are always found, of which three are known,
and the last one unknown: the first of these three known numbers is the number in which
any merchandise is sold, be it a number, a weight or a measure. A number may be a
hundred hides, a hundred goatskins, and similarly; weight, either cantari,[86] or quintals,
or pounds, or ounces and such; measures, metri[87] of oil [...]. The second is the price
of that sale, that is, its first numbers, whether it be any quantity of denari, of bezants,
of tareni, or some other current coin. The third how much is the quantity of merchandise
sold, whose price, that is, the fourth number, is unknown.

Fibonacci goes on with the possibility that it is the quantity sold that is unknown while
the price is known. He then explains how to insert the numbers in a rectangular scheme
and perform a cross-multiplication followed by a division.

For comparison, we may look at how al-Karajı̄ deals with the same matter in al-Kāfı̄
[ed. Hochheim 1878: II, 16] (my translation from Adolf Hochheim’s German):

Know that in questions about commercial transactions you must have four magnitudes,
which are pairwise similar, the price, the measure, the purchase amount and the quantity.

The price is the value of a measuring unit that is used in trade [...].
[...] Of these four magnitudes, three are always known, and one is unknown. [...].

As we see, the reference to four, not three magnitudes is shared. But that is as far as the
similarity goes, al-Karajı̄ is obviously not Fibonacci’s source (he also does not refer to
a scheme). Other Arabic scholarly authors are just as different from what we see in the
Liber abbaci. Not least the scheme, emulating the writing on a dust- or clayboard, suggests
that Fibonacci describes in his own terms what he has seen in practical use, and does
not copy from a book.

After this introduction follow a large number of examples, sometimes complicated
by the need to perform a preliminary conversion of units (in the present context made
separately). First merchandise versus money is dealt with, then exchange of one coin (or
weight of non-coined silver) into another one (involving the subdivision of both in £, ß
and δ[88]). Length (specified [B111;G191], as could be expected, to concern cloth) and

86 Borrowed from the Arabic unit qintar, equal to 100 ratl, whence often translated “hundredweight”.
In Italy varying between 100 and 250 pounds; the ratl, on its part, was borrowed as a rotulo.

87 From the Greek metron, a capacity measure used in the Southern and Central Italy (which were
under strong Byzantine influence); depending on the locality between 10 and 30 litres.

88 For example [B105;G180],
A Pisan £, that is ß 20, is worth £ 1 Bolognese, and further 54 Bolognese [meaning 54 δ =
4 1/2 ß], that is, ß 20 Pisan are worth ß 24 1/2 Bolognese. Therefore [ß] 20 Pisan are worth
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other particular measures are dealt with in a number of problems, followed by a short
section about partnership (the “partnership rule” for proportional sharing being indeed,
as we remember, an application of the rule of three “in parallel”). The last part of the
chapter deals with difficult metrological conversions – first from rotuli[89] of Pisan
cantari to light pounds, given that one cantaro equals 100 rotuli but also 158 pounds.

[ß] 24 1/2 Bolognese, and £ 20 Pisan are worth £ 24 1/2 Bolognese. And it is asked how
many Bolognese are to be had for 11 1/4 Pisan. [...]

89 Cf. above, note 86.



Chapter 9 – barter

In the Boncompagni edition and in most manuscripts, chapter 9 begins [B118;G205]
with the words Incipit capitulum nonum de baractis mercium atque earum similium, “The
ninth chapter about barter and similar matters begins”. Before that, however, manuscript
VF (fol. 47r ) has the words Hic incipit magister castellanus, “Here begins the Castilian
master”. Already Boncompagni [1852: 38], who noticed this passage, stated that no other
manuscript of the Liber abbaci known to him contains this passage, which remains true.
It is hardly imaginable, however, that a copyist should insert this reference to a Castilian
master on his own initiative.

An observation made by Giusti [2020: xlif ] shows what has happened. The last part
of chapter 9 and the beginning of chapter 10 in VF is copied from a different manuscript
than the rest, which must have had a lacuna here. The copyist is likely to have taken the
information about the Castilian master from this source (which, like the original for L

chapter 12, presumably represents the 1202 version).[90]

There are thus fair reasons to accept the claim that this chapter (or its initial part)
is copied from an older Castilian treatise; that Fibonacci should have deleted the reference
during further work on the manuscript fits his habit of hiding his sources even he copies
verbatim.[91]

The topic of the chapter is thus barter, together with mathematically analogous
questions. Barter was not uncommon in late medieval trade. Cash currency was often in
short supply, and banks could not step in in all places and in all kinds of trade with
alternative financial instruments. A seller might therefore have to accept that a buyer paid
in kind. Obviously, that could be inconvenient, and therefore the value of the merchandise
serving as payment might be reduced compared to what it would be in cash trade. How
much lower, however, would be a question of commercial power, of transport costs if
the payment had to be realized in a different market, etc. Such questions, however, could
and cannot be dealt with in the abstract, and Fibonacci (as many abbacus writers) would
not mention them.[92] Instead, they give rules for “just” barter, justice being tacitly

90 Comparison with the other manuscripts shows that this plausible 1202 text (from [B130;G225]
onward) does not differ significantly from the 1228 text. No surprise, since the commercial topic
was not one that called for revision.

91 The only exceptions to this rule are Euclid (often mentioned, cf. [Folkerts 2004]) and a single
reference to Ptolemy and Ahmad ibn Yūsuf when the compositin of ratios is dealt with [B119;G206].
As to verbatim copying, which can only be proved when we happen to possess and to recognize
the source, see [Høyrup 2001: 93] on the use of the Liber mensurationum in the Pratica geometrie,
and note 148 below.

92 Others do; the method is then that the seller, instead of accepting the merchandise of the buyer
at reduced price, augments that of his own if payment in kind is offered – cf. [Pacioli 1494:
161rff ] and, in general, [Tropfke/Vogel et al 1980: 521]. There is no guarantee that this corresponded
better to what real merchants would do: after all, the inconvenience of receiving payment in kind
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determined by the values of the respective merchandises in the actual trading situation.
The method is the one known elsewhere as the “rule of five”. Fibonacci, not giving

a name to the rule of three, obviously gives none here. Instead, he offers a “universal
rule” [B118;G205] for how to expand the calculational scheme so as to cover this more
complicated case. It is illustrated by an example: 20 cubits of cloth are worth 3 £, and
42 rotuli of cotton are worth 5 £ (both kinds of £ specified as Pisan). What then is to
be given for 50 cubits of cloth? The numbers are inscribed within a rectangular frame
as shown in the diagram, and it is explained that the ratio of the cubits of cloth to that
of rotuli of cotton is composed from the ratios 20 : 3 and 5 : 42. 5 20 cubits of cloth
are indeed worth 5 3 £, and 3 42 rotuli of cotton are worth 3 5 £. In consequence
5 20 = 100 cubits are worth 3 42 = 126 rotuli. By the rule of three we get that 50 cubits
are worth 50 126/100 rotuli. Following backwards the
calculation we see that 50 cubits are worth
50 3 42/5 20 = 63 rotuli, which is what is expressed in the
scheme. At the end, Fibonacci points out that this
composition of ratios is taught in the Almagest and by
“Ametus filius” (Ahmad ibn Yūsuf), and inverts the
calculation, finding that 126 rotuli of cotton are worth 50
cubits of cloth. A number of examples follow, some of which concern the exchange of
two coins, both of which are known with respect to the same third coin, and a final
example concerning five different coins “in cascade”. This is explained [B127;G219] to
be made “in the vernacular way” by stepwise calculation, and according to art by
composition of ratios (with extension of the preceding scheme).

A second part of the chapter deals with the exchange of bullions of different fineness,
which leads to analogous calculations, and a third with seemingly recreational problems
with the same mathematical structure and dealt with by means of similar schemes – for
example [B132;G228], a horses eat b sextarii of grain in c days; in how many days will
p horses eat q sextarii? This latter problem is used as the basis for a theoretical
investigation of changes in what is given within composite ratios.

depended on the merchandise received. Medieval trade corresponded no better than its modern
counterpart to the frictionless idealizations of neoclassical economics.

Antonio de’ Mazzinghi (presented below, p. 226) shows in his Fioretti [ed. Arrighi 1967a:
31, 33] how this could be used to construct intriguing mathematical problems of the second degree:
for instance, two merchants exchange wool and cloth, both augmenting the price of their
merchandise.



Chapter 10 – partnership

Chapter 10 is dedicated to partnerships. Proportional sharing (within a partnership
or any similar structure) asks for nothing but addition of all shares followed by application
of the rule of three “in parallel”, and Fibonacci teaches how to organize even this
calculation within a scheme, first [B135;G235] for partnerships with two participants,
then [B139;G242] three, then [B142;G246] four. At the end comes a problem ( 1/3 and
1/4 and 1/5 and 1/6 of something add up to 60), where the partnership structure is used
explicitly as an abstract model (cf. note 27 and preceding text). Such explicit use of
familiar structures (either commercial or recreational) as general models recurs repeatedly
in the Liber abbaci.



Chapter 11 – alloying

Chapter 11 deals with alloying, and starts [B143;G249] by explaining the meaning
of the expression “I have coin at so and so many ounces, let us say at two”, namely that
“in a pound of that coin we understand ounces 2 of silver to be contained”. We have
already encountered this use of the first person singular in problems about money exchange
and alloying in Jacopo’s Tractatus above (pp. 28 and 51), and the usage turns up not only
in many other abbacus books [Høyrup 2019a: 787f ] but also in a Castilian merchants’
manual,[93] and further in a Byzantine arithmetic book from the early 14th (Ψηφηφορικα
ζητηµατα και προβληµατα, “Calculation Questions and Problems”, [ed. Vogel 1968:
21–27]), which appears not to be much influenced by the nascent Italian tradition. In this
Byzantine book, the first person singular is also used for other problem types – mostly
but not exclusively such as have to do with payment in gold coin. Fabio Acerbi (personal
communication, 7 January 2019) tells me that other Byzantine practical arithmetics do
as much. It seems most likely that the habit goes back to Byzantine money changers.

In his alloying problems Fibonacci does not use it, but at a later moment [B160;295],
when he reduces a problem of type “lazy worker” to an alloying problem, he introduces
the latter by the words habeo monetam ad 26 et ad 37 [...], “I have bullion at 26 and at
37 [...]”. As we shall see in a moment he also uses it when applying the model of simple
alloying in sub-procedures within more complicated alloying problems. He thus expects
the reader to recognize through this phrase the use of the alligation model – implying
that the phrase was already in use.

Fibonacci divides the exposition in seven differentiae. In the first [B144;G250] it is
asked how much coin of a given fineness can be produced from a given amount of pure
silver or copper by addition of copper respectively pure silver. In the second, for example
[B145;G251], 7 pounds at 5 ounces is to be brought to 2 ounces by addition of how much
copper? In the third, for example [B147;G255], how much pure silver has to be added
to 9 pounds of silver at 2 ounces in order to bring it to 5 ounces per pound? In the fourth,
for example [B148;G257], how much silver at 5 ounces has to be mixed with how much
copper so as to produce 30 pounds at 2 ounces? And also [B149;G259], what results if
several monies of given fineness are mixed in given proportion? In the fifth [B150;G260],
how to obtain a given quantity of silver of, say, 7 ounces, from equal quantities of silvers
of 4 and 3 ounces, respectively, by adding pure silver.

The sixth differentia deals with the problem type discussed in note 4: first [B151;G261]
how to obtain silver at 5 ounces from silvers at 2 and 9 ounces, respectively, then going
on with mixings of three, four and seven kinds of silver; these are obviously indeterminate
problems, which allows Fibonacci to make one or more free choices, for instance as done
in Jacopo’s “general alloying” (above, p. 53). All of these indeterminate problems make
use of the “I have” clause when a partial procedure is performed as a simple alloying.

93 “And if they should say to you, I have three kinds of silver ...”. Real Academia Española, Ms.
155, De arismetica fol. 151r [ed. Caunedo del Potro 2004: 45].
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The seventh differentia, finally, shows 11 examples of how the alloying model can
be used in other situations. With two exceptions (regarding simple numerical variations),
all use “I have” to signal the application of the alloying model.



Chapter 12 – mixed “abbacus questions”

As quoted above (p. 60), chapter 12 is presented [B166;G285] as containing “abbacus
questions”. The initial table of contents [B2;G5] instead says “on the solution of many
problems that have been posed and which we call rambling[94]”. The collection of mixed
problems is, however, made less rambling by being organized in nine parts, insofar as
possible collecting structurally similar problems. Since it informs us about what Fibonacci
may have meant by “abbacus”, it deserves fairly close attention.

12.1, summation of series

Part 12.1 [B166;G285] deals with “collections of numbers”, that is, with the
summation of arithmetical series or of ascending squares.[95] First the principles are
set forth abstractly, then they are applied in problems of pursuit (one traveller moving
uniformly, the other with arithmetically increasing speed).

12.2, “proportions of numbers”

Part 12.2 [B169;G290] is about “proportions of numbers”, where proportio mainly
stands for ratio in the strict sense of a relation between two numbers a and b (written
in the following either a : b or ), thus not for the fraction a/b ; at times is stands instead

a

b

for what we would call a proportion, that is, the identity of two ratios, but often Fibonacci
here speaks about “proportional numbers”, numeri proportionales.[96] At first, the naming
of ratios by the outcome of the corresponding division is explained, then [B170;G290]
the finding of a fourth proportional – “if it is asked about 6, to which number it has the
same ratio as 3 to 5”. The result is stated to be (5 6)÷3. This is Fibonacci’s basic way,
unnamed but magisterial. Then follows:

In our vernacular usage it is in fact habitual to state this same question in a different way:
namely, if 3 were 5, what would then 6 be. And when it is stated like this, 5 is similarly
multiplied by 6, and the outcome is divided by 3.

After this “counterfactual” formulation of the rule of three follows, as “another way about
proportions thus”, a counterfactual calculation of the kind we encountered in Jacopo’s
Tractatus (above, p. 19):

94 erraticas. Sigler [2002: 16] translates “On the solutions to many posed problems that we call
false position”, but in the chapter itself erraticus is only to be found in the heading of part 7, which
makes no use of a false position. Erraticus is thus no name for the single false position which,
as we have seen on p. 26, Fibonacci does not really like (however much he makes use of it).

95 The latter topic [B167;G286] is absent from the early version in L.

96 On one occasion [B171;G292] Fibonacci explains that “such a proportion is called
proportionalitas”, and twice [B171,222;G293,368] he refers to a continued proportion as
proportionalitas continua. This usage agrees with Boethius’s De institutione arithmetica II.40 [ed.
Friedlein 1867: 137].
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If it were proposed to you that 7 were the half of 12, how much would be the half of
10? This can in fact be understood in two ways, namely, when if it is said, if 7 were the
half of 12; one may understand, either that the half of 12, which is 6, grows to 7; or that
7 is diminished to the half of 12, that is, to 6. Therefore, if 6, which are the half of 12,
grows to 7; therefore also the half of 10 grows: and then you will need this rule: you shall
multiply 7 by 10, and you divide by 12, 5 5/6 result for the half of 10. And if you want
to understand that 7 is diminished to 6, that is, to the half of 12. In consequence the half
of 10 is also diminished. And then you multiply the already mentioned 6 by the half of
10, that is by 5, they will be 30. Which you divide by 7, 4 2/7 result; and so much must
then the half of 10 be. And in this way you can solve similar questions by which method
you like, of the two methods described. However, we are accustomed to always answering
those who ask according to the first method.

We observe, firstly, that Fibonacci presents the counterfactual calculation far away from
the rule of three (introduced in chapter 8, we remember from p. 70, as the “major way”),
not just as a secondary example. Secondly, his exposition of two different interpretations
of the question and his ensuing acknowledgment that “we” only use the first of them makes
it obvious that he refers to something familiar in his background environment (or, rather,
a segment of his background environment[97]), which he then exposes critically.

On p. [B170;G291] the text goes on with another critical reinterpretation of the habitual
(but here of a simple counterfactual statement), pointing out the connection to the rule
of three:

If 1/3 were 1/4 , how much would 1/5 be? This question is as if it was said,
1/3 of a rotulo for 1/4 of a bezant. How much are worth 1/5 of a rotulo?
Therefore it should be written in the way of a commercial transaction,
and done according to what was done in similar cases in chapter 8,

accompanied by the apposite marginal scheme showing the organization
within a rectangular frame ( , we remember, stands for 1/10 + 1/2

1/10 = 3/20 ).
1 1

2 10

From this critique of counterfactual statements and calculations Fibonacci moves to
purely (unnamed) “magisterial” matters, apparently added in the 1228 edition (they are
absent from L): How to construct a set of four integers in proportion – easy, since no
constraints are imposed; similarly, with six numbers, a : b = c : d = e : f ; and [B171;G292]
how to divide 10 into four proportional parts (which is where the term proportionalitas
is mentioned, so as to distinguish it from a continued proportion); how to construct a
continued proportion with as many members as wanted. And finally, with several examples,
how to find numbers a and b such that fa = gb, f and g being given simple or composite

97 Hypothetically it could seem that his basic exposition of the rule of three, with its suggested use
of a lawha, was based on what he knew from Maghreb trade; the counterfactual formulation, on
the other hand, appears to refer to an Iberian environment, cf. below. p. 176 onward. This would
explain that the two ways are presented at a distance. In general, when Fibonacci’s “we” can be
located, it appears to point to the Iberian environment.
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fractions (e.g., 2/7 and 3/8 , or 1/4 + 1/3 and 1/5 + 1/4 ), with extension to three or four
numbers.[98]

12.3, “questions of trees ...”

Part 12.3 [B173;G296] is said to deal with “questions of trees and similar things,
in what way they are solved”. The beginning, about “a tree, of which 1/3

1/4 is underground.
And they are 21 palms”, was already quoted above (p. 26); as we remember, Fibonacci
introduces both his own explanation and the one habitually used by practical reckoners –
namely the single false position. This double approach probably explains the slightly
awkward heading.

Next comes another problem about a tree, and then three more “about a tree or a
number, to which was added” some fraction of itself. Thereby it should be clear that a
method of general validity is taught – a method which is afterwards spoken of as the “rule
of the tree”.

The single false position (even when rationalized as done by Fibonacci) works
primarily for problems of the first degree.[99] In the next
problem [B175;G298] Fibonacci shows how to use it in a specific
problem of the second degree: 1/3 + 1/4 + 1/5 + 1/6 (= 57/60 ) of a number
equals the (square) root of that number – in symbols, 57/60 n = √n.
This evidently leads to ( 57/60 )2n2 = n, and further to n = ( 60/57 )2.
Fibonacci does not indicate the intermediate calculations, but this
is exactly his solution; what he does (forgetting his previous
reinterpretation of the false position, which would indeed be
cumbersome here) is to posit that the number be 60. Since the
present fraction is unwieldy, he takes advantage of the fact that
57/60 = 19/20 , whence 19/20 n = √n, and now gives a geometric

98 In the case 2/7 a = 3/8 b, Fibonacci multiplies in cross by the denominators. This entails that 16a =
21b, an evident solution to which is a = 21, b = 16. Fibonacci has a more complex argument,
referring to proportion theory. Of course a = 3/8 , b = 2/7 would already be a solution – but in context
like this, Fibonacci prefers to understand “numbers” as (obviously positive) integers if possible
(when 10 is be divided [B171;G292] to into 4 parts in proportion it is not).

99 It should be remembered that the degree of a problem is intrinsic and does not depend on the
tool used to solve it, which can be by guessing; by stepwise numerical approximation; algebraic;
or geometric.
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argument.[100] ab represents n, while at is 1; therefore the area ad is also n. ae = az
represents 19/20 n – and since ae is also √n, ak must equal n and therefore ad. Subtracting
ai from both, we see that ib = tk. This gives the proportion ti : id = ei : ik, whence
ti : (ti+id ) = ei : (ei+ik ). But ei = 1, ti = ae, and ti+id = ab, whence ti : (ti+id ) = 19 : 20,
while ei+ik = ae = √n. Therefore 19 : 20 = 1 : √n, √n = 20/19 . Fibonacci stops here, without
finding n itself.

This geometric argument, with its appeal to proportion theory (the first of many of
its kind in the Liber abbaci ) is absent from L where it should be expected [ed. Giusti
2017: 34]; it seems to reflect an effort to raise the theoretical/magisterial level of the work.

A number of related problems follow, none of them provided with a geometric proof.
Then come (sometimes quite tangled) first-degree problems solved by means of the single
false position, now formulated in the vernacular way; problems about combined works
(about travellers meeting, emptying of casks, etc.; cf. above, p. 24). Even problems of
type leo in puteo (above, note 46) are dealt with here, which is only adequate because
Fibonacci (as later Jacopo and many others) misses the prank.

For one of these first-degree problems [B190;G324], a “give-and-take” question, an
alternative method by means of regula recta is introduced. A first man (A) asks from
a second (B) 7 δ, saying that then he shall have five times as much as the second has.
The second asks for 5 δ, and then he shall have seven times as much as the first. Reducing
it to a form where the “rule of the tree” can be applied is slightly intricate. In the 1228
version the argument is supported by a line representation (functioning much as an
algebraic argument),[101]

100 Difficult to follow in the Boncompagni text, since the copyist has read c instead of t (the two
letters may indeed be quite similar) in the lettering of the diagram, and also sometimes in the text.
The letter sequence a-b-t-d-... is unique in the work, and one may suppose that Fibonacci’s original
sequence in the master copy was a-b-c-d-..., some copyists systematically misreading (at least the
one who produced VF) c as t (which suggests understanding of the argument), others instead
misreading inconsistently (note should be taken that this is the first lettered diagram in the book,
so copyists will have encountered it unprepared). As we shall see, a letter sequence a-b-c-d-... would
be firm evidence that Fibonacci constructed the proof himself. His introduction of the proof, “which
I shall also show by means of a geometric figure” (quod etiam demonstrabo cum figura geometrica)
also intimates a personal explanatory commentary.

101 The use of the letter sequence a-b-g-d-... indicates that Fibonacci has taken over the argument
from an Arabic source; in principle, a Greek source would be possible, but as we shall see all
diagrams with this letter sequence where an origin can be tentatively established appear to be of
Arabic origin, while those which Fibonacci appears to have constructed himself have the sequence
a-b-c-... (reasons that we can really trust the lettering as indicator of origin are presented below,
p. 136). Since the method is used in an addition from 1228 to a problem already present in the
1202 version, Fibonacci may have adapted a borrowed diagram to the actual numbers; it is quite
possible, however, that his source had a problem with the same set of “interesting” parameters (5–7,
7–5).

In one respect, a line-based argument differs from rhetorical or symbolic algebra: It allows
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a e g d b

where ab represents the shared possession, and ag the possession of A, gb that of B. gd
is 7, and eg 5. If B gives 7 to A, he shall be left with db, while A shall have ad. Therefore,
if ad is divided into 5 parts, each of these shall equal db, for which reason db is 1/6 of
ab. Similarly, ae is 1/8 of ab. That is, if 1/6 + 1/8 of ab is removed, we are left with 5+7 =
12 – which is solved by “the rule of a tree”. L instead gives a purely verbal argument
running along the same lines. The line diagram represents a tool which Fibonacci did
not use in 1202, and perhaps did not yet know.

For us, the alternative by regula recta definitely looks as a piece of equation algebra:
B is posited to possess a thing (res ) and 7 δ. After having received 7 δ, A therefore has
5 things, originally thus 5 things less 7 δ. If instead B gets 5 δ from A, he shall have
a thing and 12 δ, while A shall have 5 things less 12 δ. Therefore, a thing and 12 δ equals
7 times 5 things less 12 δ – etc.

Fibonacci explains that the regula recta is used by the Arabs, and is very praiseworthy.
He clearly does not think of it as belonging with the art of algebra; as in the Arabic
tradition and in the Liber Mahameleth, Fibonacci’s algebra (algebra et almuchabala ) is
fundamentally a second-degree technique.[102]

Fibonacci is not alone in the Latin world to speak about this rule. Under the name
regula it is made profusely use of in the 12th-century Liber augmenti et diminutionis [ed.
Libri 1838: I, 304–371] as an alternative to the double false position; in that work, the
unknown is called census, from Arabic māl, “possession” or “amount of money”.[103]

In the later 15th century, Benedetto da Firenze was to speak of it as modo
recpto/repto/recto (naming the unknown quantità instead of res ); two encyclopedic
anonymous manuscripts from the same years do as much.[104] The changing names

ratio-taking between lengths, but does not (insofar as I have noticed) make use of coefficients beyond
the rudiments we see here – we find nothing like “4 times ac”. However, simple coefficients like
“twice” and “thrice” (bis, ter ) do turn up (e.g., [B212;G355] and [B213;G356]) in verbal problem
solutions that could well be reformulations of line-based arguments. Below (p. 108) we shall
encounter a use of line diagrams where products of segments (not regarded as rectangles) play a
central role.

102 One element of the characteristic al-jabr terminology does turn up at times in regula recta
operations, namely restaurare, the operation that restores something subtracted on one side of the
equation – for example on p. [B260;G421]. Mostly, however (as here), Fibonacci argues that “when
equals are added to equals, the totals are equal” and “if equals are removed from equals, what remain
will be equal”.

103 Regula is also used in the manuscript Paris, BN, Latin 15120, a small 13th-century collection
of mathematical problems – see [Sesiano 2000: 78–82]. Since much of that text is borrowed verbatim
from the Liber augmenti et diminutionis, this tells nothing new.

104 Florence, BNC, Palatino 573; Vatican, Ottobon. lat. 3307. All three are discussed in detail below,
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for the technique as well as for the unknown seem to indicate that Fibonacci did not
borrow from the Liber augmenti, while Benedetto’s deviating terminology could suggest
that it had been handed down through a teaching tradition rather than in writing – fresh
borrowings from the Arabic after 1450 seem unlikely.

Instead of coming from the algebra tradition, the method may well go back to classical
Antiquity. Diophantos’s Arithmetica I.15 [ed. trans. Tannery 1893: I, 36f ] has exactly
the same structure as the present problem – A and B are numbers, and if A receives 30
units it will be twice what remains of B; if B receives 50 units from A, it will be thrice
what remains of A. Diophantos’s method also has the same structure: he posits B to be
1 arithmós plus 30, etc. This does not mean that Fibonacci had read Diophantos; book
I of the Arithmetic consists of (widely circulating) recreational problems or mathematical
riddles deprived of their concrete dress.[105] Even the use of the arithmós, “number”,
as name for the unknown was not invented by Diophantos, see [Vogel 1930].[106]

The problem for which Fibonacci introduces the regula recta is said by him to have
been proposed to him by some master in Constantinople. However, since the solution
by regular recta was only added in the 1228 edition, there is no reason to doubt
Fibonacci’s words that his own direct source for it was Arabic. We should also remember
that problems were presented as challenges, and that it was up to the receiver to find the
solution – cf. Fibonacci’s reference to having learned the “cut and thrust of disputation”
on his travels (above, p. 59).

A number of similar but often more complicated problems follow which make use
of the same techniques; often they are provided with metamathematical commentaries,
for example about the existence of infinitely many solutions [B197;G332]. One [B203;
G340], about somebody selling three pearls in Constantinople for bezants (thus likely also
to have been encountered in Byzantium[107]), is similarly solved first by a false position,

p. 245 onward.

105 [Tropfke/Vogel et al 1980: 610f ] lists variants of the present structure, from first- and fifth-century
China, from Bhaskara II, from the Greek Anthology, etc.

106 The names for higher powers were also traditional (εδοκιµασθη, “it has been approved”), as
Diophantos tell himself [ed. Tannery 1893: I, 4]. That does not concern us here, but see [Høyrup
1990b: 211f ]

107 When Fibonacci says that a particular problem was presented to him by a Byzantine master
[B188,190,249;G319,324,405], prices are mostly indicated in bezants – only one example [B190;
G324] deals with unspecific “money”; when problems tell stories taking place in Constantinople
[B161,203,274,296;G277,340,440,276,443], bezants are always used.

We cannot conclude with certainty that all problems referring to bezants are connected to
Byzantium, however. Firstly, we have evidently no guarantee Fibonacci would always connect
currency and locality in this way (cf. below, note 252); secondly, as mentioned on p. 49, bezants
were also minted in Arabic and crusader countries, and we cannot be sure that Fibonacci would
always specify when such variants are meant, as he does twice on p. [B137;G238] (hyperperi or
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next by the regula recta. This time the second solution is also present in L [ed. Giusti
2017: 78], yet without introductory words. It appears that Fibonacci already knew the
regula recta in 1202 but by then used it accidentally without noticing the need for an
explanation. Since any systematic revision would naturally lead to the discovery that an
explanation would be adequate, this observation (to which several parallels can be given)
supports the assumption that L really reflects the 1202 version, and does not descend from
an intermediate revision (cf. above, p. 58).

In 1228, the regula-recta solution stops after having found the thing, standing for
the price of the first pearl. L instead finds the complete solution. The 1228 version,
moreover, introduces yet another method [B203;G341], the regula versa, the “reverted
rule”, which here is nothing but a stepwise backward calculation.

At the end of part 3 come a large number of pure-number problems involving the
principle discussed at the end of part 12.2, numbers a and b where f1a = f2b, f1 and f2 being
given simple or composite fractions. Often, the false position is not made explicit but
remains implicit in the numerical calculations that are performed.

12.4, finding a purse

Part 12.4 [B212;G355] is dedicated to a particular recreational problem type, “the
finding of a purse”. The first problem runs

Two men, who have denari, find a purse containing denari. When they have found it,
the first says to the second, “if I get the denari in the purse together with the denari I
have, then I shall have three times as much as you”. Against which the other answered,
“and if I get the denari of the purse together with my denari, I shall have four times as
much as you”.

The argument runs as follows – A stands for the possession of the first man, B for that
of the second, and p for the contents of the purse (which is indeed spoken of in the
argument simply as bursa, “the purse”):

A+p = 3B

whence

A+B+p = 4B

and thus

A+p = 3/4 (A+B+p )

This part of the argument makes use of a false position: if A+p = 3, then A+B+p = 4.
The next part, in which the corresponding calculation is made for B+p, does without a
false position and shows directly that

Saracen; and garbi, from the Arabic “West”). Still, the appearance of bezants may be counted as
circumstantial evidence.
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B+p = 4/5 (A+B+p ) .

Now a new false position is made, namely that A+B+p is a number of which 3/4 and
4/5 can be found, for which 20 is chosen. Then A+p = 15, B+p = 16, and therefore
(A+p )+(B+p ) = (A+B+p )+p = #31, whence p = 11, A = 4, B = 5. Alternatively, with
the same position, B = 1/4 (A+B+p ) = 5, A = 1/5 (A+B+p ) = 4, p = 20–4–5 = 11.

So far Fibonacci has not observed that this is just one of many possible solutions.
However, a third solution by regula recta (not named here, and not to be found in L)
finds the ratios between A, B and p, and thus implies it.[108] It identifies A with the
thing, and then operates with the thing and the purse on an equal footing, that is, with
two unknowns.[109] Since thing+purse is thrice B, B must be 1/3 (thing+purse ). Therefore,
if he gets the purse, he will have purse + 1/3 purse + 1/3 thing, which will be 4 things.
Therefore 4 purse = 11 thing. In consequence, p : A = 11 : 4.

A number of variations follow, where the men may be three, four or five, and where
they may find one, two, three or four purses (with given linear relations between their
contents). The principles serving the solution are the same, but obviously the calculations
sometimes become much more tangled. In others, the sum of possessions comes into play;
all of these are absent from L and thus added in the 1228 edition; they are even more

108 If anybody should doubt it, Fibonacci is thus fully aware that this indeterminate problem has
as many solutions as requested. That he does not say so shows that here and on this account at
least he obeyed the norm system of the recreational culture of mathematical challenges, where all
that was asked for was the ability to find a solution. This certainly disagrees with the norms of
present-day mathematics, and also with those norms which made Abū Kāmil ask for the complete
set of solution to the “problem of 100 fowls” in the Book on Fowls [ed. trans. Rashed 2012].

We shall soon (p. 89) encounter a more complicated problem solution where Fibonacci finds
the complete set of solutions.

109 To my knowledge, this use of two indubitably algebraic unknowns (according to the criteria
proposed in [Heeffer 2010: 61]) in the Liber abbaci has not been noticed so far. Heinz Lüneburg
[1993], it is true, speaks much about equations with several variables, but does not observe the
difference between his own equations and those which Fibonacci occasionally produces by means
of the regula recta. In a note, Laurence Sigler [2002: 626] comes closer, but the final words of
the note shows him not to distinguish between unknown entities and algebraic unknowns.

It is no sensation, however: in the Flos [ed. Boncompagni 1862: 236], Fibonacci was already
known to have made use of the two unknowns res and causa. Neither there nor in the present or
following cases in the Liber abbaci is there any hint that Fibonacci believed to have introduced
something remarkable.

In Arabic (post-al-Khwārizmı̄an) first-degree algebra, it was customary to use thing (šay )
for the first unknown and coin names for the following ones – in Abū Kāmil’s Book on Fowls [ed.
trans. Rashed 2012: 736–755] dinar, fels, and khatem. This method was not totally unknown in
the Latin world: a couple of times, the Liber Mahameleth [ed. Vlasschaert 2010: 209f ] uses res
and dragma. Having learned the regula recta somewhere in the Arabic world Fibonacci may also
have learned about the variant with two unknowns there; we cannot know for sure, but below (p.
90) we shall encounter corroborating evidence.
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difficult. One about four men [B225;G372] will serve us later (below, p. 294), and may
conveniently serve as example:

The first and the second with the purse have the double of the denarii of the third; and
the second and the third the triple of the fourth, and then the third and the fourth the
quadruple of the first, while the fourth and the first with the purse similarly have the
quintuple of the second. The solution to this problem you will find by finding the ratio
of the denarii of the purse to the denarii of the first in this way. Because the first and
second with the purse have the double of the third, half of the denarii of the first and
second and the purse is as much as the denarii of the third man. Similarly from the other
propositions you will have that 1/3 of the second and third man and of the purse is as much
as the denarii of the fourth man, and 1/4 of the third and fourth man and of the purse is
the quantity of the denarii of the first, and 1/5 of the denarii of the fourth and first man
and of the purse is the quantity of the denarii of the second. And because 1/2 of the first
and second and of the purse is the quantity of the third, the third part of the first and
second and purse, that is 1/6 of them, is 1/3 of the third man. Commonly are joined 1/3 of
the denarii of the second and purse: then will 1/6 of the first and 1/2 of the second and
of the purse be as much as 1/3 of the second and third and of the purse. But 1/3 of the
second and third and of the purse is the quantity of the denarii of the fourth man; hence
1/6 of the first and 1/2 of the second and of the purse are the quantity of the denarii of
the fourth man. Therefore 1/4 of 1/6 of the denarii of the first, that is, 1/24 , and 1/4 of 1/2 ,
thus 1/8 of the denarii of the second and of the purse, are 1/4 of the denarii of the fourth
man. Commonly are added 1/4 of the third and of the purse: then 1/24 of the first with
1/8 of the second and with 1/4 of the third and 3/8 of the purse will be as much as 1/4 of
the denarii of the third and fourth and of the purse. But 1/4 of the third man and the fourth
and of the purse is the quantity of the first. Therefore 1/24 of the first and 1/8 of the second
and 1/4 of the third and 3/8 of the purse are as much as the denarii of the first. Then their
fifth part, that is 1/120 of the first and 1/40 of the second and 1/20 of the third and 3/40 purse,
are 1/5 of the denarii of the first. Commonly are added 1/5 of the fourth man and the purse:
then 1/120 of the first and 1/40 of the second and 1/20 of the third and 1/5 of the fourth and
11/40 of the purse will be as much as 1/5 of the fourth man and the first and of the purse.
[...]

The final omission [...] is as long as the part that was translated. It leads to

Hence 79/600 and 1/150 of the first, that is 83/600 of the same, with 1/25 of the purse, are
29/200 of the purse. Commonly are taken away 1/25 of the purse. Remain 83/600 of the first,
as much as 21/200 of the purse. Then two numbers should be found so that 83/600 of the first
are 21/200 of the second, they will be 63 and 83. Then if the first man has 63, the purse
is 83. [...].

If we admit the identity of “the denari of the first/first man”, “the quantity of the
denari of the first man”, “the quantity of the first man” and “the first man”, this is
rhetorical algebra with five unknowns: we observe the additions and subtractions performed
“commonly”, that is, from both sides of an equation, and the complicated substitutions.

It is difficult for us to follow the argument without making algebraic notes. There
are also traces in the text that Fibonacci described a procedure performed by other means.
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Several errors are of the type that might occur when such a procedure is transferred:
” 1/150 ” instead of “ 1/150 primi” and “denariis secondi” instead of “denariis primi”. Both
are ω-errors (above, p. 58), that is, they belong to Fibonacci’s evolving master copy. So,
when Fibonacci describes the procedure in rhetorical algebra he appears to copy from
somewhere, and with high probability from his own calculation. This could be a solution
by rhetorical algebra made separately, but it could also be (might rather be) an argument
by means of line diagrams of the type which was discussed on p. 80n. These delivered
a tool which Fibonacci introduced in the 1228 version and may have used even when
no diagram is drawn.[110]

One problem [B227;G374] is shown to be impossible, and another one [B216;G359]
to be so unless one of the men has a debt; the latter is already in L [ed. Giusti 2017: 97],
implying that Fibonacci was already familiar with this embryonic concept of negativity
in 1202. In one [B222;G368], where the contents of four purses is stated to be in continued
proportion, this proportion can be chosen freely, thus adding no particular difficulty.

12.5, buying a horse

Part 12.5 [B228;G375] deals with another illustrious recreational problem type, the
“purchase of a horse”. Normally at least three buyers are involved, but Fibonacci’s first
example runs like this:

Two men having bezants found a horse for sale. Wanting to buy it, the first said to the
second, “if you give me 1/3 of your bezants, I shall have the price of the horse”. The other
asked him for 1/4 of his bezants, and then he would similarly have the suggested price.
The price of the horse is asked for, and the bezants of each.

At first a unargued rule is given:

Write in order 1/4
1/3 , and detract 1 which is above 3 from these same 3, 2 remain; which

you multiply by 4, they will be 8 bezants; and as much had the first. Similarly when 1
which is above 4 is detracted from these same 4, 3 will remain; which, when multiplied
by 3, give back 9 bezants; and as much had the other. Again, multiply 3 by 4, they will
be 12; from which take away 1, which results from the multiplication of the 1 which is
above 3 by the one which is above 4, 11 bezants remain for the price of the horse.

Then comes the explanation:

This rule indeed follows from the rule of proportions, namely from the finding of
proportion of the bezants of the one to the bezants of the other. Which proportion is found
thus: Since the first with 1/3 of the bezants of the second has as much as the second with
1/4 of the bezants of the first, if in common 1/3 of the bezants of the second is removed

110 Where they appear, these diagrams are invariably lettered a–b–g ..., meaning that the problem
solutions where they appear are faithfully taken over from an Arabic source (cf. above, note 101).
Knowing the technique Fibonacci may well have used it privately without feeling the need to show
the diagrams when calculating on his own.
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will remain the first equal to 2/3 of the bezants of the second, and 1/4 of his own bezants.
Likewise, if in common is removed 1/4 of the bezants of the first, will remain 3/4 of the
bezants of the first as much as 2/3 of the bezants of the second.

Thereby Fibonacci has reached a situation he has dealt with before in part 12.2, about
“proportions of numbers” – see note 98 and preceding text. The method taught there leads
to the solution that the first has (3–1) 4 bezants, the second (4–1) 3 bezants, as stated
in the present rule. Alternatively, solution by means of the regula recta is taught, here
spoken of not as a rule but as “the Arabic way” (per modum arabum ).[111]

In the case that the price of the horse is given, the (unnamed) partnership rule is
applied.

Most problems about the “purchase of a horse” involve three or more buyers. They
are obviously more intricate. In Fibonacci’s first example of this, the first of three men
asks the second for 1/3 of the possession in order to be able to buy the horse, the second
asks for 1/4 of what the third has, and the third asks for 1/5 of the possession of the first –
summarized in symbols thus

a+ 1/3 b = b+ 1/4 c = c+ 1/5 a .

From this it is concluded that

a = 2/3 b+ 1/4 c , b = 3/4 c+ 1/5 a , c = 4/5 a+ 1/3 b

(the expression in words obviously takes much more space, but the calculations are the
same). From the last equation follows that

1/4 c = 1/5 a+ 1/12 b ,

and when this is inserted in the first equation we find that

a = 2/3 b+ 1/5 a+ 1/12 b = 3/4 b+ 1/5 a ,

whence
4/5 a = 3/4 b

once more the situation dealt with in note 98, which shows that the a : b = 15 : 16. Similar
arguments lead to b : c = 48 : 52, and thus a : b : c = 45 : 48 : 52.

A rather large number of similar problems follow. The number of men varies, and
may go until 7, while the number of horses may go until 4; when several horses are
involved, the differences between their values are given. Each man may ask cyclically
from a neighbour (as in the examples we have looked at), from two successors in the
cycle, or from all the others; at times, several men together (in the usual cyclical order)
make the question. The fractions obviously vary, and in one case the purchase of a horse
is replaced by the renting of a ship; except for the single initial regula-recta example,
all solutions are built on the same basic ideas (which are also those that are normally

111 Neither the explanation nor the “Arabic” alternative are in L. They are thus added in the 1228
version.
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applied to give-and-take and purse problems).

12.6, repeated travels with gain and expenses

Part 12.6, on its part, introduces not only a new problem type (the repeated travel
with gain and expenses) but also a new method. At first comes this [B258;G417]:

Somebody proceeding to Lucca made double there, and disbursed 12 δ. Going out from
there he went on to Florence; and made double there, and disbursed 12 δ. As he got back
to Pisa, and doubled there, and disbursed 12 δ, nothing is said to remain for him. It is
asked how much he had in the beginning.

Whoever is familiar with earlier medieval recreational mathematics will recognize the
type. Because the traditional versions do not speak of costs but of religiously imposed
gifts, I have elsewhere called it the “pre-Modern merchant’s nightmare”. The earliest
known instance is found in Ananias of Shirak’s arithmetical collection [ed. Kokian 1919:
126]:

A man entered three churches, and asked God, firstly, give me as much as I have, and
I shall give you 25 dahekan. Similarly, the second time he gave 25; and similarly the third
time. And he was left with nothing. Now find out how much he had at first!

In Fibonacci’s world, as we see, nobody would believe merchants to be so respectful of
their religious duties, but they would still incur costs and risk bankruptcy.

Whether formulated about costs or about gifts to God or the poor, such problems were
mostly solved step by step backwards. Fibonacci’s question would then be solved in this
way: before disbursing 12 δ in Pisa, the merchant had 12 δ, that is, coming to Pisa he
must have had 6 δ, which have been left over in Florence after he disbursed 12 δ there.
Before disbursing 12 δ in Florence he therefore had 18 δ, and coming to Florence hence
9 δ. Etc.

Fibonacci chooses as different way, which will also serve him in the sophisticated
variants which he is going to present. He makes the tacit false position that the initial
capital is 1. He prescribes a sequence of unargued numerical steps, whose underlying
explanation is this: Without disbursements, an initial capital of 1 δ would grow to a “Pisa
value” of 2 2 2 δ = 8 δ. However, it should grow to equal the Pisa value of the
disbursements, which – also doubled at each change of city – is ( 2 2 + 2 + 1) 12 δ =
84 δ. The basic ideas behind these two calculations are those of compound interest and
discounting, both familiar in the commercial ambience. Since the Pisa value of the initial
capital should equal the Pisa value of the expenses, the initial capital itself must be
((1+2+2 2) 12 δ)/8 δ = 10½ δ.

Then follow sophisticated variations: the rate of gain or the disbursements may vary;
instead of the initial capital, the disbursement may be unknown though constant; etc.
Sometimes solutions by regula recta are given. The basic idea underlying the solutions
remains the same.

However, on p. [B264;G426] comes a problem where this will not suffice:
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Again, in a first travel somebody made double; in the second, of two, three; in the third,
of three, 4; in the fourth, of 4, 5. And in the first travel he expended I do not known how
much; in the second, he expended 3 more than in the first; in the third, 2 more than in
the second; in the fourth, 2 more than in the third; and it is said that in the end nothing
remained for him. And let the expenditures and his capital be given in integers. We
therefore posit by regula recta that his capital was an amount [summa ], and the first
expenditure a thing.

Applying the technique used in the preceding problems, we would have had to reduce
the initial capital as well as the expenditures to final value, which insofar as expenditures
are concerned becomes somewhat arduous and at any rate involves the first unknown
expenditure. So, this time Fibonacci applies the regula recta (mentioned by name) with
two unknowns, positing explicitly amount and thing as algebraic unknowns and making
a stepwise calculation. Knowing the problem to be indeterminate, Fibonacci asks for a
solution in integers.

After the first travel, our merchant is seen to possess 2amount – thing; after the second,
he has 3amount–2 1/2 thing–3δ; after the third, 4amount–4 1/3 thing–9δ; and after the fourth,
5amount–6 5/12 thing–18 1/4δ. In this way we end up with the indeterminate equation

5amount–6 5/12 thing–18 1/4δ = 0

or, “if all-over 6 5/12 thing and 18 1/4δ are added”,

5amount = 6 5/12 thing+18 1/4δ

with the request that amount and thing have to be integers. With an astute stepwise
procedure Fibonacci finds as possible solution the amount to be 46, and the thing to be
33. At the end (since the equation can be transformed into 60amount = 77thing + 219δ), he
points out that other solutions can be found by adding

as many times as you will 60 to the first expenditure, that is, to 33, and as many times
77 to the capital that was found, that is to 46, and you will have what was asked for in
ways without end.

Some variants follow, the last of which states the traveller to have a net profit of 12,
that is, that he ends up with his initial capital and 12 more. Here, Fibonacci uses the
opportunity to show how the regula versa may be applied in this complex case, using
the same two algebraic unknowns: being left in the end with 1amount + 12, after disbursing
1thing + 7, he must have had before disbursing 1amount + 1thing + 19; in the fourth travel
he must therefore carried 4/5 of this, that is 4/5 amount+ 4/5 thing+15 1/5 , etc. Out of this comes
the equation 1amount = 1/5 amount+ 77/60 thing+6 1/20 (both express the initial capital).

Whereas the solution of the purse problem by means of two algebraic unknowns (see
note 109 and surrounding text) is absent from L (as is the presentation of the regula
recta ), the present use of two algebraic unknowns (in regula recta as well as regula versa
version) is already in L [ed. Giusti 2017: 134–137]. The way it is introduced – “let us
therefore posit by the regula recta that the capital was an amount and the expenditure
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a thing” – looks as if the technique was quite familiar. Fibonacci does not seem to be
aware that he is proposing something new, and we may conclude that he was not.

In the last travel problem [B266;G429], the number of travels the traveller undertakes
before going bankrupt is unknown. But it is known that initially he has 13δ, that at each
travel he doubles his capital and expends 14 δ. Calculating stepwise Fibonacci finds that
the traveller’s net loss grows geometrically (the term is not used), as 1 δ after the first
travel, 2 δ after the second, 4 δ after the third, and 8 δ after the fourth, where only 6 are
available. That is (tacitly supposing the profit and the expenditure to have linear growth
within the last travel), the number of travels must be 3 3/4 . Observing that this is
incongruous, Fibonacci adjust the expenditure so as to produce an integer number of
travels.

Last in part 12.6 come problems that are “similar” to the travel problems – namely
similar in mathematical structure. Most of them deal with a loan with interest that is
amortized by the rent of a house. As Fibonacci explains [B267;G430], the annual growth
of the debt corresponds to the gain in a travel, and the rent that is discounted from it each
year to the expenses incurring during the travel.

12.7, “rambling problems”

Part 12.7 is said to contain “rambling” problems (erraticas, cf. note 94). First [B276;
G442] comes an analogue of Jacopo’s problem about freight of wool paid in kind (above,
p. 27), solved in the same way. After a couple of variations on this principle comes [B278;
G445] a recreational classic. Somebody enters a garden with 7 gates and picks apples.
When leaving he has to give at each gate to the guardian half of the apples he carries,
and one more. At the end he leaves with one apple. From a modern mathematical point
of view, this is a strict analogue of the repeated travels with gain and expenses, only with
the “gain factor” being smaller than 1. This time, however, Fibonacci offers the stepwise
backward calculation as his first method. Alternatively, he shows how the problem can
be solved by means of the regula recta (with a single unknown).

After two problems about operations with mixed numbers [B279;G446] comes what
Leonhard Euler [1774: 489] (who knew the problem not from the Liber abbaci but from
the later tradition) was to characterize as a “question of a quite particular nature”, and
which I shall speak of in the following as the “unknown heritage”:

Somebody coming to his end instructed the oldest of his sons, saying: Divide my
possessions among yourself in this manner. You take one bezant, and the seventh of what
is left; but to the next one of the sons he said, and you take 2 bezants, and the seventh
of what is left. But to the next one, that he should take 3 bezants, and take control of
1/7 of what was left. And in this way he called all his sons in order, giving each one more
than the others; and afterwards always 1/7 of what was left; the last however had the rest.
It turned out, however, that all had equally of the possessions of the father on the said
condition. It is asked, how many were the sons; and how much he owned. Indeed you
do like this: for the seventh, which he gave to each, you retain 7; from which you extract
1, 6 remain. And so many were the sons; which 6 you multiplied in itself; and so many
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were his bezants. And if the first of the sons had had 1/7 of the possessions of the father,
and afterwards 1 bezant; and the second had had 1/7 of the rest, and two bezants; and in
this way it would have gone on for the other sons, adding for each one in order 1 bezant;
then the sons would similarly be 6, and the bezants 6 seven times, that is 42. And if in
each question the first should have 3 bezants, the second 6, and the rest similarly their
bezants in ternary ascension; then the sons would similarly be 6, and the amount of the
bezants would be the triple of the said amounts, that is, of 36 and of 42.

Fibonacci is the first known source for the problem. It appears to have been unknown
in the Arabic tradition, and there are strong reasons to believe it came from Byzantium
or late Greek Antiquity – see the complete analysis in [Høyrup 2008], to which may be
added that the appearance of the bezant as monetary unit suggests that Fibonacci
encountered the problem in Byzantium.

Euler, in his elementary treatise on algebra, gives an algebraic solution, which however
presupposes that the strongly overdetermined problem does have a solution. As we see,
Fibonacci so far gives no arguments for his solutions.[112]

However, he does not stop here; in the sequel he avoids the absurdity of fractional
sons by asking instead about the division of a number in shares under various conditions.
At first he just takes the fraction to be 2/11 , and gives a solution corresponding to the
transformation of this into 1/5½ , which yields 4 shares and a half-share, and totals
4½ 4½ respectively 4½ 5½ (the fraction of the remainder being taken after respectively
before the absolute 1, 2, ...) – still without explaining why this is the solution, and even
without checking. Then, however, he jumps to more sophisticated variants: first with
absolute contributions 2, 5, 8, ... and fraction 6/31 (absolute contribution before respectively
after the fraction); next with absolute contributions 3, 5, 7, ... and fraction 5/19 .

For the first of these, Fibonacci produces a solution by means of regula recta [B280;
G447], taking as thing the number to be divided. He then calculates the first and the second
share and equates these, which gives him a correct solution (provided there is a
solution[113]); next he claims to extract from this calculation a rule.

Comparison of the calculation with the rule shows that it is not extracted – see [Høyrup
2008: 618f ] for the full analysis. If T is the number to be divided, the fraction p/q , and
the absolute contributions α, α+ ε, α+ 2ε, etc., then Fibonacci’s rule expressed as a letter
formula is

112 The reader may see why the solution is possible and correct by drawing a 7×7-square or arranging
7×7 small objects in square. This is what I did spontaneously myself when encountering the problem
for the first time in the Vatican manuscript of Jacopo’s Tractatus, and seems also to be Planudes’s
[ed., trans. Allard 1981: 191–194] underlying structure for his arithmetical arguments – see [Høyrup
2008: 621].

113 Fibonacci may have been aware that what he obtains from the regula recta is only a possible
solution (according to his calculation, the only possible solution). In any case he makes a complete
calculation, showing that his solution is really one.
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(*) T = .[(ε–α) q (q–p)α] (q–p)

p 2

Instead, Fibonacci’s calculation would lead to

(†) T = .q 2(α ε)–(q–p)qα–(q–p)pα–(α ε)pq

p 2

Since both are correct, they are obviously algebraically equivalent, but that is not easily
seen without symbolic algebra and with tools at Fibonacci’s disposal. We must presume
that Fibonacci borrowed his rule from elsewhere, even though he was able to produce
his own solution.

That is confirmed by the following three variants. For these Fibonacci only offers
rules, no calculation of his own. His rule for the second of these (the one with absolute
contributions 3, 5, 7, ... and fraction 5/19 ) is

(**) T = ,[(q–p)α–(α–ε)q] (q–p)

p 2

which would be the same as (*) if only negative numbers were within the horizon; since
they were not, the formula to be used has to depend on whether α< ε or α> ε.

However, this makes no difference in (†). If Fibonacci had transformed his own
calculation into a rule, why should he have reduced it to a form that cannot be used
universally?

Whereas the simple variants of the problem appear to have been created in the late
ancient Greek or the Byzantine world and to have spread from there,[114] the most likely
point of origin of the sophisticated versions is al-Andalus – and since they appear never
to have reached the broader Islamic world, to be creations of the 12th century, the time
of Ibn Rušd, who also had great influence on Latin and Hebrew but very little in Islamic
philosophy. Even for this, the reasons are too complex to be recapitulated here, but see
[Høyrup 2021: 34–42]. Fibonacci obviously does not know how the rules were originally
derived and proved to work; a possibility is the use of line diagrams – see [Høyrup 2008:
627f ].

After this only partially understood visit to the area of higher arithmetic follows an
interlude dealing with simpler matters, and then something more advanced, having to do
with the “Chinese remainder theorem” – presented, obviously, not as a theorem but as
a sequence of 3 problems. The first of these [B281;G450] asks for a number which leaves
1 as remainder if divided by 2, 3, 4, 5 and 6, and 0 if divided by 7. Fibonacci determines
the least common multiple of 2, 3, 4, 5 and 6 to be 60, and argues that p 60 + 1 leaves
the requested remainders with 2, 3, 4, 5 and 6, and then tries successive p-values until
7 divides, finding p = 5 to fulfil the condition; the requested number is thus 5 60 + 1 =

114 Not generally through Fibonacci, for reasons it would lead to far to list here.
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301. Next come two problems where division by n leaves n – 1 for n = 2, 3, 4, 5, 6
respectively 2, 3, 4, 5, 6, 7, 8, 9, 10 while 7 respectively 11 divide. Here, he subtracts
1 from successive multiples of 60 respectively 420. The methods used cannot serve for
other, less particular values of the remainders, and it is thus mistaken to state that this
“is” what is known in modern number theory as “the Chinese Remainder Theorem” [Manin
& Panchichkin 2005: 14]; the same can be said, however, about all the earlier instances
analyzed in Ulrich Libbrecht’s “monograph” on the theorem [1973: 214–413, pertinent
214–243]. Fibonacci most certainly borrowed at least the first problem from Arabic
mathematics – Ibn al-Haytham’s On the Solution of a Number Problem, also deals with
it [ed. trans. Rashed 1984: 238–241]. However, when using the same approach as Fibonacci
(which he refers to as “canonical”), Ibn al-Haytham takes the product instead of the least
common multiple, and therefore does not find the smallest solution;[115] whether
Fibonacci devised his shrewder way himself or learned it from later Arabic mathematics
is difficult to know.[116] At least it is clear from his exposition that he understood it
to the full.

After another elementary interlude [B283;G452] illustrating and exposing a temptation
to apply the partnership rule mistakenly[117] follows yet another bit of theoretical
arithmetic [B283;G452]: an explanation of what perfect numbers are and a rule for how
to construct them stepwise. The rule that is given is that of Elements IX.36, but its
terminology is the one which Fibonacci has borrowed from contemporary Byzantine Greek
(prime numbers being numbers “without rule” – see above, note 84). A Byzantine
inspiration is thus likely (more evidence for this is discused on p. 98).

Next [B283;G453] comes a question which undeservedly has become the most famous

115 Rashed [1984: 228f ] reads into Ibn al-Haytham’s text a reference to Wilson’s theorem, according
to which (n–1)!+1 is divisible by n if and only if n is prime. Unfortunately, Rashed’s own translation
contradicts him: having found 720 as 2 3 4 5 6 Ibn al-Haytham concludes (p. 238) that “if
one divides seven hundred and twenty-one by each of these numbers, one always remains, and
seven hundred and twenty-one is divided by seven because it has a seventh“ – not “because seven
is a prime number”, and seven being prime has not even been mentioned. That seven hundred and
twenty-one has a seventh can be stated as obvious (as it is), since seven hundred as well as twenty-
one have it.

After giving this canonical solution (a term that shows that Ibn al-Haytham did not invent the
problem nor this procedure) Ibn Al-Haytham gives a different, less elegant and more laborious
calculation, which yields the smallest solution and shows that the problem possesses an infinity
of solutions (which Fibonacci does not state explicitly but shows to know).

116 Nothing like Fibonacci’s second and third problem seems to be in known Arabic texts (Ahmed
Djebbar, personal communication). Unless Fibonacci invented these himself (which nothing
excludes), my guess (nothing but a guess) is that they were developed in al-Andalus, not least
because of the vicinity in the Liber abbaci of this topic to the sophisticated versions of the unknown
heritage.

117 See below, p. 261.
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part 8, on divinations, however, contains two problems [B304;G479f] which qualify.
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piece of the work. A pair of rabbits is supposed to engender another pair each month,
which on its part conceives after one month and gives birth after another month. An initial
pair thus becomes two in the next month; after three months, both of these produce. This
evidently gives the “Fibonacci sequence” 1 – 2 – 3 – 5 – ..., characterized by the growth
formula np+2 = np+np+1. Fibonacci makes a painstaking step-by-step calculation for 12
months, and gives a commentary to a marginal diagram that corresponds to the growth
formula. At the end he states that one may go on in this way for an unlimited number
of months. But there is nothing about the convergence of the ratio between successive
members of the sequence, nor a fortiori about the “golden section”.[118] If [if! ] there
was any theory behind the rabbit problem, Fibonacci did not know.[119]

After this overvalued piece of arithmetical fun we find [B284–286;G454–456] a
sequence of four problems superficially related to the same extended family as the give-
and-take and purse problems (etc.) – we may speak of them as “all-less-each
problems”. The first of them runs:

There are four men, the first and second and third of whom have δ 27. Similarly, the
second, the third and the fourth have δ 31; the third, the fourth and the first have δ 34.
However, the fourth, and the first and the second have δ 37. It is asked how much each
one had. Add these 4 numbers into one, they will be 129; which number is the triple of
the whole sum of the δ of these 4 men. Namely because in this amount each of them has
been counted thrice. Therefore, if it is divided by 3 it gives 43 for their sum; from which,
if you detract the δ of the first, the second and the third man, that is 34, remains for the
fourth man δ 16. ... .

The next problems from the sequence have similar cyclical conditions, and the solutions
follow from similar considerations. In the case [B284;G454] where the total possessions
of two neighbours in circle with four participants (say, a+b, b+c, c+d and d+a ) are given,
it is pointed out that this problem has no solution unless (a+b )+(c+d ) = (b+c )+(d+a ).
An impossible and a solvable instance are then shown.

Other problems follow that are less easy but still solved by similar methods (the
methods that also served for the give-and-take and purse problems).

118 This section Fibonacci will only have known as division in extreme and mean ratio – the notion
of a “golden section” belongs to the 19th century [Herz-Fischler 1987: 168f ]. Late is also the belief
in its importance in architecture, pictorial arts and mysticism.

119 Idealized calculations of breeding animals have an old history – whether they constitute an
unbroken tradition is so far undecidable. The earliest known example (dealing with cattle, finding
also the quantity and monetary value of the milk fat the cows produce) goes back to the 21st century
BCE [Nissen, Damerow & Englund 1993: 100–102]. It is dressed up as a genuine piece of accounting,
but the animals never die, the reproduction and the sex ratio of calves is constant, and so is the
productivity of each cow. These complex calculations could obviously only be devised and
transmitted in a literate school; the simplicity of the rabbit problem would allow it to be devised
and to survive in a less literate environment.
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Particularly intriguing (but ultimately to be solved by the same techniques as the
others) is this [B293;G465] (henceforth, I shall refer to this problem type as the “grasping
problem”):

Three men had I do not know how many pounds of sterlings,[120] of which the half
belonged to the first, the third to the second, and the sixth to the third. When they wanted
to have them in a safe place, each of them grasped some quantity of these sterlings; and
of the quantity he got the first put in common the half; and of what he got the second
put the third part; and of what he got the third put the sixth part; and of what they put
in common each received the third part; and in this way each had his share.

A first solution starts in this way:

Since the first put in common 1/2 of that which he got; of which 1/2 he got back the third
part, that is, 1/6 of all he got: then remained for him from that which he took 1/6

1/2 , that
is, 2/3 ; and from that which the second put the first got 1/9 , since the second put the third
of what he took, and of this 1/3 the first got 1/3 , that is, 1/9 ; and of that which the third
put he got the third of the sixth part which this third put, that is, 1/18 . Therefore the half
of the amount of all the sterlings, that is, the share of the first man, was 2/3 of what the
first took and 1/9 of that which the second took, and 1/18 of that which the third took.

In letter symbols:
1/2 (A+B+C ) = 2/3 A + 1/9 B + 1/18 C .

Similarly it is calculated that
1/3 (A+B+C ) = 1/6 A + 7/9 B + 1/18 C .

The latter equation (expressed in words, and without algebraic position) is transformed
by addition of 1/2 of all members into

1/2 (A+B+C ) = 1/4 A+ B+ 1/12 C ,
1 10

2 9

whence
1/6 A + 7/9 B + 1/18 C = 1/4 A+ B+ 1/12 C .

1 10

2 9

“Detracting on both sides” (de utraque parte – the equation thinking is indubitable)
1/4 A+ 1/9 B+ 1/18 C, Fibonacci arrives at

5/12 A = 19/18 B+ 1/36 C .

Application of the perspective of the third man yields
1/6 (A+B+C ) = 1/6 A + 1/9 B + 8/9 C ,

transformed by means of another proto-algebraic operation into
1/2 (A+B+C ) = 1/2 A + 1/3 B + 8/3 C .

Combining this with the first equation,

120 Silver coins in use in Italy as well as England, valued as bullion; we already encountered them
in Jacopo’s coin list (above, p. 49).
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1/2 (A+B+C ) = 2/3 A + 1/9 B + 1/18 C ,

and performing another proto-algebraic subtraction on both sides Fibonacci gets
1/6 A = 2/9 B+ 47/18 C .

Applying the rule of the fourth proportional (we would prefer, multiplying by 2 1/2 ) he
transforms this into

5/12 A = 5/9 B + 235/36 C .

But he already had
5/12 A = 19/18 B+ 1/36 C .

Therefore,
19/18 B+ 1/36 C = 5/9 B + 235/36 C .

Subtracting on both sides again and reducing the resulting fractions, Fibonacci finds
1/2 B = 6 1/2 C ,

whence

B = 13C and A = 6 ( 2/9 B + 47/18 C ) = 33C .

Since the problem is indeterminate, Fibonacci chooses C = 1, and gets A = 33 and a total
of 47.

Apart from the lack of position of distinct representatives of what each of the three
has grasped, this must be characterized as a perfect algebraic procedure, and thus as a
demonstration that the border between arithmetical and algebraic solution at least of first-
degree problems is far from sharp.

A second solution starts midway in the preceding one, but builds on the same
principles. A third procedure by double false position is proposed in chapter 13, cf. below,
note 141. In chapter 12, some variants with different numerical parameters follow (one
with four men); they teach us nothing new.

The whole sequence is also in L [ed. Giusti 2017: 176–183], in practically the same
words. Its first problem is also found in the Flos [ed. Boncompagni 1862: 234–236], with
a slightly different formulation of the statement. Here Fibonacci tells that the problem
was presented to him by Giovanni di Palermo in the presence of Emperor Frederick II –
which can hardly have been at any other occasion than Frederick’s visit to Pisa, which
took place in July 1226 [Stürner 1992: II, 386f ]. The presence of the problem in L appears
to show that Fibonacci was well prepared, having already solved the problem in writing.

There is no reason to wonder, the problem was familiar in the Arab world. Al-Karajı̄
[ed. trans. Woepcke 1853: 141] solves it in the Fakhrı̄ (with the same numerical
parameters) by means of two algebraic unknowns representing what I have designated
A and B, taking advantage of the indeterminate character of the problem to identify C
with 1 dirham. The order of operations is not precisely the same as that of Fibonacci,
but on the whole Fibonacci’s procedure might be a translation into words of al-Karajı̄’s
procedure or something similar – and since we have no other indications that Fibonacci
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knew the Fakhrı̄ directly (cf. below, p. 144), the best guess seems to be that he had
encountered it in an Arabic source descending from or related to al-Karajı̄.

The Flos tells the reader that Fibonacci had already given three solutions to the
problem in “the book I put together on numbers” (that is, the Liber abbaci ); here, however,
he wants to present an “extremely beautiful way”, which he presents to the Emperor. This
way is a regula recta procedure, where the thing is posited as 1/3 (A+B+C ). There is
no reason to elaborate.

A group of two problems follows which, in mathematical future perfect, represent
the first steps in partition theory.

The first of them [B297;G471] is “Bachet’s weight problem” (see [Knobloch 1973]),
first known from Mohammad ibn Ayyūb al-Tabarı̄’s Miftāh al-mu āmalāt from c.
1100:[121]

Somebody had 4 weight pieces,[122] by which he weighed whole pounds of his
merchandise from one pound until 40 pounds. The weight of each of these weight pieces
is asked for. Then it is necessary that the first be of one pound; so that by it one pound
can be measured. The second must be its double, with one added, or the triple of the same
first; with these two weight pieces can be weighed from one pound until 4. But the weight
of the third is one more than the double of both the others, that is, the triple of the second,
namely 9; but the weight of the fourth is 1 more than the weight of the other three, that
is, the triple of the third, namely 27; the weights of which joined together make 40. So,
if you want to know how you may weigh with these weight pieces any number of pounds
from one pound to 40 pound, let us say 14, then the fourth weight piece is put into one
scale pan, and the rest is put in the other; and if you put the same fourth weight piece
together with the first, and if you put in the other the rest, namely 9 and 3, then 16 pounds
may be weighed [...]. And if you add a fifth weight piece, whose weight is the triple of
that of the fourth, namely 81, with these five weight pieces may be weighed any number
of pounds from one pound until 121 pounds; and thus in the same order weight pieces
may be added without end.

The final clause is very close to that of the rabbit problem[123] – closer than can
plausibly be explained as an accident. The decisive difference is that in the rabbit problem
the possibility to continue additions np+np+1 is a triviality, since nothing is said about the
properties of the resulting sequence. In the present case, instead, it is obvious from
Fibonacci’s intuitive argument by induction that what results is the optimal partition (with
subtraction) of integers.

121 [Tropfke/Vogel et al 1980: 634], date according to [Hockey, Trimble & Williams 2007: 1149].

122 In English it is unfortunately impossible to distinguish elegantly Fibonacci’s peso (borrowed
from Italian), here translated “weight pieces”, from his pondus, their weight as quantity.

123 “et sic posses facere per ordinem de infinitis numeris mensibus” respectively “et sic eodem ordine
possunt addi pesones in infinitum”.
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Theoretically seen, the other problem in the cluster ([B298;G471] – rather an
instantiation of a theorem than a problem) is the purely additive counterpart:

Somebody gave somebody for his daily work 1 mark of silver, which he paid by means
of five cups that he had, so that none of them was broken; and this he did for 30 days.
The weight of the first cup was 1, whose double, namely 2 mark, was the weight of the
second. The weight of the third was 4, namely the double of the second. But the weight
of the fourth was the double of the third, namely 8. When the weight of these 4 cups are
joined together, they make 15 mark. When these are extracted from 30 mark, 15 mark
remain for the weight of the fifth cup. On the first day he gave him the first vase. On
the second he received from him this same first, and gave him the second. On the third
the lord gave the worker this same first. On the fourth the lord received from the worker
the first and the second, and gave him the third. And thus in the said order he paid him
daily, until 30 days.

The underlying theorem is evidently that any integer can be expressed unequivocally as
a sum of powers of 2 (the final 15 instead of 16 being chosen as a pragmatic shortcut
allowing the worker to leave with all the cups). This is no deep insight, it had already
been used in the Pharaonic standard multiplication algorithm.[124] Most interesting –
not least because of the vicinity to the weight problem – is the term used for the cup.
In Boncompagni’s manuscript it is sisphos and ciphus, in L [ed. Giusti 2017: 184] it is
sciphos and scifis. This is not Latin, nor a borrowing from any Romance language. It
renders spoken Byzantine Greek, namely the way σκυφος was pronounced (better in L

than in the later manuscripts, where the spelling is further influenced by Tuscan
pronunciation). That is, Fibonacci encountered the problem in oral interaction in
Byzantium.[125] Since he sees it as belonging together with the preceding, more
sophisticated problem, we may presume that both came from the same source; and since
they share the essentials of the closing formula with the rabbit problem,[126] on its part
close to the rule for production of perfect numbers with its Byzantine terminology, even

124 In order to see it we only need to notice that division by 2 leaves either remainder 0 or remainder
1 (given the familiar laws of associativity and distributivity).

125 This would agree well with the appearance of a closely related problem in a Byzantine problem
collection from the early 14th century [ed. trans. Vogel 1968: 112f ], which seems not to be
influenced by Italian material.

126 The cup problem ends “et sic predicto ordine persoluit eum cotidie, usque in diebus 30”, related
to but since no unlimited procedure is promised not the same as the closing phrase of the rabbit
problem – cf. note 123. Only two other problems have somewhat similar closing formulae:
– [B340;G529]: “denarios vero tercii hominis reperies ordine suprascripto”.
– [B384;G590]: “eademque via et ordine poteris operari in reperiendis radicibus cubicis

numerorum decem vel plurium figurarum”.
Though no definitive proof, the similarity between the closing formulae of the rabbit and the weight
problem is a strong suggestion.
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this may be assumed to have been borrowed from Byzantium.
A group of problems about the sale of apples follows – and since apples are supposed

to be sold whole, and the prices are also, qua numbers of δ, supposed to be integer, these
are Diophantine problems. The first [B298;G472] begins in this way:

One of two men had 10 apples, the other 30; and as they were in a market, each sold from
his apples I do not know how many; but the prices were the same. And when they came
to another market, they sold the rest, similarly at the same price; and that which the first
had for his 10 apples was as much as that which the second had. The price of the apples
in each market is asked for, and also how many were the apples each of them sold in
each market. Divide in two parts the apples of the first man, namely 10, so that, when
the first part is detracted from the number of apples of the other, namely from 30, remains
a number that is divided integrally by the second part; and what comes out of the division
is the price of each apple sold in the second market. [...]

If a1 designates the number of apples sold in the first market by the first man, a2 those
sold by him in the second market, b1 and b2 correspondingly for the second man, and
f and s the price of an apple in the first respectively the last market, then we have

a1+a2 = 10 , b1+b2 = 30 ,
f a1+s a2 = f b1+s b2 .

This is obviously strongly underdetermined – there are six unknowns but only three
conditions. The latter condition can be re-expressed

s a2 = f b1+s b2–f a1 .

Fibonacci’s first choice is to take a1 so that

= s
b1 b2 a1

a2that is,
sa 2 = b 1+b 2–a 1 .

There is no hint of why this choice is made; the problem (and those that follow) have
no pedagogical purpose, they show (and are almost certainly intended to show) the
brilliance of the author. There is no reason in the present context to pursue the analysis.

Last in part 7 [B302;G477] comes a problem somewhat similar in mathematical
structure to the “purchase of a horse”, formulated however as dealing with 5 numbers.
In letter symbols:

a+b+c = (1+ 1/2 )d
a+c+d = (2+ 1/4 )e
a+d+e = (3+ 1/5 )b
a+e+b = (4+ 1/6 )c

The problem is indeterminate, and Fibonacci starts by positing a+b+c = 1 1/2 , whence d =
1. He goes on with linear operations of the same nature as those used in the horse-, purse-
and give-and-take problems.
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12.8, divinations

12.8 [B303;G478] deals with “certain divinations”. What this means can be illustrated
by the beginning of the first problem:

When however somebody has put a number in his memory and want you to find it: instruct
him that he put the half of the number above the same number. And if some broken half
occurs, instruct him to make it whole. The half of which total number you put above that
same number; and if some broken half occurs, let him again make it whole. [...].

Afterwards, the trick is to ask for the subtraction of 9 as many times as possible, and
to combine this with knowledge of when fractions had been repaired, and thus to
reconstruct the number. Other similar problems follow, some of them with a method which
presupposes an upper bound for the number, together with one where questioning allows
finding out the points on three dice that have been thrown, and a few others. Some of
them might as well have been presented as number problems elsewhere, without any
imaginary partner – evidence of the lack of a strict boundary between mathematical
problems, mathematical amusement, and riddles.

12.9, chess-board and other geometric series

Part 12.9 [B309;G486] deals with “the duplication of the chess-board, and some other
rules”.

The chess-board problem is one of the few recreational problems we can trace back
to the early second millennium BCE. Originally the doublings were “until 30”, then, after
the invention and diffusion of chess, 30 was outcompeted by 64.

The oldest representative of the family we know is from Old Babylonian Mari, in
north-eastern Syria [Soubeyran 1984: 30–35]; it doubles barley grains, and when their
number becomes large it interprets the grain as a weight unit and uses larger measures.
The next we know about is a Greco-Egyptian papyrus, perhaps to be dated to the Roman
epoch. It starts from 5 shekel of silver, also goes until 30, and also expresses the higher
multiples in adequate weight units. In the Latin collection Propositiones ad acuendos
iuvenes ascribed to Alcuin of York [ed. Folkerts 1978: 51f ], a king sends a servant
successively to 30 manors, from each taking as many new men as he brought – here,
obviously, metrology does not come into play. A few decades later (if we trust the
ascription to Alcuin), al-Khwārizmı̄ wrote a mathematical analysis of the problem in chess-
board version, which we know from an extract or (rather) a paraphrase in Abū Kāmil’s
Algebra [ed. trans. Rashed 2012: 724–728], to which we shall return presently.

All of these have a simple doubling in each step. However, as in the interpretation
of the counterfactual calculation (above, p. 78), Fibonacci suggests two different ways
to understand the problem – and the present-tense passive proponitur suggests both already
existed, Fibonacci did not share the modern way to signal or feign objectivity by hiding
behind a grammatical passive (cf. below, text before note 142):
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The doubling of the chess-board is proposed in two ways, of which one is that the
following square is double its antecedent; the other, when the following square is the
double of all its antecedents.

Both possibilities are explored with details and perspective. The first begins in this way:

The first doubling can be made in two ways, namely if we operate by doubling from square
to square until the last square. The other way is that you double as much as the first square,
and you have two; which two multiply in itself, they will be 4; which 4 are 1 more than
the number of the doublings[127] of the two squares. For example: In the first square
put 1. In the second 2; which joined, make 3; the above-written 4 are 1 more than these
three; when these 4 are multiplied in themselves, they make 16; which number is one
more than the doublings of the double of the first two doublings, that is, of 4 squares.
For example: In the first there is 1. In the second 2. In the third, 4. In the fourth 8; which,
joined together, make 15; which is 1 less than 16. Further multiply 16 in itself, they make
256; which are 1 more than the number of doublings of the double of the above-written
squares, that is, of 8 squares which occupy the first row of the chess-board. For example,
in the first there is one. In the second 2. In the third 4. In the fourth 8. In the fifth 16.
In the sixth 32. In the seventh 64. In the eighth 128; which joined together make 255;
which the above-written 256 exceed by 1, as we have said: therefore multiply 256 in itself,
they make 65536, one more than the doublings of the first two rows, namely of 16 squares.

Fibonacci then finds “one more than the doublings” of the first four rows, then of all eight
lines of the chess-board, and then of two chess-boards. “And multiplying thus we can
go on until infinity”.

So far so good. All this depends on well-known properties of continued proportions
(not referred to here by Fibonacci, it is true).

Next, unfortunately, he goes on with a pedagogical explanation because the resulting
huge numbers may be difficult to grasp. He suggests to fill a chest with the contents of
the first two rows (augmented by 1, he forgets), that is, 65536 bezants. Then the first
square of the third row contains 2 chests, he claims; it should obviously be 1 chest, even
according to his own preceding text. Going on with doublings he claims that the second
contains 4 instead of 2 chests, etc., until the last square of the fourth row, supposed to
contain 65536 chests, reinterpreted as a house. Further, 65536 houses make up a city.
The last square of the last row is then supposed – the same error persisting – to contain
65536 cities.

Another pedagogical illustration of the immensity of the number follows: if each unit
represents a grain of wheat, identified with the weight unit grain, how many standard
ships can be filled? The outcome, 1525028445[128] ships plus a fraction, is rightly said

127 From square 2 onward, the contents of a square legitimately can be spoken of as a “doubling”
(duplicatio ); Fibonacci extends the usage to the first square.

128 All manuscripts including L actually write 1725028445 [Giusti 2020: 488, apparatus; Giusti 2017:
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to be “like infinite, and uncountable”.
A comparison with Abū Kāmil’s paraphrase of al-Khwārizmı̄ explains the mistake

in Fibonacci’s chest-explication. Abū Kāmil [ed. trans. Rashed 2012: 726f ] relates that

Muhammad ibn Mūsā [al-Khwārizmı̄] – may God be satisfied with him – has made this
easy and accessible by saying: you put down the first, two, he put down the first as two
in order to liberate himself from adding one; if he multiplies it with itself, one has four,
which is the second. And if one multiplies four by itself, one has sixteen, which is the
fourth. [...] If you want to double and add the squares of the chess-board, multiply the
eighth, which is two hundred fifty-six, by itself. What you obtain is the 16th. Multiply
the 16th square by itself, what you obtain is the thirty-second square. [...].

There are no chests here, but we find the idea of using 16 squares, that is, two rows, as
a basis for simplified calculation. Fibonacci, when borrowing either from Abū Kāmil or
some later writing depending on him (or possibly some other source depending directly
on al-Khwārizmı̄),[129] has obviously not only overlooked that his source starts with
2 in the first case but also not discovered that the consequences he draws from it are wrong
and contradict what he has said just before. The mistakes are also in L, showing that
Fibonacci did not make a complete critical reading of his master-copy when preparing
the final edition in 1228.

Is the first part of the “other explanation” then Fibonacci’s own?
Almost certainly not. As we see, its basic trick is also in Abū Kāmil’s text. Moreover,

it was discussed in much more detail as a “practical way other than what most people
are accustomed to do” in Damascus in 952 by al-Uqlı̄disı̄ [ed., trans. Saidan 1978: 338];
in 1449, al-Qalasādı̄ [ed. trans. Souissi 1988: 75f ] also described it – with the further
observation that

the number placed in the 9th [square] is equal to the sum of the numbers of the first 8
squares plus 1. [...] taking the square of the number in the 9th one gets the one in the
17th; taking the square of the latter one gets the one in the 33rd; doing the same with
the latter one gets the number of the 65th, that is, the sum of the first 64 numbers plus
1, which is the first term.

So, the approach was widespread among Arabic mathematicians, and too close in the
details to make us believe that Fibonacci made an independent exposition.

It is tempting to see the ship calculation, with its grains and conversion to higher
metrological units, as pointing to the Mari and the silver problem; but this temptation
is probably better resisted until, possibly but unlikely, an intermediate text should be dug
up in some library.

206, apparatus].

129 In any case, there can be no doubt that this time Fibonacci depends on a written source – the
details that connect him to Abū Kāmil are not of the kind that would survive oral transmission.
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The alternative interpretation of the doubling problem (“the following square is the
double of all its antecedents”) determines this sequence by stepwise calculation:

1 – 2 – 6 – 18 – 54 – 162 – 486 – 1458 – 4374
Fibonacci does not point out that the step factor from 2 onward is constantly 3, as follows
from inspection, and as can also easily be argued: if square n holds Cn, the sequence being
determined from

Cn = 2 (1+...+Cn–1) ,

then

Cn+1 = 2 (1+...+Cn ) = 2Cn+2 (1+...+Cn–1) = 2Cn+Cn = 3Cn .

It would not be difficult to formulate this in words instead of symbols, just more lengthy.
Instead Fibonacci observes that

(1+2+6)2 = 81 = 1+2+6+18+54

while

(1+2+6+18+54)2 = 6561 = 1+2+6+16+54+162+486+1458+4374 .

This rule is claimed with no hint of an argument to go on corresponding to squares no.
5, 9, 17, 33 and 65. It is obviously a parallel to what was used in the “first interpretation”,
and would be evident if we knew the sums (not just the contents of the single squares)
to be in geometric progression. In symbols, and if we take into account that Cn+1 = 2 3n-1,
it is easily established that they are: from

Cn+1 = 2 n

1
Ci

(n≥2) follows

= 3n–1 .n

1
Ci

Further, for n taking on the values 5, 9, 17, 33 and 65, n–1 equals successive powers of
two. A skilled medieval arithmetician would probably be able to establish it using words,
perhaps (as in Elements VII–IX) supported by letter-carrying line segments. However,
Fibonacci seems not to posses the building blocks for the argument, and therefore offers
none.

Instead, he merely uses the rule to find

= 3,433,683,820,292,512,484,657,849,089,281 ,65

1
Cn

from which he concludes that

= = 1,144,561,273,430,837,494,885,949,696,427 ,64

1
Cn

1

3

65

1
Cn

Even the latter result is correct – namely (since Cn+1 = 3Cn for n≥2) because

= 1+2+ = 3+ = .65

1
Cn

65

3
Cn 3 64

2
Cn 3 64

1
Cn

However, Fibonacci’s argument (should his words be meant as an argument) is quite
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opaque.
Given the absence of genuine arguments, even this second interpretation of the chess-

board problem and the way to deal with it are almost certainly borrowings – seemingly
made with little understanding. The similarity of the 5–9–17–33–65-argument with what
we saw in the treatment of the “first interpretation” indicates that Fibonacci took both
from the same source – which would exclude that he borrowed directly from Abū Kāmil.

From where he borrowed is a guess, but since we know that Abū Kāmil’s Algebra
circulated in al-Andalus in the 12th century, and since the sophisticated version of the
“unknown heritage” seems to have come from there (together with the secondary stratum
of chapter 14 and the bulk of part 15.1, as we shall see), the best guess would be al-
Andalus.

A further number of problems about geometric growth or decrease follows:
– [B311;G489] One δ lent at compound interest becoming 2 δ in five years, followed

over five-year periods until 50 years, and then squared to give the outcome of 100
years; with the variant that 20 hides are sold, the first for 1 δ, the second for 2 δ,
the third for 4 δ, etc.

– [B311;G489] Seven old women go to Rome, each carrying 7 pilgrim’s staffs, each
staff carrying 7 small sacks, each sack containing 7 breads, each bread with 7 knives,
each knife provided with 7 sheaths. The sum is found by stepwise calculation, showing
that if Fibonacci knew the sum formula for geometric series, he did not think of it
in this connection. There is no reason to doubt a connection to the similar problem
in the “inventory of a household” in the Rhind Mathematical Papyrus [ed. trans. Peet
1923: 121]: 7 houses, 49 cats, 343 mice, 2301 [miswritten for 2801] spelt. As said
by T. Eric Peet, “evidently based on a nursery problem [...] seven houses, in each
7 cats, [...]”.

– [B312;G490] A tree with 100 branches, on each 100 nests, in each nest 100 eggs,
in each egg 100 birds.

– [B312;G490] 100 £, each 4 growing with profit to 5 in a year, followed over 18 years.
– [B313;G491] Somebody originally possessing 100 bezants travels through 12 cities,

in each spending 1/10 of his money.
– [B316;G495] From a cask containing 100 measures of wine, each month 1/10 is drawn;

explained to be a parallel to the preceding question, for which reason the remainder
after ten months can be taken over from there.

Finally comes a problem of a different kind [B316;G495], namely a variant of the garden
problem (above, p. 27), where somebody leaves a city with 10 gates, paying at the first
2/3 of his bezants plus 2/3 of a bezant; at the second 1/2 of what he has left, plus 1/2 of
a bezant; at the third 1/3 of what he has left, plus 1/3 of a bezant; ... ; at the tenth, 1/10 of
what he has left, and 1/10 of a bezant. After which he is left with 1 bezant. Two procedures
are explained: firstly, stepwise backward calculation, which because of the specific
numerical parameters is fairly easy – going backwards gate by gate, what he had left was
11/9 , 12/8 , 13/7 , etc.; secondly, the method introduced with the repeated travels (above, p.
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88), reduction of all disbursements to final value.
The appearance of bezants does not demonstrate that Fibonacci knew the problem

from Byzantium, even though it suggests so (cf. note 107); the use of the sequence of
aliquot parts including 2/3 , however, points in the same direction (cf. p. 69). Combined,
the two observations makes it highly plausible that the problem (in this specific form and
with these parameters) had been presented to Fibonacci in Byzantium – the challenger
(if the problem was presented as a challenge) probably knowing that it could be solved
in the first way, since it fits the sequence of aliquot parts so nicely. The second method,
close to what Fibonacci has used before and not fitted to the specific parameters, is likely
to be his own contribution.



Chapter 13 – elchatayn rule

Chapter 13 deals with “the elchatayn rule, and how by means of it almost all abbacus
questions can be solved”, where elchatayn is the Arabic term for the double false position
(as explained in the very beginning of the chapter),[130] and “abbacus questions” are
such as are presented in chapter 12. (On the rule itself, see note 4.)

After this terminological clarification follows a presentation. It does not refer to the
connection to the alligation rule; this is not exceptional, nobody seems to do so.[131]

Instead it is said [B318;G499] that the solution

is found according to the proportion of the difference from one position to the other, that
is that it falls under the rule for the fourth proportional, in which three numbers are known;
by which the fourth unknown number, that is, the truth of the solution, is found; of which
the first number is the difference between the number of one false position and the other.
The other is how one gets closer to the truth by that same difference. The third is what
is lacking in the approximation to the truth.

Unfortunately Fibonacci does not tell what the fourth proportional represents (namely,
how much one has to go beyond the second position before reaching the correct
value[132]) but leaves that to the ensuing example, which also shows how to proceed
if one error is in deficit, the other in excess.

The question is, 100 rotuli are worth 13 £, what is 1 rotulo worth? The two positions
made are that the value is 1 ß, and 2 ß. With the former position, 100 rotuli would be
worth 5£, with the latter 10 £. That is, increasing the position from 1 ß to 2 ß, we
approximate the truth by 5 £. But from the second position we still have to approximate
it by 3 £ more, whence the proportion spoken of in the quotation.

Afterwards, two positions are proposed that both lead to an excess (7 £ and 3£), and
two where one leads to a deficit and one to an excess (3 £ and 2 £). The principles of
these calculations are similar. We observe that none of this has to do with the proper
method of two false positions – they make linear extra- or interpolations from one of the
two positions. However, on p. [B319;G501] comes an observation that

there is another way for the elchataym; which is called the rule of augmentation and
diminution. And the first error is multiplied by the second position; and the second error
by the first position. And if the errors are both diminished, or both added, the smaller
outcome of the aforementioned multiplication is subtracted from the major, and the
remainder is divided by the difference between the errors; and in this way the solution

130 Namely the genitive dual khata āni of khata , “error, mistake” – thus “of two errors”. The
not uncommon derivations from Khitāi, Central-Asiatic Turkish for China, can be safely disregarded,
cf. the explanation in [Needham 1959: 118 n. b].

131 However, cf. below, p. 108, on Liu Hui, and note 137 about a reverse linking.

132 The precise words presuppose that both guesses err by deficit, and that the larger position gives
the better value – otherwise some formulations have to be twisted.
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to the question is found. And if one of the errors be added, and the other diminished, then
both multiplications are added together, and the outcome is divided by the errors joined.

This is then applied to the same example, after which follows proofs by means of line
diagrams. In the first [B320;G502], for both errors being in deficit, this diagram is used:

a g d b
e i z

Here, ag represents the first position (for our convenience P1), ad the second position
(P2), ez the first error (E1), iz the second error (E2). The solution “according to the
proportion of the difference from one position to the other” can then be expressed

+P2 = +ad
E2 (P2 P1)

E1 E2

iz gd
ei

Fibonacci speaks about multiplication and division, that is, he deals with the segments
as numbers.

More interesting is the proof of the solution by means of “augmentation and
diminution”,

,
E1 P2 E2 P1

E1 E2

in terms of the line segments

= = .
ez ad iz ag

ei
(ei iz ) ad iz ag

ei
(ei iz ) ad iz ag

ei

Now, ad iz = (ag+gd ) iz = ag iz+gd iz. Moreover, since increase in the position is
proportional to decrease in the error,

= ,ei
iz

gd
db

whence iz gd = ei db. Therefore ad iz = ag iz+gd iz = (ag+gd ) iz = ag iz+ei db.
Inserting this we get

= = = .
ez ad iz ag

ei
ad ei ag iz ei db ag iz

ei
(ad db) ei

ei
ab ei

ei

Fibonacci can therefore conclude that

= ab ,
E1 P2 E2 P1

E1 E2

“as was to be shown” (quod opportebat ostendere ).
This Euclidean phrase (used regularly in the Latin translation made directly from the
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Greek [ed. Busard 1987][133]) is quite fitting. The demonstration
is, in Euclidean style, a piece of synthesis, showing that the rule
is correct, but giving the reader no idea about how it was devised.
The tools made use of are very close to being algebraic (cf. also
note 101). The reference to products of segments is noteworthy.
In classical mathematics, these would have been dealt with as
rectangles, as shown here, and the final division as the finding
of a side of a rectangle from its application to the other side;
Fibonacci makes no attempt to respect this canon, even though
it would have been easy to do so (and even though he uses
procedures elsewhere which do respect them – we may assume
that his choice of style depended on his source[134]): since the
two black rectangles are equal, the difference between the rectangles ez×ad and iz×ag
is seen immediately to equal the rectangle ei×ab. Easier, one would say, than the quasi-
algebraic proof actually given.

Quasi-algebraic proofs based on line segments are also given for both errors being
in excess, or for one being in deficit, the other in excess.

Before we address what Fibonacci does with this when dealing with problems, it may
be fitting to look at some elements of the earlier history of the method of the double false
position.

The earliest appearance of the rule in known sources is in the seventh chapter of the
Chinese Nine Chapters [ed., trans. Chemla & Guo 2004: 549–597], to be dated to the
first century CE. The chapter deals with the method of “excess and deficit”; the text only
gives a numerical prescription explaining how the numbers are to be placed on the counting
board, not very different from the marginal schemes used by Fibonacci (also reflecting
the used of a board, probably a clayboard). A commentary by Liu Hui from 267 CE then
explains how the errors are to be balanced, not referring to alloying but following exactly
the same principle [Chemla & Guo 2004: 549f ].

133 That Fibonacci knew this translation is nothing new, see [Folkerts 2004: 109f ] and [Busard 1987:
18f ].

134 We notice the letter sequence a-b-g-d-..., pointing to the use of an Arabic source. Other arguments
which similarly seem to be of Arabic origin follow the classical canon; but there is evidently no
reason to assume that Fibonacci drew on a single Arabic source for all arguments involving lettered
diagrams.
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The Nine Chapters make more advanced use of the method than done elsewhere;[135]

that does not concern us at this point. Let us instead turn to the earliest known Arabic
presentation of the rule – actually a proof of its validity, no mere presentation, the rule
itself is supposed to be already familiar. It was written by Qustā ibn Lūqā in the second
half of the ninth century. A first sketched proof [ed. trans. Suter 1908: 113f ] is similar
to Fibonacci’s first proof, though formulated without reference to proportions and not
using a line diagram: the positions are supposed to be P1 = 4 and P2 = 8, and the respective
errors E1= 7, E2= 4; increasing the position by 4 therefore reduces the error by 3, and
therefore increasing the position by 1 decreases the error by 3/4 . In order to eliminate the
error we must therefore increase the position from 8 to 8+4÷ 3/4 = 13 1/3 . The rule is then
argued to agree with this calculation.

Qustā does not leave the matter there, however, but
gives a strict proof, based on diagrams (lost in the
surviving manuscript, but reconstructible from the text –
here after Heinrich Suter). ab and ag represent P1 and P2,
od the true value, and hz and ts, respectively E1 and E2

(in the best Euclidean style, Qustā performs a
construction). Then

ad : do = ag : gt = ab : bh.

Then, E1 P2 = mu, E2 P1 = ml, for which reason E1 P2–E2 P1 equals the gnomon
nuszlc. But according to Elements I [prop. 43], zt = ti, for which reason the gnomon
equals ci. But cn = E1–E2, whence

ni = ti ÷ cn = .
E2 P1 E1 P2

E1 E2

For the other cases (both errors in excess, and one in excess and one in deficit), similar
rigorous proofs are given.[136]

135 For example [ed., trans. Chemla & Guo 2004: 559],

Let us assume that something is bought in common and that, if each one pays 8, there
is an excess of 3, and if each one pays 7, there is a deficit of 4. It is asked how much
is the quantity of persons and the price of the thing.

136 Rigorous only, as it stands, in the situation where a position 0 would give an outcome 0; however,
if od represents the excess between the requested outcome over the outcome for position 0, the
argument remains valid. In the language of analytic geometry, the argument as given holds only
for problems y = αx (where a single false position would suffice); the reinterpretation of od allows
the argument to hold for the general first-degree equation, y = αx+β.

Rigorous moreover, as Qustā points out, only in problems where no square and cube roots
appear. Qustā translated Diophantos into the language of Arabic al-jabr and also here speaks of
the unknown number as a māl, a “possession”; that is, for him, problems of the second and third
degree deal with the māl and its square or cube root.
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This, obviously, does not present us with the invention, it is a justification of a method
that is already known. The initial proof-sketch appears to reverberate in Fibonacci’s first
proof, but obviously is not Fibonacci’s direct source.

From the Maghreb, where we might believe Fibonacci to have picked up his direct
inspiration, we know a different approach – exemplified by Ibn al-Bannā ’s Talkhı̄s (a
highly appreciated summary of calculation techniques from the decades around 1300).
Ibn al-Bannā [ed. trans. Souissi 1969: 88] speaks of the method of “scale pans”,
illustrated by this drawing (in the edition of the Arabic text, no words are written into
the diagram):

You put the known number of the hypothesis on the axis; you take for one of the scale
pans whatever number you like; you submit it to the operations indicated in the hypothesis,
addition, reduction, or otherwise; then you compare the result with the number put on
the axis. If you find it exactly, then this scale pan is the unknown number. If the result
is wrong, write the error above the scale pan if it is in excess, and below if it is in deficit.
Then take for the other scale pan what even number you like, except the first one; operate
in the same way as with the first one. [...].

In the Maghreb, this remained a favourite way to arrange the calculation. In 1449, al-
Qalasādı̄ [ed. trans. Souissi 1988: 68] would still explain it, filling in numbers for clarity,

representing the solution of the problem “to find a number such that the sum of its third
and it fourth is 21”, with positions 24 and 12.[137]

It should be obvious that Fibonacci did not borrow this, in spite of his reference to
the method by an Arabic name. Is it possible to go beyond this negative conclusion?

Firstly, as noticed, Qustā’s first calculation might seem to reverberate in Fibonacci’s
text. That is not impossible, the manuscript used by Suter was copied in India in 1722,
so Qustā’s ideas may have circulated well and inspired widely. The proof by means of
line segments is also a borrowing – proofs constructed by Fibonacci himself use the Latin
lettering sequence a-b-c-..., as pointed out in note 101 and elsewhere. The sequence
a-b-g-... must be based on either Greek or Arabic material. From Byzantium, however,

137 Interestingly, a treatise written in ca 1575 by a Morisco and combining a Castilian treatise with
material drawn from the Maghreb tradition uses the scala-pan diagram for an alligation problem
[Ageron & Hedfi 2020: 40f ]; there must then have been some awareness in the Maghreb (the
diagram is not in the Castilian treatise) that the double false and alligation calculation are analogous.
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we do not know of a similar use of line diagrams (nor in material in the Liber abbaci
which for other reasons can be linked to Byzantium); in the Liber mahameleth, on the
other hand, they abound (always with sequence a-b-g ). Since Fibonacci’s proofs for double
false position are not to be seen in what we know from the Maghreb, the best guess is
therefore that Fibonacci took over his line proofs from al-Andalus.

The rule itself is likely to have spread over the whole region between China and the
Mediterranean among traders and similar groups of practical calculators, and to have been
taken up by “mathematicians”, that is, those engaged more centrally with mathematics
and mathematics teaching: those in China approaching it with their conceptual and practical
tools, those in Arabic and Mediterranean areas with theirs – the Arabic world not learning
from the Chinese teaching of officials, nor (already for obvious reasons of chronology)
the Chinese teachers learning from Qustā and his kin. That was already proposed by
Randy Schwarz [2006: 292]. The way “mathematicians” East and West justified solutions
to problems belonging to the family “purchase of a horse” is a parallel example – see
[Høyrup 2016: 465–469] – evidence that this kind of diffusion cum local justification is
possible.

13.1, problems already dealt with

Let us return to the Liber abbaci. After the proofs ([B322;G505] onward) come
applications of the rule to select problems solved (sometimes with different numerical
parameters) in the preceding chapters by other methods. At first it is asked how to mix
silver at 3 ounces with silver at 6 ounces in order to get silver at 5 ounces. Strikingly,
instead of using the double-false procedure, after having made two positions and found
the corresponding errors, Fibonacci makes a detailed calculation along the lines of his
first proof – yet without reference to proportions, using instead the rule of three (as usually
not identified by any name). A parallel example [B323;G506] instead applies the standard
procedure referred to earlier as “augmentation and diminution”.

After this [B323;G5+7] comes what Fibonacci himself calls a “noteworthy question”
of type “lazy worker” (cf. above, p. 26):

Some worker should receive 7 bezants in a month if he works; and if not, he should give
back to the master of the undertaking 4 bezants at monthly rate. And sometimes he worked,
and sometimes not. So that, finished the month, he was to receive from the master 1 bezant.

Exactly the same problem is solved in the seventh differentia of chapter 11 ([B160;G275];
cf. above, p. 76), as one of the examples of how the alloying model can be applied to
other questions.[138] Here, the problem is solved by the standard procedure, complicated
only by the need to convert the monthly rates into payment per day.

138 At a first glance, that solution seems suspicious, since it adds the 30 days to the 1 bezant.
Actually, what Fibonacci does is blameless, apart from the excuse to add 30; all he does is to shift
the zero so as to avoid coin of –4 ounces per mark.
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The following problem [B324;G508] is a slight numerical variation on a tree problem
from [B174;G298]: 1/4

1/3 of a tree is under the ground, and 20 ells instead of 21 palms
are above. Again, the standard procedure is followed, and Fibonacci teaches how to make
convenient positions that eliminate the fractions of the problem statement (P1 = 12 ells,
P2 = 24 ells). Then [B324;G508] comes an exact repetition of a complicated wage problem
first solved [B186;G317] by means of the technique for combined works, and then an
equally exact repetition of the give-and-take problem [B190;G324] which already served
to introduced the regula recta (above, p. 80). A problem about four men finding a purse
[B326;G511] changes the phrasing but not the numerical parameters of a counterpart from
[B218;G362]. Five men buying a horse [B327;G513] is an exact repetition of a problem
on p. [B234;G384]. The first problem about repeated travels ([B258;G417], cf. above p.
88) is repeated on p. [B329;G515] in slightly more compact words but the same
parameters; similarly, a house-renting problem (see above, p. 90) from [B270;G434] turns
up in changed words but with the same parameters on p. [B329;G516]. The first of the
“rambling” problems ([B276;G442], cf. above, p. 90) is repeated with slightly different
numerical parameters on p. [B330;G517]. On p. [B330;G518], a problem about men having
money changes their number to 6, while a corresponding problem on p. [B285;G455]
speaks of 5 men.[139]

The situation of the next problem [B331;G519n] is slightly more puzzling (not present
in all manuscripts). It is the traditional version of the two-tower problem, in which the
two birds arrive at the same moment (see above, p. 46). In the 1228 edition, the same
problem is solved in the “geometric” part of chapter 15 [B398;G611], and thus not where
“abbacus” problems are supposed to be. As it turns out, the early version of chapter 12
in manuscript L actually contains a corresponding problem where it would be expected
[ed. Giusti 2017: 192]. When preparing the final version, Fibonacci must have moved
it while editing it (actually, while borrowing from a different source – see below, p. 133);
since the problem as it looks here and as it turns up in chapter 15 are identical (both
deviating from what is found in L) Fibonacci must have been fully aware of what he was
doing. Giusti suggests the problem to belong “to a first version of chapter 13” [2020:
cvii] – but if so, then to an intermediate version, later than the one represented by L

chapter 12, and thus evidence that the Liber abbaci was an ongoing project that cannot
be reduced just to an original from 1202 and single revision from around 1228.[140]

139 In both cases, the sum of the total possession less that of each of the men is given.

140 It can also be imagined, however, and may all in all be more plausible, that Fibonacci at first
simply left out the two-tower problem when preparing what became the 1228-version from chapter
13 part 1 and then, in a second instance, when he had inserted the problem in chapter 15 part 2,
reestablished the problem in chapter 13 part 1, but now with the new words and parameters. We
would still have evidence of an ongoing project, but now the Boncompagni manuscript and its family
end up being the final, not the first variant of the 1228 version. In any case it seems we have positive
evidence that we need to speak of a “1228 family”, not simply of a single “1228 version” represented
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The first part of chapter 13 closes with four more problems that repeat (in one case
with a small numerical variation) problems that have been solved before.[141] One,
[B334;G522], dealing with four men buying a horse, is noteworthy for the need to
introduce a nested structure and a particular terminology: for each of two “universal
positions”, a second elchataym procedure with “particular” positions is introduced. They
are introduced by the phrase “you will call it”/“it will be called” (appellabis/
appellabitur ), suggesting that this terminology is Fibonacci’s own invention, not something
already existing.[142] As Fibonacci points out, these nested procedures are to be
considered with not little care.[143] I have observed the technique in only one abbacus
text preceding printing (below, p. 286), where I shall return to how it works; the
appearance in two printed books will be mentioned on pp. 321 and 338.

13.2, new problems

Part 2 is announced [B336;G526] as applying the double false position to problems
that are not dealt with elsewhere in the book. The types are not new, however, they still
represent what we have come to know as “abbacus questions”.

The starting point [B336;G526] is a give-and-take problem, solved first by means
of two false positions, afterwards also in the way taught earlier on. Seven more of similar
types follow. Two of them [B340,342;G531,533], both about five men, each of whom
after having received given fractions of the possessions of the other will have a given
amount, make use of nested elchataym procedures (the second of them even in three
levels). Four explain alternative procedures, of the kind taught for similar problems in
chapter 12. Of particular interest is the first of two alternative solutions to the problem
on p. [B338;G529], which in symbols can be expressed

A+ 1/3 (B+C ) = 14 , B+ 1/4 (C+A ) = 17 , C+ 1/5 (A+B ) = 19 .

Without referring to the regula recta, Fibonacci posits B+C to be a thing (res ), and C
alone to be part of a thing, afterwards spoken of simply as part (pars ). This leads him
to the two equations

11/12 thing– 3/4 part = 13 1/2 , 4/5 part+ 2/15 thing = 16 1/5 .

by a number of manuscripts with different copying errors, omissions, corrections gone wrong, and
contaminations (and whatever else may happen within a manuscript family descending from a single
archetype). Cf. below, note 159.

141 [B332;G519] repeats [B198;G334] with a minor variation; [B333;G521] repeats [B214;G357];
[B334;G522] repeats [B245;G400]; [B335;G524] repeats [B293;G465].

142 In contrast we encounter on p. [B352;G547] the expression “which are called” (dicuntur ),
signalling that a term already exists and has been adopted by Fibonacci (see below, p. 115).

143 [...] in hac questione etiam et in similibus plures elchataieym necessarii sunt, in quibus non
modicum considerandum est.



– 114 –

Multiplying the latter by 5/6 he gets the same number at the right-hand side,
11/12 thing– 3/4 part = 13 1/2 , 2/3 part+ 1/9 thing = 13 1/2 ,

which allows him to find thing : part = 51 : 29, whence (thing–part ) : part =
(51–29) : 29 = 22 : 29, that is, B : C = 22 : 29. Inserting instead the ratio thing : part
into the first equation allows Fibonacci to find that 22 : (thing–part ) = 56 : 27; etc. Being
much less versed in proportion techniques than Fibonacci, we will probably find the way
the equations are solved clumsy, but the use of these is what allows Fibonacci to speak
of the procedure as “according to an investigation of proportions”, similarly to what he
did in the solution of the first problem about the “purchase of a horse”, cf. above, p. 87.
Once more, Fibonacci obviously sees nothing remarkable in the use of two algebraic
unknowns.

Fibonacci appears indeed to have borrowed not only the general idea of using two
algebraic unknowns but also the name “part” for the second unknown. The two algebraic
unknowns used by al-Karajı̄ when he solves the grasping problem (above, p. 96) are indeed
šai (“thing”) and qasm (“part”). In a give-and-take problem [ed. trans. Woepcke 1853:
139], al-Karajı̄ uses šai and qist, “share”/“measure” as his unknowns; even qist can
thus have given rise to a translation “part” (as we see, here at least al-Karajı̄ does not
follow the habit to use coin names for unknowns beyond the thing ). Since Fibonacci does
not solve the grasping-problem by means of explicit algebra, he is not likely to have known
the Fakhrı̄ directly, but al-Karajı̄’s term may reflect more general ways unknown to us,
or it may have been borrowed from him by later Arabic writers.[144] Fibonacci’s
explanation of part as “part of a thing”, which as no counterpart in al-Karajı̄’s text, points
in the same direction.

144 Around the mid-13th century, “a portion” is used as the second unknown by the Iranian jurist-
mathematician al-Zanjānı̄ in a hundred-fowl problem, see [Sammarchi 2019: 52] (the Arabic term
is not mentioned). The problem is not borrowed from al-Karaji , but al-Zanjānı̄ knew al-Karajı̄’s
algebraic writings.



Chapter 14 – square and cube roots

Chapter 14 deals with the finding of and operation with square and cube roots, and
with such binomials (binomi ) and apotomes (recisi ) as are dealt with in Elements X (and
a few more).

A puzzling preamble

At first [B352;G547] comes this preamble:

Let it be me permitted to insert in this chapter about roots certain necessary matters, which
are called keys [claves ]; since they are all proved by clear demonstrations in Euclid’s
Second, it will suffice beyond their definitions to proceed by means of numbers. The first
of which is that, when a number is divided into any number of parts, then the
multiplications of these parts in the whole divided number, joined together, are equal to
the square of the divided number, that is, the multiplication of the same number in
itself.[145] For example: let 10 be divided into 2, and 3, and 5. I say that the
multiplications of the two, the three, and the five in 10, evidently 20, and 30, and 50,
equal the multiplication of 10 in itself, that is, 100. [Similar versions follow of Elements
II.1; II.4; and the corollary 2a (a+b )+b2 = a2+(a+b )2]. Further, if a number is divided
into two equal parts, and also into unequal parts, then the multiplication of the smaller
part by the larger, together with the square of the number which there is from the smaller
part until the half of the whole divided number will be equal to the square of the said
half [Elements II.5; follows a numerical example and a similar version of II.6]. To the
latter two definitions are reduced all questions from aliebra et almuchabala, that is, in
the book of contemptio[146] and solidatio. Then, finished this, this chapter is divided
into five parts. Of which the first is about the finding of roots; the second about their
multiplication in each other and of binomials.[147] The third about their addition. The
fourth about their mutual detraction. The fifth about the division of roots and of binomials.

As shown by the present tense “are called” (dicuntur ), the notion of “keys” is
borrowed, not introduced by Fibonacci himself, who in that case would use the future
tense – see above, p. 113. The reference to aliebra almuchabala that closes the presentation
of the keys leaves no doubt that it is adopted from an Arabic source. However, this use
of “keys” seems not to be known from extant writings – in these, as exemplified by al-
Kāšı̄’s Miftāh al-hisab, the “key” is that which unlocks a subject. We thus have to think
of a region whose theoretical knowledge did not spread to the rest of the Arabic world,
which once again leads us to al-Andalus; the regular use of the “key”-version of Elements

145 Elements II.1, applied to two equal lines; or, if we prefer, Elements II.2 generalized to division
into several parts.

146 As pointed out by Enrico Narducci [1858: I, 23], the word however spelled will certainly be
a mistake for contentio, “comparison/contrast/struggle”.

147 The latter phrase (de multiplicatione earum inter se et binomiorum ) does not correspond precisely
to either of the headings for a designated part 2 but almost to that of “2a” – see imminently.
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II.5–6 in the Liber mahameleth (and in chapter 15 of the Liber abbaci, parts 1 and 2,
as we shall see) confirms this inference, even though “keys” are never spoken of there.

On the other hand, the translation offered for aliebra almuchabala is puzzling. After
Narducci’s emendation it is quite adequate – but wholly different from what we encounter
elsewhere at the time, and also from the translation given by Fibonacci when he presents
the topic (see below, p. 137). The only plausible explanation is that this translation is part
of the borrowed text, and thus that Fibonacci (at least here, but quite likely also elsewhere
when he borrows from al-Andalus) takes advantage of an existing Latin translation which
has now been lost.[148] It is perhaps worth noticing that Fibonacci includes no Iberian

148 This is not the only occasion where Fibonacci copies an existing translation rather closely without
betraying his source. One source which we possess is Abū Bakr’s Liber mensurationum as translated
by Gerard of Cremona. An example that illuminates Fibonacci’s way to use a source is this problem
about a rectangle, for which the sum of the two sides and the area is 62, while the difference between
the sides is 2. In Abū Bakr’s formulation [ed. Busard 1968: 94; ed. Moyon 2017: 172] the solution
runs

The way to find this will be that you diminish 62 by 2, and 60 remains, then join 2 to
the half of the number of sides, and 4 results. Join this to 60, and 64 results. Thus take
its root, which is 8. This is indeed the longer side. And if you want the shorter, diminish
8 by 2, and 6 remains, which is the shorter side.

Fibonacci [ed. Boncompagni 1862: 66] prefers that “64 result” and that “6 remain”, seeing numbers
as collections of units and not as single entities; but apart from that his text is word for word the
same (also in Latin).

The identification of 4 as 2 plus half of the number of sides is if not fallacious then at least
misleading. Jean de Murs’ De arte mensurandi [ed. Busard 1998: 187f ] betrays the underlying
geometric idea (a reduction to the problem of a square plus its four sides), which corresponds to
this symbolic calculation (a and b being the two sides):

ab+a+b = 62 , a = b+2
(b+2)b+b+b = 60

b2+2b+b+b+2+2 = 60+4
b2+4b+4 = 64
(b+2)2 = 64

a = b+2 = √64 = 8
Fibonacci probably does not understand why this works; indeed it only does because a–b = 2; in
the general case where a = b+n, what should be added in the third line is ( n+2/2 )2. Probably for this
reason he adds this explanation by means of algebra (explanation of the terminology follows below,
p. 138):

posit the smaller side as a thing, then the larger will be a thing and two dragmas. From the
multiplication of this shorter side by the longer results the area. Therefore multiply the thing,
that is the smaller side, by the thing and by two dragmas, and you will have a possession and
two roots as the expanse; which, if you add to them the two sides, namely 2 roots and 2
dragmas, will be a census and 4 roots and 2 dragmas, which equal 62 dragmas. Remove 2
dragmas in each place, and a census and 4 roots remain, which equal 60, and so on.

That is, at the point where it is clear that what should be added is not 2+2 but ( 2+2/2 )2 Fibonacci
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locations (neither al-Andalus nor Castile) when listing the places where he had learned
after Bejaïa – “Egypt, Syria, Greece, Sicily, and Provence”, see above, p. 59. This might
imply that he knew not only the barter treatise (above, p. 72) but also what he had taken
from al-Andalus from written material, not from direct confrontation (cf. also note 171
below).[149]

“Keys” of a similar kind return in Pacioli’s Summa [1494: 88r–89v] – see below, p.
333; there, they are statements (theorems not supported by proofs) about numbers in
continued proportion. I know of no intermediate source mentioning them, and it is next
to certain that Pacioli was not inspired by Fibonacci on precisely this point;[150] yet
since Pacioli makes critical observations to some of them, he must have borrowed the
group as a whole from some preceding treatise.[151]

The copied section ends with the puzzling Latin translation. Indeed, “finished this”,
the description of the contents of the chapter follows.

stops, hiding that he does not understand.

149 One barely possible identification of Fibonacci’s source for the “keys” should be mentioned.
The Liber mahameleth refers repeatedly to an algebra chapter that has been lost in all extant
manuscripts but must have been there originally (at least in the Arabic original). If
restauratio/restaurare or opponere/oppositio were used in the standard way in the rest of the book
this would be excluded. But they are not. Opponere occurs in a reader’s marginal commentary [ed.
Sesiano 2014: 146 apparatus], restaurare once in a regula recta solution of a first-degree problem
[ed. Sesiano 2014: 243] and once where it designates a multiplicative completion (a normalization)
[ed. Sesiano 2014: 354], for which it also serves a couple of times in Abū Bakr’s Liber
mensurationum [ed. Busard 1968: 88, 99] but never in al-Khwārizmı̄’s nor in Abū Kāmil’s algebras.
Restauratio and oppositio are wholly absent from those parts of the Liber mahameleth which we
possess; nothing thus excludes that what Fibonacci draws on here could be the lost algebra
presentation from the Liber mahameleth. But positive evidence is completely absent.

150 [Pacioli 1494: 106v–111r] indeed contains a list of no less than 66 conclusiones seu evidentiae
(also theorems not supported by proofs), which starts with close analogues of Fibonacci’s keys
(the first of them, however, closer to Elements II.1 than Fibonacci). They are not called “keys”.

151 If we suppose Pacioli’s source to have been written in an Italian vernacular, we may be tempted
to point to Antonio de’ Mazzinghi (presented below, p. 226) since he is the only algebraist know
by name from the preceding centuries whose level would have permitted him to produce this set
of “keys”, and since he was furthermore interested in continued proportions; but care should be
taken, the anonymous author of the manuscript Florence, BNC, fondo princ. II.V.152 (below, p.
236) was also a brilliant algebraist, as we shall see, and there may well have been others. Any
historian working on matters preceding book-printing should realize that there is much less cheese
than holes.

A reference to Fibonacci’s keys is found in the mid-15th-century “abbacus encyclopedia”
Florence, BNC, Palatino 573, fol. 317r [ed. Arrighi 2004/1967: 188f ]; the words leave no doubt
that the author has read Fibonacci’s text.
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14.1, extraction of square roots

After the preamble come examples of the algorithm for extracting square roots,
presented as the “abbacus way” (secundum abaci materiam ) – which turns out to be what
Jacopo and other abbacus authors speak about as the “closest” approximation (above, p.
36); however, Fibonacci knows and shows in his first example [B353;G548] that further
approximation is possible, where the first approximation to √10 is found to be 3 1/6 , while
iteration gives 3 1/6 – 1/228 as second approximation. Further [B353;G549], √743 is shown
to be approximately 27 14/2 27 = 27 7/27 ; similarly for √8754, √12345, and √927435. In the
latter case [B355;G551] Fibonacci also describes how to make the second approximation
by iteration of the procedure, without however performing the appurtenant tedious
computations.

Between the finding of √10 and the following examples
Fibonacci inserts an observation concerning the relation between
the quantity of digits in a number and in its square root, and a
geometric construction of a square root, building on either
Elements II.14 or Elements VI.13; no proof is offered, it is just
said to be “clearly demonstrated in geometry”. The lettering being a-b-c-d-e, it is likely
to have been produced anew by Fibonacci himself.[152]

After calculating √927435 Fibonacci offers [B355;G552] an explanation of how to
find roots with higher precision by an alternative method based on an insight already
explained in al-Khwārizmı̄’s algebra [ed. trans. Hughes 1986: 243f ]; the example used
is

√7234 = = 8505+ ≈ 8505 ,
1

100 10000 7234
1

100

4975

2 8505

1

100

1

4

in the end expressed in VF as 85 1/20
1/400 (in this unusual order). Other manuscripts have

various errors, Boncompagni’s thus .[153]1

400

1

20085

152 Euclid’s corresponding diagram in Elements VI.13 is indeed different [ed. Heiberg 1883: II, 111] –
also in the translation made directly from the Greek, which Fibonacci is known to have used [ed.
Busard 1987: 134] (the latter, by the way, has the lettering a-b-g-d ). Nor does any of the translations
from the Arabic agree with Fibonacci’s diagram.

153 Since fractions were mostly written with the denominator on the line and the numerator and
the fraction line above, all that is needed for this misunderstanding (apart from the extra 0) is a
fraction line that extends too far to the right.
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14.2a, the multiplication of roots and binomials

On p. [B356;G553] begins a new section, a presentation of matters from Elements
X, to which Fibonacci refers explicitly; but whereas Euclid deals with them in a “book
about geometry”, here they are “shown according to number”.[154]

In Boncompagni’s manuscript this section carries the heading pars secunda
quartidecimi capituli de multiplicatione radicuum et de binomiorum, “the second part of
the 14th chapter on the multiplication of roots and of binomials”, which (with slight
approximation) corresponds to what is promised in the introduction to the chapter. The
heading is absent from the other manuscripts, all of which, however, also promise it in
the introduction.[155] There can therefore be no doubt that it was intended by Fibonacci,
but perhaps at first forgotten. Since another “part 2” starts a little later, I shall refer to
the present one as “part 2a”

The terminology suggests that Fibonacci is familiar with the translation made directly
from the Greek [ed. Busard 1987] – riti for Greek ρητος, “rational”, potentia for Greek
δυναµει, “in power” meaning “in square”. However, the use of this translation is restricted;
as soon as we come to the presentation of the thirteen kinds of irrational lines dealt with
by Euclid, the language diverges not only from that of the translation made directly from
the Greek but also from all other 12th-century Latin translations [ed. Busard 1967; 1983;
1984; 1992: 2001], and also from the commentary to Elements X probably made by Gerard
of Cremona [ed. Busard 1997]. The whole structure and purpose is also different from
the Euclidean text; either Fibonacci himself makes a very free paraphrasing and
reinterpreting commentary, or he uses an existing work of that kind which we do not know
about, either Arabic or already translated into Latin.

There are indeed good reasons to paraphrase and reinterpret. Fibonacci’s aim is to
discuss operations with roots. Since irrational roots in Fibonacci’s conceptual world are
not numbers (though he shall soon speak about them as such, see imminently), and since
he needs the notion of “commensurability potentia” or “in power”,[156] he cannot give
up the underlying representation of lines and the squares on them; but everything is

154 Readers who are not at least superficially acquainted with Elements X may find the following
pages difficult. Since this part of the Liber abbaci appears to have left modest traces in the abbacus
tradition (even the Florence encyclopedias go their own way), and since an explanation of what
Elements X is about would easily become another book, I shall not try to untangle the knots (knots
untangled, as is well known, become much longer pieces of string).

155 See the critical apparatus in [Giusti 2020: 548, 789f ]. I consulted VF myself.

156 That two lines are commensurable “in power” (δυναµει) means that the squares constructed
on them are commensurable in area. In agreement with Fibonacci’s ambiguous understanding we
may say that they are “commensurable in square”, thinking either of these geometric squares or
of the arithmetical squares.
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provided with numerical examples, whence rationality becomes absolute and not relatively
to an arbitrarily assigned standard line and its square.

Elements X.21 [ed. trans. Heath 1926: 49] defines the first line that is irrational even
in potentia in this way:

The rectangle contained by rational straight lines commensurable in square only is
irrational, and the side of the square equal to it is irrational. Let the latter be called medial.

Here, in agreement with definition 3, “rational straight lines” are those that are
commensurable in power with a given standard measure. If the length of this standard
is defined as 1, the lengths of the two lines thus become √a and √b, where not both a
and b can be squares (if they were, they would be commensurable in length too). This
leads to Fibonacci’s transformation, [B356;G553]:

Of the thirteen irrational lines the first is the simple, called medial, whose power is the
irrational called medial surface; because it is the mean proportional between two surfaces
only commensurable in power, it will be understood that the line is the root of the root
of a number, whose power is the root of a non-square number.

Then follow the definitions of the various kinds of binomials. The first two are defined
thus in Elements X (definitions II, 1 and 2) [ed. trans. Heath 1926: III, 101],

1. Given a rational straight line and a binomial, divided into its terms, such that the square
on the greater term is greater than the square on the lesser by the square on a straight
line commensurable in length with the greater, then, if the greater term be commensurable
in length with the rational straight line set out, let the whole be called a first binomial
straight line;
2. but if the lesser term be commensurable in length with the rational straight line set out,
let the whole be called a second binomial.

In Fibonacci’s number version, the first of these looks simpler [B357;G553]:

The first binomial is the conjunction of a number and a root; and the power of the number
exceeds the power of the root according to the quantity of some square number; as if the
first name[157] were 4, the second root of 7; 16 are namely the power of 4, which add
9 to 7,

since the binomial has the shape a+√b, where a and b are rational numbers; what is
commensurable with a is obviously also commensurable with 1. The second [B357;G554],
however, with shape √a+b, looks more opaque than the Euclidean definition, since here
the excess is related to an irrational number:

The second binomial is composed of a root and a number. And the power of the root adds

157 Literally, binomium means “of two names”. The “names” are thus the terms of the expression.
As we shall see (below, p. 212), in abbacus algebra, “names” came to refer to the sequence of
algebraic powers.
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a number similar to itself over the power of the smaller number, that is, over the power
of the number. As if the major name were root of 112, and the minor name were 7. The
power of the root of 112 exceeds indeed 49 by 63; and the number 63 is similar to 112,
since their ratio is as that of the square number 16 to the square number 9.

I shall abstain from making a full analysis of Fibonacci’s transformation of the Euclidean
theory – it will be evident from these excerpts that it would go far beyond the limits of
this book.[158] For further use I shall just list Fibonacci’s examples for the six types
of binomials:

1st: 4+√7, 42–7 = 9
2nd: √112+7, 112–72 = 63, 63:112 = 32 : 42

3rd: √112+√84, 112–84 = 28, 28:112 = 12 : 42

4th: 4+√10, 42–10 = 6, 6 : 42 not as square number to square number
5th: √20+3, 20–32 = 11, 20 : 11 not as square number to square number
6th: √20+√8, 20–8 = 12, 12 : 20 not as square number to square number

After the definition of the six kinds of binomials (now spoken of as numeri,
“numbers”) accompanied by the examples just given Fibonacci shows [B357;G554] that
the square of any of them is a “first binomial” – the counterpart of Elements X.60 [ed.
trans. Heath 1926: III, 132],

The square on the binomial straight line applied to a rational straight line produces as
breadth the first binomial,

but simpler because Fibonacci speaks of these squares as numbers, not areas to be applied
to a line. Last in this introduction to the intricate world of Elements X come the subtractive
counterparts of the binomials, the apotomes (recisi, seu apothami ) [B358;G555], still
identified as numeri. Here, the exposition is more compact – only the first is exemplified,
namely by 4–√7 (as we and the supposed reader see, 42–7 = 9 = 32 ).

14.2b, multiplying roots by roots

On p. [B358;G556] begins another part 2 (henceforth 2b), “about the multiplication
of roots in roots and numbers”. One may assume that part 2a was absent from the 1202
version, and thus that the systematic presentation of some fundamentals from Elements
X was added in the revised version.[159] Since binomials and apotomes turn up regularly

158 Lüneburg [1993: 259–272], though no complete analysis, is a praiseworthy courageous beginning.
In contrast, Moritz Cantor (within what he himself characterizes as an “almost insupportably

detailed description of the Liber abbaci [Cantor 1892: 31; 1900: 34], indeed 28 pages long), only
says [1892: 28; 1900: 28] that Fibonacci “follows the progress [den Gang ] of Book X of Euclid’s
Elements rather closely”; this is simply wrong, Fibonacci borrows some definitions and results but
nothing from the structure or the progress.

Sigler [2002: 631] has absolutely nothing to say about the matter in his notes.

159 This would explain that Fibonacci planned part 2a and promised it in the introduction to the
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here and in the following parts, we seem to be confronted with a parallel to what happened
to the regula recta, which was used occasionally in the 1202 version but taken for granted
by then, not explained (see above, p. 83). When preparing the revised version, Fibonacci
found that even this rule was in need of an introduction and an explanation.

Since we do not possess the 1202 version of chapter 14, it cannot be established with
full certainty that this is what happened; but we may notice that the proof that the square
of any binomial is a first binomial is repeated on p. [B362;G560] within the third part,
this time supported by a line diagram lettered a-b-g-z-e-... – not the proof offered on p.
[B357;G554] (which is purely arithmetical and proceeds case by case), nor however the
proof of the corresponding theorem in the translation of the Elements directly from the
Greek [ed. Busard 1987: 260]. The latter evidently considers segments and areas contained
by segments, while the present proof represents products of segments by segments.

Part 2b thus deals (according to its heading as well as actually) with
the multiplication of roots by roots (the “numbers” of the heading being
forgotten). At first it takes the example [B358;G556] √10 √20 =
√(10 20) = √200, provided with a simple but noteworthy proof:

Let a be the root of 10, and b that of 20: and beside g equal to a, d equal to b; therefore
g is root of 10, and d of 20. Therefore, when I multiply g in a, that is, a in itself, result
10; and when I multiply d in b, that is, b in itself, they make 20. Therefore, when I
multiply 10 in 20, then I multiply the product [factum ] of g, a in the product of d , b;
therefore the multiplication of the product of g, a in the product of g, b is 200. But the
multiplication of the product of g, a in the product of d, b equals the multiplication of
the product of a, b in the product of g, d; therefore the multiplication of the product of
a, b in the product of g, d is 200. But the product of a in b equals the product of g in
d; therefore the product of a in b by the product of g in d equals the multiplication in
itself of the product of a in b. Therefore the multiplication in itself of the product of a
in b makes 200. In consequence the product of a and b, namely of the root of 10 in the
root of 20, is the root of 200; as was to be demonstrated.

The letters, we observe, do not designate lines as they do in the proofs of Elements
VII–IX[160] – the proof is as close to being an instance of symbolic algebra as possible

chapter (plausibly also either added or adjusted in 1228), and then at first forgot to provide the
inserted explanation with the corresponding heading.

Alternatively, since the heading for part 2a is present in the same manuscript family as the
revised two-tower problem (above, p. 112), Fibonacci included it in the hypothetical intermediate
version; then, in the ongoing process, he discovered to have two headings for part 2, and eliminated
the first of them (or a copyist, on the way to the remaining manuscripts, did so).

According to note 140, the former possibility seems preferable.

160 Obviously these lines in Elements VII–IX are not geometric entities but simply representatives
of unspecified numbers; the crux is that a letter in itself cannot do that, it can only serve as a name
distinguishing something felt to be more substantial.
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when only the variables (here really variables, not representatives of specific though
unknown numbers) and not the operations are written by symbols. It also moves beyond
the classical limitation that products should consist of no more than three factors.[161]

We observe that the letter order is a-b-g-d, which indicates that the proof (and presumably
its whole context) is borrowed – with or without lines carrying the letters in the original.
In the following pages, a number of similarly lettered proofs turn up, but none where letters
stand directly for numbers. Should we conclude that in the first proof Fibonacci slips
unwillingly into mathematical modernity without thinking about it but then corrects his
ways?

After an analogous example (√30 √40) follows an explanation that a product of type
√a √b will be rational if a and b have the ratio of two square numbers (this time the
letters are mine). After that (3√10) (4√20) is reduced to √(9 10) √(16 20), and a
visualization (si ad oculum deprehendere vis, “if you want to indicate to the eyes”) of
the transformation 4 √20 into √(16 20) is offered, based on a diagram whose lettering
involves c, and which can therefore be considered to have been produced by Fibonacci
himself.

The rest of part 2b deals with multiplications involving roots of roots – in part through
numerical examples only, in one case (to find two roots of roots whose product is rational)
supported by another letter-based argument (with sequence a-b-g-d-e ).

14.3, addition and subtraction of monomials, binomials and apotomes

Part 3 [B361;G559] is dedicated to “the mutual addition and detraction of roots, and
of the other two simple numbers”, that is, of binomials, apotomes and monomials (roots
of irrational roots are included here under “simple numbers”). That is where it is proved
again that the squares of all types of binomials are first binomials (cf. above, p. 122).
It is shown [B362;G560] that √12+√10 = √(22+√480) (the former expression, however,
being deemed “more beautiful”), while √18+√32 (where the two terms are commensurable)
is better expressed as √98 [B363;G562].

Further it is shown ([B363;G561], with a line-based proof, a-b-g ) that the square
on any apotome (number less root, root less number, or root minus root with radicands
that are not commensurable in power) is a first apotome, with application of the argument
to specific examples. It is also in this part ([B364;G563]; cf. above, p. 62) that we find
the calculation of 4+√√10 secundum vulgarem modum, specified to be secundum
propinquitatem (“in the vernacular way, [...] according to approximation”), √√10 being
approximated as “less than 1 4/5 ”. The “magisterial” alternative,

161 Not absolutely respected in classical mathematics, it is true. In the Dioptra [ed. trans. Schöne
1903: 282f ], Heron allows himself something very close to what is done here when proving “his”
formula for the area of a triangle; but when he transfers the proof to the Metrica, an attempt to
represent practical geometry “from a higher vantage point”, he has to justify the operations in a
lemma [ed., trans. Schöne 1903: 16–19].
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4+ = = .10 16 10 8 10 16 10 40960

is accompanied by a diagram lettered a-b-c, which serves names-giving only.
Addition of two roots of roots is shown (with purely verbal arguments) to yield

sometimes the root of an expression with three “names”, sometimes the root of a binomial
of one or the other kind – in our formalism

= ,a b a b 2 ab

which under specific conditions can be further transformed.

14.4a, mutual division of monomials

Part 4 ([B365;G565] – henceforth 4a) first explains “the mutual division of three simple
numbers”, that is, number by root, root by number, and root by root, giving the rule to
square the dividend and the divisor, leaving it to the ensuing examples to explain that
afterwards the root is to be taken of the outcome – first 30÷√10 = √(900÷10). Similar
examples (with similar rules) follow that involve roots of roots.

Next [B367;G567] Fibonacci turns to products of the roots of fourth, fifth and sixth
binomials – or so he says. The actual topic has nothing to do with the heading under which
it is placed, and most likely it represents another addition from 1228 – a kind of
continuation of part 2a, inserted here because this seemed the most adequate place. Actually
the topic is restricted to the products of forth, fifth and sixth binomials with their respective
apotomes. First, however, comes the claim that

The root of a fourth binomial is composed of two lines, of which one is the root of a fourth
binomial, and the other is the root of the apotome having the same name. Of which lines
the first is called a major, the second a minor, and the conjunction from them, that is,
the root of the fourth binomial, is similarly a major; and it is called a major because the
major name it has as power is a number.

The concluding explanation of why a certain line is called a major is evidently wrong –
a scholar’s folk etymology.[162] The proper definition is found in Elements X.39 [ed.
trans. Heath 1926: 87]

If two straight lines incommensurable in square which make the sum of the squares on
them rational, but the rectangle contained by them medial, be added together, the whole
straight line is irrational: and let it be called major.[163]

162 And even wrong, since the square on any binomial is a first binomial, which also fits this
description.

163 Evidently, that does not tell much about the reasons hiding behind the names “minor” and “major”.
A plausible explanation linking them to the geometry of the regular pentagon was proposed by
Marinus Taisbak [1996].
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What Fibonacci tells corresponds instead to the propositions Elements X.57 and X.94.
X.57 transferred to numbers states indeed that the square root of a fourth binomial is a
major,[164] while X.94 says that the square root of a fourth apotome is a minor. So,
M = √(a+√b ) is a major and m = √(a–√b ) the corresponding minor, provided that a2–b
is no square number. Some calculation then gives

(M+m )2 = 2a+2 ,a 2 b

either a first or a fourth binomial. Moreover,

= 4b .(2a)2 (2√(a 2 b) )2

But b is no square number, nor is therefore 4b. In consequence, (M+m )2 must be a fourth
binomial, and so M+m is indeed the square root of a fourth binomial.

Fibonacci offers a corresponding line-based proof, lettered a-b-g-d-e-z-i, which ends
up with the (much simpler) statement that the product of any binomial (say, p+q ) with
the corresponding apotome p–q equals p2–q2, which serves in the following.

The insertion closes with a similar calculation [B368;G568], the determination of
(√40+√5) (√40–√5) and thus concerning a 6th binomial-apotome-couple. This calculation
is supported by a proof based on a subdivided rectangle, still lettered a-b-d-g-... .

After that Fibonacci turns to something much more elementary and in better agreement
with the heading of part 4a. Since he now makes use of a diagram that corresponds to
his habits elsewhere in the book, we may assume that he has now returned to his own
work, probably as it looked already in 1202:

If you want to multiply 4, and root of 7, by 5 and root of 20, put the
number under the number, and the square root under the square root, as
shown in the margin. And multiply 4 by 5, and root by root, namely 7 by
20, the outcome is 30, and root of 140. And multiply contrariwise 4 by
root of 20, and 5 by root of 7, the outcome is four roots of 20, and five
roots of 7, that is, root of 320, and root of 175. [...].

Examples of multiplication of binomials consisting of number and root of root follow.
One of them [B369;G571] gives Fibonacci the occasion to formulate the “sign rules”:

when something diminished is multiplied by diminished, then this multiplication increases;
and when added are multiplied with each other, then even their product is to be
augmenting; but when added is multiplied by diminished, then their product is to be
diminished, as shall be shown in the following

– namely by means of a meticulous explanation of a rectangle divided by means of

164 “If an area be contained by a rational straight line and the fourth binomial, the side of the area
is the irrational straight line called major”. X.63 shows the reverse, “The square on the major straight
line applied to a rational straight line produces as breadth the fourth binomial” [ed. trans, Heath
1926: III, 125, 63]. Fibonacci’s identification of the major with the square root of a fourth binomial
is thus blameless.
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intersecting lines parallel to the sides.
[B371;G572] shows by means of a line proof (a-b-g-d ) that a binomial multiplied

by its apotome yields the difference between the squares on the terms – already shown
in the insertion, we remember, which confirms that the suspected insertion is really one,
and that Fibonacci did not rewrite the subsequent text after having made it.

Next, with a return to the categories of Elements X, it is derived that if the binomial
in question be a third or sixth binomial, the product will be rational; the restriction to
third and sixth binomials is superfluous and puzzling.

14.4b, division of binomials and apotomes

[B372;G575] opens another “part 4”, which we may refer to as 4b (this time both
“part-4” headlines are present in all manuscripts[165]), presented as dealing with “the
division of binomials and apotomes by rational and irrational numbers, and the contrary”.
Initially, for the division by rational and irrational numbers, it teaches to perform the
division term by term. The “contrary” operation, the division of a rational number, a root
or a root of a root by a binomial or an apotome, is taught from [B373;G575] onward;
the method, as will be guessed, is to multiply divisor and dividend by the corresponding
apotome respectively binomial, which gives a number as divisor “as has been shown”
(the superfluous restriction to third and sixth binomials and apotomes being forgotten).
The division of 10 by 2+√√3 asks for an iteration of the procedure. [B376;G579] teaches
the division by a trinomial[166] – for instance, 10÷(2+√3+√5) – again making use of
a procedure in two step. A rather simple line proof is lettered a-b-c-d-e, and is thus likely
to come from Fibonacci’s hand; within the proof there is a correct reference (ut ostensum
est, “as has been shown”), to the fact that the square on any binomial is a first binomial,
with a curious quasi-repetition.

A final part of part 4b deals with the roots of binomials ([B376;G721] onward).
Expressed in modern symbols, √(a+√b ), where a>√b, can be reduced if rational numbers
p and q can be found such that p+q = a, pq = 1/4 b. Then, indeed

165 Giusti removes the words Pars quarta, but his critical apparatus shows them to be present in
all manuscripts.

166 This obviously goes beyond Elements X. Including it may have been Fibonacci’s own facile
independent generalization but need not be. That Apollonios had discussed trinomials was well
known in the Arabic world, for example from Pappos’s commentary to Elements X [ed. trans.
Thomson & Junge 1930: 85]:

We should also recognise, however, that not only when we join together two rational lines
commensurable in square, do we obtain a binomial, but three or four such lines produce
the same thing. In the first case a trinomial (trinomium ) is produced, since the whole line
is irrational; in the second a quadrinomial (quadrinomium ); and so on indefinitely. The
proof of the irrationality of the line composed of three rational lines commensurable in
square is exactly the same as in the case of the binomial.
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= = = √p+√q .a √b p q 2 pq (√p)2 (√q)2 2√p√q

To find p and q is a problem of the kind for which the “key” version of Elements II.5
was traditionally used, and the line proof (a-b-g-d-e-f ) actually draws on that (without
mentioning neigther “key” nor Elements II.5, however). It is observed that if a+√b is a
first binomial, then the line in the diagram corresponding to p–q is rational.[167] Similar
discussions for other classes of binomials follow.

14.5, cube roots

Part 5 [B378;G582] deals, thus its heading, with “the finding of cube roots, their
addition and multiplication, and the extraction or division of the same”.

Initially it explains what cubes and cube roots of numbers are and how to calculate
cubes in the place-value system.

Next it describes an algorithm for extracting approximate cube roots of non-cube
numbers. As a first step it finds (supported by a line diagram a-b-g-d ) the difference
between subsequent cube numbers, then the outcome is used to explain the algorithm.

Examples follow [B384;G590] for the multiplication of cube roots or numbers with
cube roots, and similarly; as was also to be the habit concerning square and cube roots
in abbacus mathematics, the outcomes are “reduced to cube root”, that is, for example,
3√1080 instead of 33√40.[168] Next two (rather trivial) ways to produce two cube roots
whose product is rational, and then [B384;G591] division of cube roots by cube roots
(or by expressions that can be “reduced to cube root”).

Then follows [B384;G591] an explanation that cube roots, just like square roots, can
sometimes be aggregated or detracted one from the other (the term disgregare is also
used), and sometimes not. So, 3√16 and 3√54 can be aggregated because 16 and 54 are
in the ratio of two cube numbers (8:27), while 3√32–3√4 = (2-1)3√4. The latter calculation
is supported by an extensive line argument considering the decomposition of the cube
on the line

a b c

where ab represents 3√32 and bc 3√4; as suggested by the lettering as well as by the
agreement with the explanation of the algorithm for the extraction of cube roots, the
argument is likely to be of Fibonacci’s own making.

The chapter closes by the observation that [cube] roots whose radicands do not

167 Since (p+q )2 = a 2 and 4pq = b, (p–q )2 = a 2–b, which is indeed a square if a+√b is a first
binomial.

168 It may be observed (even though that is hardly the explanation for this choice of mathematical
aesthetics) that this choice improves the precision of approximations if only (as mostly) the rational
multiplier is larger than 1.
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communicate (that is, are not in the ratio of a cube number to a cube number) cannot
be aggregated nor disgregated: 3√5–3√3 “cannot be said more beautifully”.

In the Flos [ed. Boncompagni 1862: 228] Fibonacci explains that a certain question
about a cubic problem inspired him to study Elements X more accurately, and that,
“because it is more difficult than those books that precede or come afterwards, I began
to gloss upon this same Tenth Book, reducing its understanding to number, which in itself
is proved by lines and surfaces”. In a mid-15th-century manuscript[169] this has
developed into a claim that Fibonacci wrote “a book about the 10th of Euclid”; since
Fibonacci elsewhere refers to “books” of his when we know they existed, we may take
from his words that the 15th-century admirer extrapolated, and that Fibonacci indeed
restricted himself to glossing but did not write a genuine “commentary”.[170]

The inspiring question, thus it is told by Fibonacci [ed. Boncompagni 1862: 227],
was asked by Giovanni di Palermo in the presence of Frederick II, that is, in 1226 (above,
p. 96). This confirms that the three insertions in the present chapter (the preamble, part
14.2a, and the matter added to part 14.4b ), here identified according to internal criteria,
were indeed added in the 1228 version.[171] Moreover, the constant use of proofs lettered
a-b-g-... in these shows that he drew on borrowed material, while the unorthodox
translation of al-jabr wa’l-muqābalah in the preamble is strong evidence that he used
an existing Latin translation, now lost (at least for the preamble, probably for all the
insertions) – how creatively it is hard to know.

The answer given in the Flos to the problem shows beyond doubt that Fibonacci knew
much more about Elements X than he put into the Liber abbaci.[172]

169 The “abbacus encyclopedia” Florence, BNC, Palatino 573, fol. 433v–434r [ed. Arrighi 2004/1967:
193].

170 In the Summa, Pacioli [1494: 119v–142v] has a much more thorough and systematic exposition
of Elements X in number interpretation, and one might ask whether he based this on Fibonacci’s
supposed book – not least because he seems to have inspected Fibonacci’s chapter 14 or perhaps
a larger treatise from which Fibonacci drew in the Liber abbaci what he found fitting (on fol. 144r

he explains that almucabala means oppositio or contemptio, the latter with Fibonacci’s characteristic
mistake).

However, of Pacioli’s numerical illustrations of the binomials (fol. 120r ), only one, that for
the first binomial, coincides with that of Fibonacci; given its simplicity, 4+√7, this cannot be taken
as evidence of inspiration (only 2+√3, 3+√5 and 3+√8 are simpler). As it becomes obvious if the
lettering of Pacioli’s diagrams in the geometric part is compared with their counterparts in
Fibonacci’s Pratica geometrie, Pacioli is no less faithful to his model when he has one than
Fibonacci. It seems most likely that Pacioli, perhaps inspired by what little is found in Fibonacci’s
chapter 14, produced his own numerical interpretation of Elements X.

171 This dating, by the way, supports the assumption that Fibonacci here used written material and
did not draw on what he had learned while travelling.

172 See, apart from the text itself, for example [Woepcke 1854], [Rashed 2003: 57–60] and [Picutti



Chapter 15 – theory of means, rules of geometry, and algebra

Chapter 15 “about pertinent rules of geometry, and about questions of aliebra et
almuchabala”, is explained in the very beginning to consist of three parts – the first dealing
with “proportions of three and four numbers, to which many questions pertaining to
geometry are reduced” (thus elucidating what is meant in the chapter heading); the second
with “the solution of certain geometrical questions”; the third with “the way of algebra
and almuchabala”.

15.1, an investigation of means

As a matter of fact, the contents of part 1 has little to do with geometric questions.
Since I have analyzed it in depth elsewhere, I shall only recapitulate here, leaving
substantiation to [Høyrup 2011a: 97–100].[173]

First [B387;G595] come three questions (#1–3 in the numbering I introduced in
[Høyrup 2011a]) about three numbers in continued proportion P : Q : R, where the sum
of two of them (P+Q, Q+R or P+R ) is given together with the third. In all cases, line
diagrams lettered a-b-c-... are used for an argument where proportion operations[174]

transform the question in such a way that the “key” version of Elements II.6 can be
applied. For example, in the first question, where P+Q = 10, R = 9,

= ⇒ = ⇒ Q (Q+9) = 90 .
P

Q

Q

R

P Q

Q

Q R

R

These are followed by two questions (#4–5), still about three numbers in continued
proportion, but now Q–P and R respectively R–P and Q are given. Now, the line diagram

1983: 342–351].

173 More concisely also in [Høyrup 2009d: 62–65].

174 In the present description of chapter 15 of the Liber abbaci I shall use the fraction-like notation

for proportions. Then, the “proportion operations” on : area

b

c

d

e contrario: :b

a

d

c

permutata: :a

c

b

d

conjuncta: :a b

b

c d

d

disjuncta: :a–b

b

c–d

d

conversa: :a

a b

c

c d

eversa: :a

a–b

c

c–d

aequa: :a

b

a c

b d

(from the Campanus Elements [ed. Busard 2005: 171f ]); to these comes the “product rule” a d =
b c.
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is lettered a-b-g-d-..., but in the ensuing argument even the letter c turns up, indicating
that Fibonacci has used but transformed borrowed material. In the former, the “key”
version of Elements II.5 is used, in the latter that of II.6. This first section of part 1 closes
by an aside (#6) explaining that squares or cubes of four numbers in proportion are also
in proportion. It has nothing to do, neither with what precedes or with what follows
immediately. In section 3 of part 1 comes a problem (#50) where it is used, but there
is neither forward nor backward reference, so Fibonacci has not noticed the connection.

Section 2 of part 1 (#7–38) is by far its larger portion, and its central piece. It is indeed
a coherent piece of theory inspired by the ancient doctrine of means.

The concept of means had developed gradually. Plato’s contemporary Archytas[175]

knew three: the arithmetic, the geometric, and the harmonic mean. In the Early Common
era their number had grown to around ten – Nicomachos (De institutione arithmetica
II.xii–xxviii, ed. [Hoche 1866: 122–144], trans. [d’Ooge 1926: 266–284]) and Pappos
(Collectio III.xii–xxiii, ed. trans. [Hultsch 1876: I, 70–105]) each have a list of ten, but
only nine coincide. They can all be defined by means of proportions, as shown in this
scheme, which also indicates how Fibonacci’s part 1 section 2 fits in:

Pappos Nicomachos Liber abbaci

= (arithmet.)
R–Q

Q–P

R

R P1 N1

= or =
R–Q

Q–P

R

Q

R–Q

Q–P

Q

P P2 N2 #27–29

=
R–Q

Q–P

R

P P3 N3 #7–9

=
R–Q

Q–P

P

R P4 N4 (but inverted) #10–12 (inverted)

=
R–Q

Q–P

P

Q P5 N52 (but inverted) #34–36 (inverted)

=
R–Q

Q–P

Q

R P6 N6 (but inverted) #20–22 (inverted)

=
R–P

Q–P

R

P absent N7 #16–18

=
R–P

R–Q

R

P P9 N8 #13–15

=
R–P

Q–P

Q

P P10 N9 #30–32

=
R–P

R–Q

Q

P P7 N10 #37–38

=
R P

R Q

R

Q P8 absent #23–25

=
R

Q

R P

Q P absent absent #26

175 Fragment 2 (generally accepted as genuine), [ed. trans. Diels 1951: I, 435f ].
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Everywhere, it is assumed that P≤Q≤R, and only the last line does not presuppose that
P < Q < R. That is indeed the condition that Q can sensibly be considered a mean; it is
therefore not strange that this last case is not included by the ancient writers. The definition
of the arithmetic mean in term of a proportion is evidently a clumsy artifice, the normal
and reasonable definition being R–Q = Q–P.

Having skipped the idea of Q being a mean, its creator has added the case in the last
line for the sake of theoretical completeness and coherence. For similar reasons of
consistency he has left out the frivolous interpretation of the arithmetical mean in terms
of a proportion. For each type of mean (except the pseudo-mean in #26, where Q turns
out to coincide by necessity with R ), it is shown how any of the three terms P, Q and
R can be determined from the two others.[176]

The creator is certainly not Fibonacci. That is indicated already by the constant use
of line diagrams lettered a-b-g-..., but also by the failure to point out that #27–29 deal
with the geometric mean, which he has already treated himself in #1–5 with line proofs
fully or in part of his own making.

The line proofs of section 2 mostly use proportion-based transformations so as to
make possible the application of Elements II.5–6, invariably in “key” version, with no
reference to Euclid, against Fibonacci’s normal habit, nor to the notion of “keys”; those
questions that are of the first degree are mostly solved by application of proportion
techniques alone. Fibonacci must have drawn on the source from which he had also taken
over the “keys”, that is, a source located somewhere in the Arabic world. Moreover, line
diagrams and unnamed “keys” are applied in strikingly similar ways in the Liber
mahameleth, which makes it next to certain that this “somewhere” was al-Andalus: the
same as the likely source for the sophisticated versions of the “unknown heritage”, cf.
above, p. 92, and the added components of chapter 14 (above, p. 115).

That the same methods are used in section 1 in connection with diagrams fully or
in part of Fibonacci’s own making does not contradict this conclusion; it only confirms
that here (as mostly) Fibonacci has understood what he borrows and is able to use it
creatively.

Section 3 [B395;G607] deals with four numbers in proportion, = . #39 shows
P

Q

R

S

that any of the four numbers can be found from the three others. This is evidently not
new to the Liber abbaci, is has been explained and used in connection with (Fibonacci’s
stand-in for) the rule of three – see above, p. 70. #40–45 show that all can be determined
if the sum of two of the numbers is known together with the other two individually –

176 Already Pappos’ Collectio III.xii–xvi shows how to find any of the three terms in a geometric,
harmonic and arithmetical mean when the two others are given. A connection is unlikely, however.
Firstly, this is done before the remaining means are defined; if Pappos had known of anything similar
for these, he would probably have mentioned it. The proofs, moreover, are geometric, not quasi-
algebraic as here. Finally, book VIII of the Collectio was translated into Arabic, but there seem
to be no traces of the first seven books [Sezgin 1974: 174–176].
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all six possibilities are covered. #46–49 do the same for differences (omitting two, but
simple left-right shifting of the proportion reduces them to what was already treated).
In #50, finally, P 2+Q 2 is given together with R and S. The solution makes use of what
was explained in #6 (see above, p. 130), but as already pointed out there is no cross-
reference. All proofs are based on line diagrams lettered a-b-g-d, with c appearing later
in the argument when differences are concerned. This together with the obvious similarity
of the question types shows that the inspiration for this group comes from the same source
as the one which provided section 2, but that the questions concerning differences may
have been added by Fibonacci himself.

15.2, geometric and other questions

The description of part 2 as “the solution of certain geometrical questions” is also
somewhat misleading. It opens, however, [B397;G609] with two classical geometric
recreational problem types: the “pole against a wall” and the two-tower problem (see
above, p. 46).

The pole (here a spear or javelin, asta ) against the wall
deals with a reed, pole or spear of length l, at first standing
against a wall; next the foot slides out a distance s, which
makes the head slide down a distance d. The problem is
known first from an Old Babylonian tablet (BM 85196, 17th
c. CE) in the simple variants where only direct application of
the Pythagorean rule is needed (namely because l is given
together with either d or s (further references in [Høyrup
2002b: 13, 15]). In Seleucid and Demotic sources we find
these together with the more intricate question where d and
s are given. Fibonacci discusses the two simple variants only,
with a reference to “the second-last of Euclid’s first book” (the Pythagorean theorem,
indeed). A diagram lettered a-b-c-... tells us that Fibonacci, though repeating a problem
of venerable old age, argues on his own.[177]

A second problem deals with two spears, at first planted vertically, afterwards one
leaning toward the other. It calls for no further commentary.

The two-tower problem [B398;G611] is more intriguing. The two towers (ab and gd,

177 The problem is also dealt with in the Liber mahameleth [ed. Vlasschaert 2010: e402f ; ed. Sesiano
2014: 543f, trans. ibid. 1046f ]. There a ladder (scala ) is spoken of; the numerical parameters are
different; the lettering of the diagram is also different; and an extra, algebraic solution is offered.
Fibonacci has certainly not used this work, which in all probability he did not have access to.
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respectively) are 40 and 30 paces high, and their distance is 50 paces.[178] The two birds
arrive at the same time to the fountain z, whence az and gz must be equal. At first a
geometric solution is offered: a perpendicular to ag is erected in
its midpoint. It hits the ground bd in z, and since the triangles
aez and gez are both right, ez being shared and ae = eg, even az
and gz must be equal.

This construction does not lead to a numerical value for the
position of z. Therefore, “if you want to proceed by numbers”,
a calculation is offered.

The trick behind this numerical solution is the observation
that gd2+dz2 = ab2+bz2, whence ab2–gd2 = dz2–bz2. Now dz2–bz2 = (dz+zb ) (dz–zb ); there
should be no need to reduce the left-hand side of the equation. However, Fibonacci does
not explain this background but presupposes without explanation that

= .
ab gd

2
ab gd

2
dz zb

2
dz zb

2

More precisely, he finds fz (= (db–bz )/2) as

÷ .

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

ab gd
2

ab
ab gd

2
2

dz zb
2

The strange way to express ab–gd/2 is slightly suspicious; it might be a hint that the formula
has been derived in a different way than here. Fibonacci himself offers no explanation
of how he comes to the equation, which suggests that he simply copies; alternatively (less
in accordance with the many pedagogical explanations offered) he takes care not to leave
any clue to the reader.

The geometric solution justifies that the problem is moved from chapter 12 to its
present location. The original version, as shown by manuscript L, had no geometry and
different numerical parameters. The numerical algorithm, on the other hand, is the same
(and even in L without explanation of its basis). The a-b-g-... lettering of the diagram
shows the geometric proof to be borrowed. In 1202 Fibonacci thus had the numerical
solution (and even then apparently did not know why it works). Then, in the revised
version, he adopted a geometric proof from a source where it solves a problem with
different numerical parameters. Taking over even these parameters he had to adjust the
numerical calculation while keeping the algorithm intact.

178 The unit passus is used very rarely in the Liber abbaci, which might help identify the source:
in the elchataym version of the same problem [B331;G519n], almost certainly copied from here,
see above, p. 112; on p. [B179f;G306] (a hound pursuing a fox); and on p. [B182;G311], a “lion
in the pit” problem about two ants.
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On p. [B399;G612] begins a sequence of problems about repeated travels, different
in mathematical type from those of part 12.6 (above, p. 88). In the first, somebody starting
with a capital of 100£ makes two travels, earning at the same proportion, and ends up
with 200 £. The possession after the first year is argued to be the mean proportional
between 100 £ and 200 £, approximated as 141 £ 8 ß 5 1/8 δ.

In the next problem, on the same pages, somebody enters in partnership with 100 £,
and after the second travel the total possession of the partnership is 299 £. This is a mixed
second-degree problem, solved by means of a line diagram and Elements II.6 in “key”
version (neither Euclid nor the notion of “keys” being mentioned).

The argument of the first of these two problems makes use of three numbers identified
by line segments carrying the letters a, b and g. That of the second is based on a proper
line diagram lettered a-b-g-c-d-e-z. Fibonacci thus seems to have taken inspiration for
the basic diagrams from an Arabic source, but to have elaborated the arguments on his
own.

The third problem [B399;G613] is an obvious extrapolation from the first, replacing
the two travels with three but making no other changes. The argument, based on and
referring to the Elements, is likely to be Fibonacci’s own; at least he ventures rather widely
into the theoretical topic.

In the last problem of the group [B401;G615], with two travels, the initial capital
is unknown, the possession after one year is 80 bezants, and the ratio between the capital
and the final possession is stated to be as 52 to 92. Since the mean proportional between
52 and 92 is 45, an argument by proportionality or by the rule of three (multiplication by
80 and division by 45) leads to the result. The reference to bezants (the previous problems
speak about libre ) suggests (does not prove) that Fibonacci was confronted with this
question in Byzantium. When he says that this has happened he usually offers a solution
of his own (so he tells or lets shine through); this could also be the case here. The solution
is followed immediately by the observation that the same rule can be used to find two
numbers (say, a and b ) where 1/5 a = 1/9 b, ab = 80 (cf. above, note 98), with further
variations of the numerical parameters. Even this seems to be Fibonacci’s own elaboration
of the answer to the bezant-problem.

More pure-number problems follow, first [B401;G615] about a way to produce
Pythagorean triples – formulated however as “to find two roots in integers, whose squares
joined together make a square number, that is, having a root”. The underlying idea is the
identity

+(mn )2 = ,
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

m 2 n 2

2

2 ⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

m 2 n 2

2

2

but Fibonacci generalizes by replacing m2 and n2 by two numbers that are in the ratio
of square numbers (and, in order to get integers, asks that both be even or both be odd).
He offers a proof based on the key version of Elements II.5, supported by a line diagram
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carrying no letters but only the numbers belonging with a corresponding numerical
example.[179] In so far, it might be of Fibonacci’s own making, no borrowing (though of
course not going beyond existing knowledge – see imminently). On the other hand, the
reference to “roots” and not to “numbers” seems suspicious, being far from what Fibonacci
does elsewhere and not very far from the ways of Arabic algebra – once again it seems
possible that Fibonacci borrowed a question and gave his own answer.

Another problem [B402;G617] asks for two “roots” whose “multiplications [each with
itself, that is, their squares], together make 41. Actually, given that 42+52 = 41, what is
asked for is a different pair. The problem is solved by a purely numerical prescription,
followed however by the remark [B403;G618] that “it is shown by geometry in the booklet
I composed about squares from where these foregoing inventions come” (the Liber
quadratorum [180]), where it is indeed found [ed. Boncompagni 1862: 256] with a
geometric proof lettered (like most lettered proofs in that treatise) a-b-g... . The previous
question is dealt with slightly earlier in the Liber quadratorum [ed. Boncompagni 1862:
255], with an a-b-g-d line diagram and a correct reference to Elements X.[181] In both
case, the Liber quadratorum speaks about numbers, not roots. Could this indicate that
the problems were already in the 1202 version of the Liber abbaci and then later adopted
into the Liber quadratorum?

After this excursion into the realm of numbers Fibonacci returns to geometry [B403;
G618], at first with a problem about a piece of cloth long 100 ells and broad 30 ells, from
which linen cloths long 12 ells and broad 5 ells have to be made. The calculation is
simple – multiplication 100 30, division by 5 12. No notice is taken of the difficulty
that some of the resulting 50 cloths will be instead in pieces of 6 by 10 ells and will need
to be cut and sewn.

Next [B403;G618] comes an analogue of Jacopo’s chest problem (above, p. 32), still
with two cubic chests of sides 16 palms and 4 palms respectively, and no explicit hint
of fraud. Fibonacci goes on with the cistern problems already discussed above (p. 41)
in connection with Jacopo’s fallacious solution of a similar problem. They are five in
number, and ask for the determination of the volume of a cube, a cylinder, a cone, a double
cone, and a sphere, and conversion between volume (cube feet, spoken of as pedes
quadrata ) and hollow measure (barrels).

The last geometric problem in part 15.2 speaks of a canopy (ciborium ) composed
of four (isosceles) triangles, each having the base equal to 30 palms, being high 36 palms
along the side. Three master painters are to share the work, their shares being separated

179 Present in Boncompagni’s manuscript, absent from VF; Giusti leaves it out from his edition.

180 Discussed in some detail below, p. 312 onward.

181 Lemma 1, ed. trans. [Heath 1926: III, 63],

To find two square numbers such that their sum is also square.
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by lines parallel to the base. The heights of the
delimitations of the shares are asked for, and found
(with a generic reference to what “we have
demonstrated above”) to be

and ,
1

3
362 2

3
362

the width of the base being irrelevant, as pointed
out by Fibonacci.

The “geometry” part closes with yet another
number problem having no obvious link to
geometry [B405;G622]: to find three numbers (say,
a, b and c ) such that 1/2 a = 1/3 b, 1/4 b = 1/5 c,
a b c = a+b+c. The solution is found by means of a false position, namely (a,b,c ) =
(8,12,15). With this position a+b+c = 35, a b c = 1440. Therefore, the positions have
to be reduced by a factor √ 35/1440 = √ 7/292 .

Surprisingly, the numerical squares of a, b, and c are spoken of as tetragons
(tetragonus ). This Greek term is used regularly in the Liber abbaci about geometric
squares (once, in a cistern problem, about a cube). It is never used except here about the
square of a number. This could mean that here Fibonacci builds on a Greek, ultimately
Byzantine source (which he might have encountered in Sicily as well as in Byzantium).
On the other hand, a Latin translation from the Arabic might also have used it for
murabba , which also serves in both functions.

In any case, a borrowing is obvious, whether from the Greek or the Arabic. The way
it is done illustrates how Fibonacci’s deals with adopted material. The treatment of the
problem consists of three sections. In the first of these, the term tetragonus is used 11
times, while quadratus is absent. In the second, which explains why a square root has
to be taken, quadratus is used 5 times, tetragonus never; this is an explanation added
by Fibonacci, and here he uses his own language. In the last section, which verifies the
outcome and which can be presumed also to be part of the borrowing, quadratus
disappears, while tetragonus is used 16 times.[182] As we see, Fibonacci is highly faithful
to the original when borrowing (cf. also note 148), but he does not emulate its style in
added material or commentaries. What we discern is faithfulness coupled to deliberate
avoidance of imitation – it would have been only too easy to carry over the tetragonus
to the commentary in the middle.

This observation should be taken into account when we interpret the lettering of
diagrams. One might object to use of the sequence a-b-g-... as evidence of borrowing

182 No sophisticated test is needed to show that this distribution is statistically significant. Using
a simple model (that the probability to choose tetragonus is 27/32 and that to choose quadratus is
5/32 ) we find the probability of the present distribution to be slightly below 10–6. A model based
on combinatorics gives a probability of 5!×27!/32! , close to 5 10-6.
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that Fibonacci could have tried to emulate the style of translations in constructions he
had made himself. The use of the sequence a-b-c-... in simple cases which are almost
certainly his own (see for example above, p. 117) shows that this objection can be
disregarded. A glance at the diagrams in the beginning of Fibonacci’s Pratica geometrie
[ed. Boncompagni 1862: 2, 5f ] supports this inference: at first comes a diagram proving
Elements I.28 (not identified but following a generic reference to Euclid); it is lettered
a-b-g-d-e-... and is almost certainly borrowed from the version translated directly from
the Greek [ed. Busard 1987: 42]. Somewhat later, when Fibonacci speaks about how to
measure a “quadrilateral and equiangular field”, an illustrating diagram is lettered a-b-c-d-e-
f-g ; going on with more complicated divisions of the square similar to what is found in
Arabic treatises, a-b-g-... returns.

We may add that a writer who avoided as carefully as Fibonacci to refer to any sources
beyond Euclid (and once Ptolemy together with what can be regarded as an explanatory
commentary, see above, note 91) would hardly try to intimate by his lettering of diagrams
that his own inventions were borrowed.

On the other hand we should not be misled by the instances of faithful copying which
we can identify (together with the many others that we may suspect, for instance on the
basis of the lettering of diagrams) that Fibonacci did not understand what was in his book.
Faithful copying was rather a strategy making sure that no unintended misunderstanding
crept in. We may think of the explanation offered by Charles Homer Haskins [1924: 152]
of the tendency to translate Greek texts de verbo ad verbum (in part paraphrased from
a 12th-century translator’s preface). It had nothing to do with ignorance. Instead,

Who was Aristippus that he should omit any of the sacred words of Plato? Better carry
over a word like didascalia than run any chance of altering the meaning of Aristotle.
Burgundio might even be in danger of heresy if he put anything of his own instead of
the very words of Chrysostom.

As also observed by Haskins, the translations he discusses are “so slavish that they are
useful for establishing the Greek text”. Once we recognize Fibonacci’s way of working
we also discover that he opens new vistas on forgotten mathematical schools and traditions.

15.3, introduction to algebra

Part 3 – almost 10% of the whole Liber abbaci – states in the heading [B406;G622]
to deal with “the solution of certain questions according to the way of algebra et
almuchabala, that is, of “apposition”[183] and restoration”.

183 Appositionis, probably a miswriting for oppositionis but possibly an alternative translation,
meaning “setting before”. Boncompagni, following his manuscript, has ad proportionem, obviously
an attempt to repair the impossible grammar of two other manuscripts having “a proportionis” [Giusti
2020: 808]. Two rather desperate attempts to make sense of Boncompagni’s ad proportionem
([Hughes 2004: 324 n. 43] and [Høyrup 2011a: 94f ]) can now be happily discarded.
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As we remember, algebra et almuchabala was translated differently in chapter 14,
in connection with the presentation of the “keys”, namely as contentio and solidatio. Apart
from an inverted order and from the miswriting contemptio, this is an adequate translation:
algebra (al-jabr ) means “restoration”, “bringing back to normal state”, which may well
be rendered solidatio; in mathematics, it refers to the restoration of what is lacking (which,
in an equation, is accompanied by an addition to the other side – cf. above, note 102);
al-muchabala (al-muqābalah ) means “encounter”, “comparison”, etc., not far from
contentio. We now find the same inversion in chapter 15, “restoration” corresponding
to al-jabr.[184] Oppositio for al-muchabala is also a reasonable translation.

The evident starting point for the discussion of how Fibonacci presents the discipline
is al-Khwārizmı̄’s al-jabr,[185] the core of which is 6 “cases”, equation types – originally
riddles about an a “possession” or amount of money (a māl ) and its (square) root, all
provided with numerical examples [ed. Hughes 1986: 233–236] (C stands for census, the
standard Toledo translation of māl, in the following chapters also for Tuscan censo; r
stands for root/radix/radice, N for number, α for an undetermined coefficient signalled
by the use of a plural):[186]

Kh1 C = αr – first example C = 5r.
Kh2 C = N – first example C = 9.
Kh3 αr = N – first example r = 3.
Kh4 C+αr = N – first example C+10r = 39.
Kh5 C+N = αr – first example C+21 = 10r.
Kh6 αr+N = C – first example 3r+4 = C.

We observe that all cases except Kh3 are presented in normalized form, in agreement

184 The inversion might tempt us to doubt the level of Fibonacci’s understanding of Arabic.
(According to [Tangheroni 2002], Pisa merchants would understand Arabic, but at what level is
unknown.) It is striking, however, that the same inversion is found in chapter 14 and chapter 15,
in spite of differing translations. The inversion therefore might also be another instance of
faithfulness to the source. (cf. above, p. 136).

A 13th-century manuscript (Florence, BNC, Conv. soppr. J.V.18) of Gerard of Cremona’s
translation of al-Khwārizmı̄’s algebra expands in computatione algebre et almuchabale into
computatione oppositionis algebre et responsionis almuchabale [Hughes 1986: 222], which seems
to be a witness of the same misunderstanding, with a further enigmatic responsio (is the idea that
of a university disputation, where an opposite opinion has to be answered and refuted?).

185 My references will be to Gerard of Cremona’s Latin translation because it is closer to the Arabic
original than the extant Arabic texts, all later by a small century or more [Høyrup 1998; Rashed
2007: 83, 86]. When referring to the Arabic text I shall use [Rashed 2007].

186 A mnemotechnic trick that may help to remember the order: in the first three, first the number,
then the root, then the māl is lacking; in the last three, first the number, then the root, then the
māl is isolated. Whether this has anything to do with al-Khwārizmı̄’s thinking is undecidable but
doubtful.
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with the respective first examples;[187] the rule for Kh3 is not normalized (although
the first example is). This shows that al-Khwārizmı̄ thinks of r as the real unknown, since
then the normalized equation is the solution, as indeed shown by the first example.
Additional examples show how to normalize equations where C (or, in Kh3, r ) carries
either an integer or a fractional coefficient.

For each case an algorithm for solving it is given. We may look at the one given for
case Kh4, the first of three mixed cases:[188]

The rule is that you halve the roots, which in this question are 5. Then multiply them
in themselves, and from them comes 25. To which add 39, and they will be 64. Whose
root you take, which is 8. Then diminish from that the half of the roots, which is 5. Hence
3 remains, which is the root of the census. And the census is 9.

Originally, when this was a riddle about an amount of money and its square root,
the amount was evidently the unknown. Seen in this way, the problem translates thus into
modern symbols:

y+10√y = 39

with solution

y = .
⎛
⎜
⎝

⎞
⎟
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10

2

2
39 10

2

2

As al-Khwārizmı̄ presented the technique, the census /māl was still understood as an
unknown to be found, as we observe. But it was no longer the fundamental unknown –
as we shall soon see, the root was identified with the unknown thing which we have
encountered in use in the regula recta. The corresponding reading of the equation is

x 2+10x = 39 ,

and the solution becomes

x= .
10

2

2
39 10

2

After the rules and the examples showing normalization, al-Khwārizmı̄ gives geometric
proofs for the three mixed cases. For Kh4, two are given, of which this is the first one
[ed. Hughes 1986: 237]: The census is represented by the square ab, each of whose sides

187 The extant Arabic texts define the cases in non-normalized form, but conserve the initial
normalized examples – see [Rashed 2007: 96–107]. The text has evidently developed over the
centuries, but since this did not influence Fibonacci, there is no reason to trace this process. Some
elements are presented in [Høyrup 1998].

188 Al-Khwārizmı̄ writes all number in full words, and Gerard, always faithful, follows him faithfully.
This canon was not taken over by Fibonacci nor in abbacus algebra. In order to make the argument
stand out more clearly for the modern reader I shall therefore also disregard it.
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is therefore the root. We distribute the 10 roots along the four sides,
which gives us four rectangles ghtk with width 2½. Together with the
square ab they have the area 39. Filling out in the corners the four
lacking squares, each 2½×2½, we find the area of the larger square
de to be 39+4 6 1/4 = 64. Therefore the large square has a side √64 =
8; removing the width of two rectangles we get for the root 8–2 2½ =
8–5 = 3.

Strictly speaking, this proves the solution

x = – ,4 10

4

2
39 2 10

4

and al-Khwārizmı̄ needs to argue that it gives the same result as the one following from
the algorithm.

The second proof [ed. Hughes 1986: 238] is much
more adequate, and similar to the diagram used to prove
Elements II.6; since the basic idea is the same as in the
preceding proof, there should be no need to go through
it in detail. One may ask why al-Khwārizmı̄ first gave the
less adequate proof since he knew the better one. There
appear two possibilities; either the first one was what first
came to his own mind, or he supposed it would speak
more directly to the mind of his reader.[189]

As it turns out, there were reasons for this. Since Old
Babylonian times (18th–17th c. BCE), the first diagram had been used to solve the riddle
about “all four sides and the area” of a square, and that riddle was still circulating in al-
Khwārizmı̄’s (and Fibonacci’s) time.[190] Al-Khwārizmı̄ was likely to have known it,
and so were his readers.

In the following sections, al-Khwārizmı̄ teaches the multiplication, addition and
subtraction of algebraic and arithmetical monomials and binomials like “thing” and “10
less a thing”, “square root of 5”, and “square root of 200 less 10”. Here thing times thing
turns out to be a census, which means that the thing and the root are identified (as indeed
stated explicitly [ed. Hughes 1986: 242]). Numbers, moreover, are understood as numbers

189 Stylistic changes actually suggest that the second proof may have been added during a later
revision of the text – cf. [Høyrup 1998: 169, 174].

190 Since al-Khwārizmı̄ is already two steps away from the abbacus school, I shall not offer
documentation for this; but see [Høyrup 2001].
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of dragmae (dirham in the Arabic original).[191]

The identification of root and thing turns out to be fundamental in the section of six
problems illustrating the rules. We may look at the problem that serves as illustration
of Kh5 [ed. Hughes 1986: 249]:

“Divide 10 in two parts, and multiply each of them in itself and aggregate them. And
58 results”. Whose rule is that you multiply 10 less a thing in itself,[192] and 100 and
a census less 20 things result. Next multiply the thing in itself, and it will be a census.
Afterwards aggregate them, and they will be known as 100 and 2 census less 20 things,
which are made equal to 58. Restore therefore the 100 and 2 census by the things that
were diminished, and add them to 58. And say, “100 and 2 census are made equal to 58
and 20 things”. Reduce therefore to one census. You therefore say, “50 and a census are
made equal to 29 and 10 things”. Oppose therefore by it.[193] Which is that you throw
out 29 from 50. There remains therefore 21 and a census which is made equal to 10 things.

This is exactly the first example of the case Kh5, and it is solved accordingly.
The illustration of Kh6 [ed. Hughes 1986: 249f ] is of interest by showing fluctuation

in the use of census and thing (a phenomenon we shall encounter below in the Liber abbaci
and elsewhere):

“A third of a census is multiplied in its fourth, from which results a census. And let its
augmentation be 24”. Whose rule is, because you know that when you multiply 1/3 of a
thing in 1/4 of a thing, results the 1/2 of 1/6 of a census, which is equal to a thing and 24
dragmae. Multiply therefore the 1/2 of 1/6 in 12 so that the census is completed,[194]

and there will be a complete census. And multiply equally the thing and 24 in 12, and
there result for you 288 and 12 roots. [...]

At first census appears in the original sense of a monetary possession understood as an
unspecific quantity. Then, in order to allow its multiplication by itself, it is tacitly
reinterpreted as a thing, whose square now becomes a (different, now algebraic) census,
while the thing in the end appears as a root.

Further examples follow after the six initial illustrations. We shall return to them when

191 Not consistently, however and with no thought about the dimension problem. A dragma times
a dragma is stated to be a dragma [ed. Hughes 1986: 242] – the dragma thus functions exactly
like Diophantos’s monas, “unity”, or a modern x0.

192 Already in the illustration of Kh2, where 10 is also divided into two parts, one of the parts was
posited to be a thing, whence the other had to be 10 less a thing.

193 This is the muqābalah operation, in later times understood as the subtraction from both side of
the equation. As confirmed by the two more or less synonymous translations contentio and oppositio,
what is intended is rather a comparison, which leads to the construction of the reduced equation.

194 The verb used here (reintegrare, Arabic kamala ) is distinct from the additive completion
restaurare/jabara.
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needed, but there is no reason to discuss them systematically.

Instead we shall now turn to Fibonacci’s presentation of algebra et almuchabala. Al-
Khwārizmı̄ [ed. Hughes 1986: 233] had stated

to have found that three kinds of numbers were needed [in al-jabr wa’l-muqābalah ]: Roots
and census and simple numbers neither related to a root nor to a census. The root, however,
which is one of them, is something that is multiplied by one, and what is above that in
numbers, or what is beyond that among fractions [that is, which carries a coefficient],
while the census is something resulting from a root multiplied in itself”.

Fibonacci [B406;G622] is obviously inspired, directly or indirectly.[195] But he changes
the explanation according to his own understanding (the constructions are somewhat
knotty):

For the composition of algebra et almuchabala, three qualities [proprietates ] that are in
whatever number we consider, which are root, square [quadratus ] and simple numbers.
As when some number is multiplied in itself, and something results. A square is thus made
from the multiplication of the multiplied [multiplicati ]; and the multiplied is the root of
its square. As when 3 is multiplied in itself, 9 results. 3 is namely the root of 9; and 9
are the square of the ternary. And when a number has no respect to square nor to root,
then it is called a simple number. These, indeed, are made mutually equal in solutions
of questions in six modes, of which three are simple and three composite. And the first
mode is when a square, called a census, is made equal to roots. [...].

Fibonacci will certainly have known the normal Latin meaning of census: “wealth”,
“property”, “estate valuation”, etc. – quite adequate as a translation of māl. As we see,
however, he chooses to present it as a synonym for square (of a number – in the geometric
proofs he regularly uses tetragon about square configurations).

His list of six cases (F1, F2, ..., F6) is almost the same as that of al-Khwārizmı̄, the
only difference being an inversion at the end, F5 = Kh6, F6 = Kh5; all cases are also
defined in normalized shape, the reduction of non-normalized equations being taught
separately. In the very first [B406;G623], the term census is introduced as a replacement
for quadratus, “when the square, which is called census, is made equal to roots”.

The numerical example used in connection with the rule and the proof for F4, “census
and roots made equal to number”, coincides with that of al-Khwārizmı̄; the others not.
Nor are the proofs the same. We may look at that for F4. As in al-Khwārizmı̄’s treatise,
there are two, but they are different. The first builds on a diagram lettered a-b-c-d-...,

195 In the margin in Boncompagni’s manuscript is also written “Maumeht”, an obvious reference
to Muhammad ibn Mūsā al-Khwārizmı̄. However, this reference is absent from VF, and can therefore
be supposed to have been added by a later copyist or user (Giusti also does not mention it). It
corresponds to the beginning of Gerard’s translation [ed. Hughes 1986: 233], Liber Maumeti filii
Moysi Alchoarismi de algebra et almuchabala incipit (but might also reflect Guglielmo de Lunis’s
translation, cf. below, p. 273).
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thus apparently of Fibonacci’s own making. Euclid is not
mentioned, but the inspiration seems to be Elements II.4,
not II.6, and the construction goes “the other way round”:
At first, a square abcd is made, where each side is
requested to be larger than 5 ells (the style is thus that of
a synthesis rather than an analysis). Next points s, f, g and
h are made with the distances indicated in the diagram,
and lines eh and fg are drawn, crossing at i. Then the
census can be identified with the square ef – etc.

The second proof has some similarity
with al-Khwārizmı̄’s second proof, but there is no cutting and pasting.
It is simply requested that the square ei be the census, that ten roots be
applied to the side de, and that t be the midpoint of he. This has some
family likeness to the proof given by Abū Kāmil, but both the Arabic text
[ed. trans. Rashed 2012: 254] and the medieval Latin translation [ed.
Sesiano 1993: 328] include a justified reference to Elements II. Given
Fibonacci’s propensity to cite Euclid when he knows it is warranted we
may assume that he was inspired indirectly by Abū Kamil – but we may

be sure that he did not use Abū Kāmil directly. Since even the first proof includes no
reference to Euclid, we can be fairly certain that Fibonacci, though making his own
version, was inspired not by Euclid but by some later source.

The proofs for the cases F5 and F6 are very similar – in particular that for F5,
exemplified by the question “census made equal to 10 roots and 39 denarii”. The close
relationship between this and the exemplification and second proof of F4 could be what
caused Fibonacci to change the order of cases (in other words, the idea to do so may well
be his own).

99 questions with interspersed theory

Last in the third part, in chapter 15, and in the whole of the Liber abbaci [B410;G627]
comes a collection of 99 questions,[196] with interspersed theoretical explanations. Many
of them coincide with problems from al-Khwārizmı̄’s algebra in structure, often but far
from always also in the choice of numerical parameters. Many (sometimes the same,
sometimes other ones) coincide with problems from Abū Kāmil’s Algebra. Both works
were accessible in the Iberian Peninsula – at least two different manuscripts of al-

196 The precise number depends on to which extent variants are counted as independent questions.
I follow the list in [Hughes 2004: 350–361], which beyond the Boncompagni edition draws on the
edition of chapter 15 in [Libri 1838: II, 307–479], based on a different manuscript of the Liber
abbaci, and on Benedetto da Firenze’s vernacular translation of the questions as rendered in
[Salomone 1984]. A problem referred to as [H#m;G§n ] is number m in Barnabas Hughes’ list and
§XV.n in [Giusti 2020], [G§n ] refers to §XV.n in [Giusti 2020].



– 144 –

Khwārizmı̄’s algebra were translated there during the 12th century, and the Liber
mahameleth refers repeatedly and correctly to Abū Kāmil. But the overlap and the
occasional use of other numerical parameters shows that those same problems circulated,
and that Fibonacci’s inspiration may well have been indirect. The rather few agreements
with al-Karajı̄’s Fakhrı̄ [197] are also not evidence that Fibonacci knew that work – some
of them are also found in Abū Kāmil, and Fibonacci’s numerical parameters often differ
from those of al-Karajı̄.

An example suggesting that what “may well” be the case seems indeed to be so is
offered by the problem [H#21;G§288]. It is one of 32 problems dealing with a “divided
10”. Expressed in letter formalism:

10 = a+b , ( a/b +10) ( b/a +10) = 122 2/3
The same problem is solved by Abū Kāmil [ed. trans. Rashed 2012: 410f ], while al-Karajı̄
gives the sum as 143 1/2 . According to the paraphrase in [Woepcke 1852: 94], al-Karajı̄
posits a to be a thing; a straightforward calculation then reduces the problem to an instance
of Kh5, namely C+16 = 10r. Abū Kāmil instead posits a/b to be a “large thing”
(presupposing a>b ), and b/a to be a “small thing” (as we see, al-Karajı̄ was not the first
to deviate from the practice of using coins as names for supplementary unknowns). Then
(the “large thing” and “small thing” being designated R respectively r )

(R+10) (r+10) = 122 2/3 ,

and since rR = 1,

1+10 (R+r )+100 = 122 2/3 ,

which is reduced to

R+r = 2 1/6 .

Thereby the problem is reduced to

10 = a+b , a/b + b/a = 2 1/6 ,

which has already been dealt with.
Fibonacci uses a line diagram, lettered a-b-g-d-e-z. Here, a b g

d e zab = de = 10, while bg = a/b , ez = b/a . That is, he replaces Abū
Kāmil’s two algebraic unknowns by line segments. The
following procedure is parallel to that of Abū Kāmil, and also
leads to the same reference to what has already been dealt with – actually, what has been
dealt with by Fibonacci’s source! Fibonacci himself [H#10,243;G§243] has treated the
case where the sum of the two fractions is 3 1/3 , not 2 1/6 (cf. below, note 199). An obvious
trace of copying, though not from Abū Kāmil himself.

In the very end Fibonacci says that the reader should know that

when you have two numbers and divide the larger by the smaller and the smaller by the
larger and multiply that which resulted from one division in that which resulted from the

197 A few of those identified by Hughes turn out at inspection to be mistaken.
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other, then from their multiplication always 1 is generated, and therefore I said 1 to come
from bg in ez.

As shown by the lettering, we have a perfect parallel to the number problem from [B405;
G622] (above, p. 136): A faithfully borrowed text, supplemented by a personal explanation
coming afterwards, not integrated in what was taken over.

Comparing the three solutions, we notice that al-Karajı̄ presents us with a typical al-
jabr solution. Abū Kāmil’s reduction makes use of a technique rather belonging with the
regula recta (evidently, the problem to which he reduces the present one is then solved
by al-jabr ); Fibonacci, and his source, also removes anything that could make one think
of al-jabr techniques (with the same proviso).

Line diagrams and geometric diagrams are used for other purposes too, a matter to
which we shall return. First, however, we have to observe that there is no indication that
Fibonacci tried to guide the reader systematically from simple to more advanced or difficult
matters. Instead it is evident that groups of problems have been adopted together from
the same source. In some cases, this source can be identified with approximation, in others
not even that.

As the best example of the first category may serve the first eleven problems. Nine
of them have a counterpart in the beginning of al-Khwārizmı̄’s algebra, five in his list
of six illustrations of the basic cases, four in his collection of varied problems. Internally
in each of these groups, they follow al-Khwārizmı̄’s order, but the two groups are mixed
up.[198] By definition, the nine that have a counterpart have the same mathematical
structure. Only two, however, have coinciding numerical parameters; and only one [H#10;
G§243] has the same initial formulation as Gerard of Cremona’s translation of al-
Khwārizmı̄, though so simple that the coincidence might well be an accident; but in that
case the numerical parameters are different, and the procedure too is quite different.[199]

According to what we have seen above in note 148, this should exclude that Fibonacci

198 With Q referring to the six illustrating questions, V to the varia, and – indicating absence of
a counterpart, Fibonacci’s order is V1, –, Q2, Q3, –, Q4, Q5, V2, Q6, V4, V5. Using a simple
combinatorial model we find that the odds that the order of borrowings from the two groups should
be conserved by accident is 1/4! 5! = 1/2880 .

199 The problem is
10 = a+b , a/b + b/a = 3 1/3 ,

almost the same as the one to which the problem
10 = a+b , ( a/b +10) ( b/a +10) = 122 2/3

[H#21;G§288] was reduced (above, p. 144), just with the sum being 2 1/6 (which is also the sum
in al-Khwārizmı̄’s version of the present problem). That problem (coming later in the Liber
abbaci ) was reduced, we remember, by means of line segments representing a, b, a/b and b/a ,
respectively. A similar strategy is used here, just with the four segments being separate and each
designated by a single letter (a, b, g and d ). Al-Khwārizmı̄, in contrast, has no line representation
(he never has).
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used al-Khwārizmı̄’s algebra (in Gerard’s or any other version) directly for this sequence,
but on the other hand show that he used an introductory work descending from that model,
made by a writer who was less faithful than Fibonacci to his sources. The similarity of
the demonstration of [H#10;G§243] to that of [H#21;G§288] observed in note 199 suggests
origin in the same school of thought, while the stylistic difference seems to exclude
inspiration by the same treatise.

Another cluster of problems is characterized by the appearance of an avere, a Romance
(Italian, Catalan, Provençal or Castilian) loanword meaning “possession”. The word
evidently translates māl – but only when this term is used about an unknown quantity,
literally an amount of money, not in its algebraic role. The first time it appears is in [H#62;
G§387]:

Further, I multiplied the root of the sextuple of some avere in the root of its quintuple,
and I added the decuple of the same avere and 20 denarii, and all this was as the
multiplication of the same avere in itself. I shall posit for the same avere a thing, and
I shall multiply the root of its sextuple in the root of its quintuple, that is, the root of 6
things in the root of 5 things. The root of 20 census results, since when a thing is
multiplied in a thing it makes a census, whence when the root of a thing is multiplied
in the root of a thing the root of a census results. Then I shall add above the root of 30
census the decuple of a thing and 20 denarii, and I shall have 10 things and the root of
30 census and 20 denarii, which is made equal to the multiplication of a thing in itself,
that is, a census. In this falls the rule of roots and numbers which are made equal to a
census.

The concluding statement presupposes that √(30C )+10r is understood to be (10+√30)r,
but this would not be acceptable according to the canon that only integers and, in practice,
rational fractions were accepted as numbers.[200] We shall return to this.

Avere reappears in 13 further problems.[201] Sometimes the avere is posited to be
a thing, sometimes to be a census. That can be seen to depend on what will yield a
convenient equation, and does not tell us more than that.

More interesting is that these problems constitute a closed group, adopted from the
same source. The apparent interruptions in the sequence all deal, either with a divided
10 (once 12) or with two numbers or quantities, and therefore would not allow the
appearance of any substitute for māl – avere or otherwise. Since no problem after the

200 The force of this canon, from al-Khwārizmı̄ until the European 16th century, is dealt with in
[Oaks 2017]. Since the difficulty was seen to be an obstacle that was to be, and was, circumvented,
the avoidance of irrationals as coefficients was a canon, and not the result of failing understanding
of possibilities, cf. [Høyrup 2004].

201 [H#66;G§410], [B70;G439], [H#76;G§531], [H#77;G§539], [H#78;G§543], [H#79;G§546], [H#80;
G§549], [H#81;G§551], [H#82;G§554], [H#83;G§557], [H#84;G§559], [H#85;G§561], [H#87;
G§570].
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last making use of an avere except the very last [H#99;G§682][202] would have allowed
its appearance, the group may well have extended further (as we shall see on p. 152, there
is more evidence for that).

This source, moreover, must already have used the term avere. There is no reason
that Fibonacci should suddenly on his own choose a new translation – earlier problems
use the standard translation census for māl in both roles, or replace an original Arabic
initial māl by numerus. We cannot exclude that this source was already written in a
Romance vernacular (Italian, Catalan, Provençal or Castilian, though Italian seems even
more unlikely than the others); more plausible, however, is a Latin translation prepared
in a Romance-speaking (and thus Iberian) environment and, as Fibonacci does regularly,
borrowing terms from the vernacular. Since we already encountered one source
corresponding to this which also makes use of a non-standard terminology, namely in
the introduction to chapter 14 (above, p. 116), we might suppose it to be the same – but
only if we find it quite improbable that two such treatises should have disappeared, or
at least disappeared from view.[203]

Other clusters can be suspected, but with one exception (to which we shall return
on p. 149) they are not as neatly delimited nor as informative, and there is no reason to
discuss them.[204] Let us instead return to [H#62;G§387] (above, p. 146) and look at
how Fibonacci manages to circumvent the difficulty that he is not allowed to apply the
rule he has seen to be pertinent:

In order to show that, let there be placed hereby an equilateral and equiangular quadrangle
ag, whose side is bg, and posit bg to be a thing. Therefore we cut off from the square
ag a rectangular surface ae, which should be root of 30 census, and from the surface fg
is removed the surface fh, which should be equal to 10 roots of the census ag, wherefore
eh is 10. From the whole square ag remains the surface ig, which will be 20. And because
the surface ae is the root of 30 census and comes from the multiplication of ab in be,
and ab is a thing, it follows by necessity that be must be the root of 30, since from the

202 A simple first-degree problem, “I multiplied the 30-double of a census by 30 and what resulted
was equal to the addition of 30 dragmas and the 30-double of the same census” – noteworthy at
most (but hardly) for the use of additio in the sense of sum, which is unique in the algebra section
though found in the last problem of chapter 15 section 2 and occasionally in chapter 14.

203 Not the same thing! Remember that the Liber mahameleth was not known to have existed until
Jacques Sesiano discovered it in 1974 – see [Sesiano 2014: v]. The best of the three manuscripts
(Paris, BN, ms latin 7377A) had already been inspected by Michel Chasles [1841: 506], who
mentions what has later been identified as the Latin translation of Abū Kāmil’s Algebra. Louis
Karpinski [1911], working on the manuscript, described Abū Kāmil’s work. But none of these
outstanding scholars noticed the Liber mahameleth.

204 A tempting but false trail is offered by the observation that some problems use denarius as the
unit for pure numbers and some instead dragma. Since the text may alternate between the two within
the same problem solution (e.g., [H#28;G§315] and [H#58;G§372]), no classification can be derived.
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multiplication of a thing in the root of 30 results 30 census. We add
thus be with eh, and the whole bh will be 10 and root of 30, which is
a fourth binomial; and we divide it in two equals at the point c, and
each of the lines bc and ch will be 5 and the root of 7 1/2 . And because
the surface ig is 20, that which results from the multiplication of ih in
hg, that is, from bg in hg, if above 20 we add the multiplication from
ch in itself, which is 32 1/2 and the root of 750, we shall have 52 1/2 and
the root of 750 for the square on the line cg. Then cg is the root of
52 1/2 and the root of 750, and if we add to it the line cb we shall have for the whole bg,
that is, for the requested avere, the root of 52 1/2 and the root of 750 and 5δ and the root
of 7 1/2δ; all of which is according to approximation around 16 2/3 .

The argument may be difficult to follow, but makes use of Elements II.6 or the
corresponding “key” (none of which is mentioned), according to which bh hg+bc bc =
cg cg. bh hg indeed equals ih hg and therefore 20. As we see, the rule for the case
census equals roots and number does not turn up again, and the (correct but redundant)
observation that 10+√30 is a fourth binomial points back to the secondary layer of chapter
14. However that may be, we see that the difficulty of irrational coefficients is eschewed
by the application of geometry.

The final approximation is worth observing. Approximation is used nowhere else in
Fibonacci’s algebra, nor anywhere I have noticed in abbacus algebra.

The lettering, including a c entering late in the argument, suggests that Fibonacci has
intervened himself. This is confirmed by a comparison with the preceding problem [H#61;
G§383], √(8n ) √(3n ) (n being here a numerus, no avere ). This n is directly identified
with a line bg and n2 with the corresponding square, here spoken of as a tetragonus. In
this case, the lettering is b–g–d–f–h – a being left out (probably by Fibonacci and not
by his source) because the corresponding corner of the square is not mentioned, and there
is no use for anything corresponding to the c of the avere problem. In this case a binomial
(here the result) is identified as a sixth binomial, whereas the problem before that [H#60;
G§381], (8√n ) (3√n )+20= n2 has a fifth binomial (and no diagram, since the problem
reduces to 24n+20 = n2, with no irrational coefficients occurring). Such references to the
classes of Elements X occur nowhere else in the collection of algebraic questions. It
appears that in [H#62;G§387] Fibonacci has borrowed a proof technique and a diagram
from [H#61;G§383], which does not belong to the avere group, but adapted the proof
to the situation where the coefficient is 10+√30 and no simple root, employing also his
own terminology (“an equilateral and equiangular quadrangle” then becoming simply
“square”, quadratus ). As observed on p. 136, Fibonacci shifts to his own language when
he is creative, and avoids imitation. Having no use for the d of the borrowed diagram
he omits it, just as in its first appearance he left out a because it is not referred to in the
proof.[205]

205 Such omissions of single letters from either of the sequences a-b-c-d and a-b-g-d are extremely
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In the following problem ([H#63;G§392] still belonging to the avere-cluster), a
“divided 10” also leading to an irrational coefficient, a diagram lettered a-b-c-d-g-e is
made use of. Even here, and perhaps more radically, Fibonacci seems to work
independently. Once more, the square is spoken of as quadratum equilaterum et
equiangulum.[206]

As we have seen, Fibonacci identifies the first problem of the avere cluster as falling
under the “rule of roots and numbers which are made equal to a census”; after his
geometric circumvention of the taboo against irrational “coefficients” by means of a
procedure he has provided himself, however, he does not return to this insight; not does
he say anything similar in the rest of the avere cluster, although many problems invite
that invitation. The most obvious explanation seems to be that Fibonacci took it from his
source for the cluster; since he had to find himself the way to skirt the difficulty it appears
that the source did not see one – that is, that this source was already “modern” and did
not feel the taboo. As often, “being ahead of one’s time” (as judged by later times) is
no road to success but rather to quick oblivion.

Diagrams also serve the translation of questions into equations. That happens in a
sequence of five problems, the first of which [H#12;G§252] runs like this:

I divided 60 between some men, and something resulted for each; and I added two men
above them, and between all these I divided 60, and for each
resulted δ 2 1/2 less than resulted at first. Let the number of the
first men be the line ab, and on it is erected at a right angle the
line bg, which should be that which falls to each of them of the
mentioned δ 60, and draw the line gd equal and parallel to the
line ba, and the straight line da is connected. Then the space of
the quadrangle abgd will be 60, as it is

rare in the Liber abbaci. There are two examples in chapter 14 [B377,378;G581,582], both a-b-g-e-f,
both reduced versions of a preceding diagram (missing in Boncompagni’s manuscript and edition)
lettered a-b-g-d-e-f-..., and two beyond those we discuss here in the algebraic problem collection –
a-b-g-e [B418;G638] and a-b-d [B420;G640] – where no such obvious explanation seems at hand
but may of course escape my fantasy.

206 However, the use of tetragonus versus “equilateral and equiangular quadrangle” is not quite
systematically coupled to diagrams lettered a-b-g-... respectively a-b-c-.... Evidently, Fibonacci
may have sometimes have borrowed a diagram but written his own text, or vice versa – we have
just encountered an example. He may also have changed his preferred terminology over time. We
do not know, indeed, how much of chapter 15 goes back to 1202, and how much was inserted in
1228, even though problems belonging to a particular cluster like the avere-cluster almost certainly
entered the work at the same time.
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contained[207] by ab in gb. Then protract the line ab to the point e, and let be be 2,
that is, the number of men to be added. And on the line bg the point f is marked, and
let gf be 2 1/2 , that is, that each one got less by the addition of two men. And through the
point f the line hi is protracted equal and parallel to the line ea, and the straight line eh
is connected; the quadrangle heai will be 60, since it is contained by ae in eh, namely
by ae in bf, where bf is that which resulted for each of the men ae from the 60δ. The
surface ei is thus made equal to the surface bd. The multiplication of gb in ba is thus made
equal to the multiplication of ea in fb. Whence these four lines are proportional. Therefore,
the first gb is to the second fb as the third ea to the fourth ba, whence, by dividing,[208]

as gf is to fb, so is fb to ba. But the ratio gf to eb is as 5 to 4. Thus fb contains once and
one fourth the number ba.

So, posit for the number ab a thing. bf will thus be 1 1/4 thing; and multiply ab in
bf, and 1 1/4 census results for the surface bi [...].

Nothing similar is to be found in the original version of al-Khwārizmı̄’s algebra as we
know it from Gerard of Cremona’s translation, nor in the somewhat extended version
translated by Robert of Chester [ed. Hughes 1989]. In the later Arabic manuscripts we
have a version where the amount to be distributed is 1 dirham, only one man is added,
and the difference is 1/6 [ed. trans. Rashed 2007: 190f ]. Even here, the solution consists
of several parts: first a description in general terms, which appears to correspond to a
diagram which however has disappeared; then the same with explicit numerical values;
and finally, as in the Liber abbaci, the solution of the resulting equation. However, this
may have crept into the tradition at any moment before 1222, the date of the earliest Arabic
manuscript [Rashed 2007: 85], and there is no reason to believe it inspired Fibonacci,
neither directly nor indirectly.

On the other hand, a link to Abū Kāmil’s algebra [ed. trans. Rashed 2012: 352–355],
is beyond doubt. Here, 50 dirham are shared first among some men, them among 3 more,
the difference between what each one gets in the two situations being 3 3/4 dirhams. The
solution follows the same pattern as that of Fibonacci, but instead of using proportions
the argument about the diagram is arithmetical all the way through.

Next in the Liber abbaci follows a problem [H#13;G§259] where first 20 is divided
between some number of men, next 30 between 3 more, the difference between the shares
in the two situations being 4. The solution is based on a diagram of the same character
though slightly more complicated, lettered a-b-g-d-e-..., and on proportion techniques

207 Colligatur, not the standard terminology, which would be continetur. We observe, moreover,
that this being contained is not formulated as a geometric fact but as a multiplication of “ab in
gb”.

208 That is, we transform = into = , whence = . That could, by the way,gb

fb

ea

ba

gb–fb

fb

ea–ba

ba

gf

fb

eb

ba

be seen directly in the diagram, just by removal of the shared surface af from both of the surfaces

ag and ah. The ensuing “permutation” leads to ned = .gf

en

fb

ba
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(followed by algebraic solution of the resulting equation). Once again, Abū Kāmil offers
four problem of the same structure [ed. trans. Rashed 2012: 358–371], presenting solutions
based on diagrams of similar structure and never referring to proportions.

The following problem in the Liber abbaci [H#14;G§271] has the same mathematical
structure. This time, however, a diagram lettered a-b-c-d-e-... is used, and the algebraic
entities (thing and census ) enter directly in the discussion of the diagram, and proportions
are not referred to. To judge from the lettering of the diagrams, in the first of these two
problems the reformulation of Abū Kāmil’s technique in terms of proportion techniques
from the preceding two problems is borrowed, while Fibonacci’s own (more
straightforward) solution in the second two does not mention them.

In the last problem about changing numbers of men sharing money [H#15;G§276],
when 10 are divided between a certain number of men and then 40 between 6 more, they
get the same in the two cases. It would be obvious for anybody tending primarily to think
in terms of proportions to state this as = , from which would follow = ,

h 6

h

40

10

6

h

40 10

10

whence 6 10 = 30 h. But Fibonacci working on his own does not appear to have such
preferences on the present occasion. He just observes (thus not using algebra) that the
30 extra monetary units must be the share of the 6 extra men, each of whom therefore
gets 5. Since the first men get the same, their number must be 10÷5 = 2.[209]

There can be no doubt that the sequence [H#12–16] is part of a cluster adopted from
the same source (for the last three, however, Fibonacci seems to have presented simpler
solutions of his own making). Since [H#11] belongs to the cluster borrowed indirectly
from al-Khwārizmı̄’s algebra, [H#12] is the first member of the present cluster; whether
it extends beyond [H#16] seems undecidable (but rather unlikely according to internal
criteria of style).

A final question to address is whether and how Fibonacci deals with higher-degree
problems.

Some of the problems that have been considered biquadratic by earlier workers only
become so because of failure to understand the distinction between the two roles of
census – for instance [H#44;G§344]:

I multiplied the third of a census and 1 3/4 in its fourth and 2 3/4 , and a census augmented
by 13 3/4 resulted. Posit a thing for the census. [...].

If it is not realized that the initial census is of the kind that elsewhere is sometimes spoken
of as an avere or a number, this looks like a biquadratic solved by means of a substitution

209 The same problem is in Abū Kāmil’s algebra [ed. trans. Rashed 2012: 370–373]. At first Abū
Kāmil gives an unexplained numerical prescription, stating only that “the reason of that is obvious”

(it corresponds to Fibonacci’s solution); next he actually formulates the proportion = , andh

h 6

10

40

then identifies the second ratio with the number 1/4 . Identifying h with a thing he obtains an algebraic
equation.
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of variable. When no positing is needed – for instance, in [H#38;G§340] – the census
in question is indeed considered the solution, its root is not found, which confirms its
meaning as an “amount”. There are more of these, and there is no reason to discuss them
any further.

Others are properly biquadratic or lead to solvable third-degree equations. They are
all found within the “extended avere group” (cf. above, p. 147), confirming the suspicion
that this really is a group.[210] Here, a corresponding terminology is also used (cubus,
cubus cubi, census census, census census census, census census census census, for the
third, the sixth, the fourth, the sixth and the eighth power ), and scattered theoretical obser-
vations can be found – though no systematic presentation of higher-degree techniques.

We shall look at a single example [H#88;G§575], in which Fibonacci appears to have
intervened actively in a justification:

Of three unequal quantities, when the major and the minor are multiplied it is as the middle
in itself,[211] and when the major is multiplied in itself results as much as the minor
in itself and the middle in itself joined, and from the multiplication of the minor in the
middle results 10. Posit for the smaller a thing and for the middle 10 divided by a thing,
and multiply 10 divided by a thing by itself, and 100 divided by a census results, which
you divide by a thing: 100 divided by a cube result, and this will be the major quantity.
Then multiply the minor quantity, namely a thing, in itself, and a census results; and
multiply the middle in itself, namely 10 divided by a thing. 100 divided by a census results,
which you shall add with the census, they will be a census and 100 divided by a census,
which is made equal to the multiplication of the major quantity, namely 100 divided by
a cube in itself, from which multiplication result 10000 divided by a cube of cube. Then
multiply everything you have by cube of cube; and to multiply by cube of cube is as
multiplying by census of census of census. Then if we multiply 10000 divided by cube
of cube by census of census of census, 10000 result; and if we multiply a census, namely
the square of the minor quantity, by census of census of census, we shall therefore have
a census of census of census of census; and if we multiply the square of the middle
quantity, namely 100 divided by census, by census of census of census, results 100 census
of census. Therefore a census of census of census of census and 100 census of census are
made equal to 10000 dragmas.

At this point, we might perhaps have expected Fibonacci to posit a (new) thing for the
census of census, or simply to have applied the standard rule for the case “census and
things made equal to number”. Instead, as when application of the standard algorithms
would presuppose the explicit use of irrational coefficients in [H#62;G§387] and [H#63;
G§392] (above, p. 147), Fibonacci uses the geometric configuration that serves to justify

210 Since this group is found close to the end on the chapter, we may get an impression of theoretical
progression. This impression, however, is an artefact, and the very final trivial first-degree problem
disproves it.

211 In other words, they are in continued proportion.
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the rule in question, positing the square ac for the census of
census of census of census. The lettering as well as the use of
quadratum indicates that the proof was inserted by Fibonacci
himself (the two proofs circumventing irrational coefficients, as
we remember, were also characterized by the lettering a-b-c-...,
and also used quadratum ). Together, Fibonacci’s need to intervene actively in these three
cases[212] suggests that his source for the avere group had fewer qualms with irrational
coefficients than he had himself and handled higher powers more freely – cf. above, p.
149.

In both cases, Fibonacci’s independent construction of proofs shows that he had no
difficulty in understanding what his source was doing. That seems to hold throughout
the algebra-part, with a single exception, an alternative solution to [H#71;G§448],

I divided 10 into two parts, and divided the larger by the smaller, and the smaller by the
larger; and aggregated that which resulted from the division, and they were 5 δ.

The alternative solution [G§461] starts that

you posit one of the two parts a thing, and the other certainly 10 less a thing. And let
from the division of 10 less a thing in a thing a denarius result.

Obviously, Fibonacci here adopts the Arabic use of coin names for supplementary algebraic
unknowns (cf. above, note 109), unfortunately using the same term for the unit of pure
numbers and for the extra unknown (for the former, Abū Kāmil would use dirham, for
the latter dinar ). If Fibonacci had understood the principle, he might perhaps have managed
to keep the two functions of the term separate, but he does not (but since he copies, he
evidently ends up with the correct result in spite of intermediate mistakes; cf. [Høyrup
2019b: 32–35]).

So, as final characterization of part 15.3, Fibonacci’s algebra, we may say that it is
no treatise, no new coherent and systematic presentation of the field. It is an anthology,
a collection of excerpts from other texts (with an introduction and interspersed additional
explanations) – with a single exception well-understood by Fibonacci. Being neither an
elementary introduction nor a methodically progressing guide to advanced methods, it
is no wonder that (as we shall see) it had no influence on the abbacus masters when some
of them eventually took up algebra.

212 Supported by [H#63;G§392], [H#89;G§583], [H#71;G§448] and [H#73;G§497], which share
these characteristics. The last of them has the letter sequence c–d–e–f–g, a and b having been used
already as one-letter line-carried symbols for 10–r/r and r/10–r , respectively, similarly to Abū Kāmil’s
“large” and “small thing” (above, p. 144).



IV. The real story in select detail

I shall not object to those who see the preceding chapter as an “almost insupportably
detailed description of the Liber abbaci”, to quote Cantor’s characterization [1892: 31]
of his own much shorter analysis. Now, however, we shall turn to the history of abbacus
mathematics proper, divided into periods – the “real story” instead of the “Fibonacci story”.



“Generation 1”:, Livero de l’abbecho, Pisan Libro di ragioni, “Columbia Algorism”

and Liber habaci

Three abbacus books have, for various reasons, been dated to the late 13th century:
a Livero de l’abbecho [ed. Arrighi 1989; ed. Bocchi 2017],[213] known from an early-
14th-century copy;[214] the Pisan Libro di ragioni [ed. Bocchi 2006; ed. Franci 2015];
and the “Columbia algorism” [ed. Vogel 1977]. We may speak of them as a “first
generation”, which does not imply any claim of homogeneity. As we shall see, they are
actually evidence of very mixed inspiration, and do not yet form a mature tradition.

Because of the character of the text, a Liber habaci from ca 1309 [ed. Arrighi 1987]
should probably be counted to the “first generation” together with these – and perhaps
even be seen as a reflection of a “generation zero”, the otherwise lost first beginnings.

The Livero de l’abecho

The Livero (mentioned above, note 20), written in Umbria, plausibly in Perugia [Bocchi
2017: 7 and passim ] offers what superficially looks like confirmation that the abbacus
tradition is based on Fibonacci’s Liber abbaci.[215] Its initial lines represent it as “the
book on the abbacus according to the opinion of master Leonardo from the house of the
Bonacci sons of Pisa”.[216] This – apart from the very term abbaco – looks as the only
positive evidence that the abbacus tradition really had Fibonacci and his Liber abbaci
as its starting point. Later abbacus books, indeed, take next to nothing from the Liber
abbaci,[217] but since they share much with the Livero – see, as an example, the
similarity of the ways the rule of three is formulated in note 20 (Fibonacci, as we
remember from p. 70, has nothing similar, nor any name for the rule). So, through this
double coupling, it seems that the abbacus tradition can really be linked to Fibonacci and
his Liber abbaci.

Precise analysis of the Livero reveals that this conclusion is fallacious – the details
can be found in [Høyrup 2005]. Here I shall restrict myself to a summary.

213 Henceforth, references [Am;Bn ] to the text stand for [Arrighi 1989: m; Bocchi 2017: n ].

214 Florence, Riccardiana, Ms. 2404, Fol. 1r–136v – a beautiful vellum manuscript indicating that
the book was appreciated.

215 Since my earlier analysis of the Livero [Høyrup 2005] was built on Arrighi’s edition (and a visit
to Florence where I could inspect the manuscript), this edition shall be the main basis for my
references. Recently, the Riccardiana has made the manuscript accessible online, which has served
me for controls
(http://teca.riccardiana.firenze.sbn.it/index.php/it/?view=show&myId=19c563cd-c6b9-4c10-
aa75-1de14762a212, last accessed 29.6.2022; apparently defunct 12 May 2023).

216 Quisto ène lo livero de l’abbecho secondo la oppenione de maiestro Leonardo de la chasa degli
figluogle Bonaçie da Pisa [A9;B163].

217 See below, p. 245 onward, on late and very particular (thus only partial) exceptions.
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It turns out that the Livero moves on two unconnected levels. On the basic level we
find everything that was taught in the abbacus school; nothing on this level comes from
Fibonacci (some complex problems about similar topics do, however).

At first the rule of three is presented, in the formulation that with very small variations
was to become the standard of the abbacus treatises (cf. above, note 20); the basal
presentation is followed by rules for how to eliminate fractions and some examples. Several
chapters present the use of metrological shortcuts, and four the exchange and barter of
monies and the purchase of bullion. The initial parts of the chapters on alloying and on
simple and compound interest also belong on this level, as do the full chapters on
discounting and partnership (details in [Høyrup 2005: 29–30, 44–53]).

On the other level we find sophisticated material. Most of this is translated from the
Liber abbaci – often with errors revealing that the compiler of the Livero (and his source,
if the translation is borrowed, as it appears[218]) did not understand what he translated –
as Andrea Bocchi observes [2017: 16], in contrast to the exquisite quality of the
manuscript, the mathematical substance is characterized by “an impressive series of errors
and lacunae [...], in particular in the part derived from the Liber abbaci”. We may restrict
ourselves to a couple of instances.

A plausible though not fully certain example of this is that Fibonacci’s composite
fractions are systematically understood as normal fractions, for instance becoming

3 5 14

4 6 25

simply .[219] In principle that might be due to a misunderstanding on part of the
3514

4625

218 “The vernacularization of Fibonacci does not derive directly from a Latin antigraph: the model
of the Riccardiano [manuscript] was not directly the Liber abbaci but an already profoundly adapted
vernacularization” [Bocchi 2017: 32]: a conclusion based on mistakes that are difficult to explain
unless we presuppose the use of a vernacular intermediary – for example, Fibonacci’s minus
becoming viene through the intermediary meno, whose m is easily read as vi.

219 [B110;G190] respectively fol. 17r. In one place, on the other hand, Fibonacci’s simple fraction
70/360 [B274;G441] becomes (fol. 124r ), evidently because the copyist wants the numerator and7 0

360

the denominator to have corresponding extensions.

The fraction results in the Liber abbaci when “uncie 13, et denarii 14, et carubbe 5,3 5 14

4 6 25

et grana 3” are expressed as a mixed number, namely as 13, in agreement with Fibonacci’s3 5 14

4 6 25

explanation of the metrology [B84,107;G142,183] – 1 uncia consisting of 25 denarii [di cantera],
1 denarius of 6 carubbe, 1 carubba of 4 grani. Fibonacci leaves to his reader to understand this.

In the Livero, an explanation is given, “This is its rule, that we shall bring to one stroke all

the denari and the carubbe and the grani, like this, 13”. “Stroke” (verga ) is used elsewhere3514

4625

about the fraction line, but also [A132;B400] when the compiler takes over a graphically similar
but mathematically different notation in the problem about seven old women go to Rome

[B311;G489] – standing for 7 (1+7 (1+7 (1+7 (1+7 (1+7))))). Actually, the7 1 1 1 1 1

7 7 7 7 7
1

Livero writes , adding two extra 7s, using multiple strokes but still speaking of7 1

7

1

7

1

7

1

7

1

7

1

7

1

7
1
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14th-century copyist of a substantially correct original version of the Livero. Such
misunderstanding are also found in the Boncompagni manuscript of the Liber abbaci;
there, however, they are not systematic as here, which suggests that the misunderstanding
of the composite fractions must be ascribed to the original compiler of the Livero (or
perhaps to the earlier translator into the vernacular). If this is the case, the compiler has
not followed the calculations when copying; if the mistake goes back to an earlier
translator, it would be impossible for him to do so, since the calculations are meaningless.

Indubitably the responsibility of the compiler (again, probably already of the earlier
translator) is the omission of most of Fibonacci’s alternative solutions by means of regula
recta. In one case, however [A89;B7317], in a problem about travels with gain and
expenses based on [B258;G418], only the beginning is skipped, where the unknown is
posited to be a res; in the passage that is taken over, the compiler translates this res as
a nonsensical non-algebraic “thing” (cosa ); the method itself is called per regola chorrecta.

In one case, finally, where Fibonacci [B399;G613] solves a problem of the second
degree (repeated commercial travels with constant profit rate; above, p. 134) by means
of proportions in a lettered line diagram and Elements II.6 in key version, all letter-
references disappear from the text [A93;B324f ], as does the line diagram itself. The
possession of the traveller after the second travel is misread consistently as 229 £
(Fibonacci has 299 £), blatantly contradicting the copied correct result (namely that each
100 £ earn 30 £ at each travel.

In general, much is left out from the problems that are copied from Fibonacci.
However, that which the compiler copies, he tries to copy faithfully – often repeating
Fibonacci’s cross-references even when they are no longer valid in the new context.[220]

As explained in note 80, Fibonacci writes mixed numbers in the Arabic way – that
is, not 69 but 69. In the problems he borrows from Fibonacci, the compiler of the

1

3

1

3

Livero does the same, only adding in many cases a unit, which Fibonacci leaves out.
Those problems that do not come from the Liber abbaci are different. The first pages

follow the habits of the time and write, for example, libra 1, soldo 1 e denari 10, 6/7 de
denaro.[221] Then suddenly the compiler starts to write the fraction to the left, for
example, libre 68, soldi 3, denari 7/11 7 de denaio [A18;B177]. This grammatically

the verga in the singular, in agreement with Fibonacci’s singular virga. Here, at least, the compiler
seems to have copied without understanding (and without counting well). Whether he understands
what was possibly added to the original text in the vernacular translation of the Liber abbaci which
he uses cannot be decided.

220 One example: When presenting Fibonacci’s first house-renting problem the Livero [A48;B231]
explains that “this one is similar to the other one about travels, that is, that somebody had 100 £,
from which of 5 £ he made 6 in each travel ...”, exactly as does Fibonacci [B267;G430]; but
unfortunately the chapter on repeated travels only comes much later [A88;B315] in the Livero.

221 [A16;B174], abbreviations resolved, punctuation modern.
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impossible structure shows that he has used an original writing ... denari 7, 7/11 de denaio
and then (whether inspired by Fibonacci or not we cannot know) shifted the order of the
mixed number according to Arabic habits. This interpretation is confirmed by a few slips:
occasionally the shift is forgotten. The material that does not come from Fibonacci must
therefore come from an earlier abbacus-text (possibly several). That later abbacus texts
turn out to be similar to this part of the material of the Livero hence does not at all link
them to Fibonacci.

This brings us to the question of dating. Loan contracts in the text, dated 1288–1290,
were taken by Warren Van Egmond [1980: 156] as basis for the dating “c. 1290, i[nternal
evidence ]”. Gino Arrighi [1989: 6] judged the text to belong to the second half of the
13th century because of the general character (stesura ).

However, the same distorted way of writing amounts of money involving mixed
numbers is found in the loan contracts contained in the Livero. In consequence, these
cannot originally have been composed by the compiler; as the rest of his text, they must
have been copied from a model – certainly an earlier teaching text, not real-life
contracts.[222] The date 1288–1290 is therefore only post quem. The complete ignorance
of the compiler of even the most basic algebraic terminology tells us, however, that he
cannot have written much later than 1310.

The manuscript, apparently a de luxe copy on vellum, may well be later. That is
evidently of no concern for the dating, but it tells us that a Primo amastramento de l’arte
de la geometria which follows the Livero in the manuscript and is written in the same
hand need not originally be from the same hand nor date as the latter. As pointed out
by Bocchi [2017: 85], it was clearly thought to be an independent treatise; it shares with
the Livero the general characteristic of drawing in part on the Fibonacci (apparently via
the same vernacular version), in part of other sources. However, its way to designate
concrete mixed numbers where it does not depend on Fibonacci is sometimes similar to
the inconsistent way of the Livero, sometimes different.[223] If not due to the same hand,
the originals of the two works seem to have been compiled by closely connected writers.
We need not undertake a detailed analysis of this Primo amastramento, but we shall return
to its way to find approximate square roots on p. 174.

The Pisa Libro di ragioni

A unfortunately incomplete Libro di ragioni (“Books of problems”) is contained in
the manuscript Siena, Biblioteca degl’Intronati, L.VI.47.[224] On the basis of her

222 As observed by Bocchi [2017: 37], all accounts are opened 1 January 1288.

223 For instance [ed. Arrighi 1991: 9], br. 5/8 9 de braçio and, in the following line after a
multiplication by 4, br. 1/2 38. The latter type, close to Fibonacci, is by far the most common.

224 Two editions have been made, [Bocchi 2006] and [Franci 2015]; Franci appears not to have been
aware of the existence of Bocchi’s edition. Bocchi, being a philologist and palaeographer mainly
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impression of the language and the shape of numerals Franci [2015: 11] claims it to have
been written in the late 13th century. Bocchi [2006: 19], supported by the authority of
Armando Petrucci, dates it “certainly to the first half of the 14th century, probably to its
first fourth (1301–1325)”.[225] Ulivi, independently [2011: 258], also dates the treatise
to the beginning of the 14th century.

According to an early foliation, three leaves are missing in the beginning. They may
have contained multiplication tables, but will not have allowed a general introduction to
the Hindu-Arabic numeral system as we know it from Jacopo. The first conserved leaf
starts (p. 22) in the middle of a sequence of metro-numerical tables – the first line closes
a list of divisions of amounts of bezants by 100,[226] after which come
– divisions of 1/3 δ, 2/3 δ, 1 1/4 δ, ..., 100 δ by 100;
– divisions of 1/4 δ, 1/3 δ, 1/2 δ, ..., 12 δ by 12;
– divisions (pretendedly) of 1/12 ß, 1/9 ß, 1/8 ß, ... 11/12 ß by 12; actually, 1/12 ß etc. are

just converted into δ;
– conversions of fractions of £ into ß and δ;
– conversions of fractions of a pound (a libbra sottile, cf. note 22) into ounces;

...
At the end come divisions of fractions
– 1/5 , 2/5 , 3/5 and 4/5 by divided by 100.

interested in the language, leaves out the numerical schemes contained in the manuscript from his
almost diplomatic transcription; they are included by Franci, who as a historian of mathematics
understands them to be important for her purpose. Bocchi also points out in one of four cases only
that a leaf is missing within the stretch of text he transcribes (mentioning the general phenomenon
only in the introduction, p. 23), while Franci identifies the lacunae and reconstructs the statements
of problems where only the final part of the calculation survives after such a lacuna. On the other
hand, Franci omits from her transcription the final ten surviving leaves, which are too damaged
to allow her to produce an understandable text, while Bocchi includes them in his edition, which
indeed allows us to understand the topics dealt with if not the procedures. Bocchi also offers a very
useful glossary.

When nothing else is indicated, references to the text point to the pagination of Franci’s edition.

225 Bocchi [2006: 22] further points out that the geographical awareness reflected in the problems
carries no trace of how the Pisan trading network had looked before Pisa’s defeat to Genua in the
battle of Meloria in 1284 – probably indicating that this was already decades in the past.

In a personal communication (17 June 2022) Bocchi informs me about two further paleographic
opinions, one being “early 14th century”, the other 1305.

226 Bezants tout court can be seen from a problem where they are used for purchase in Tunis (p.
46) to be garbi, not Byzantine (cf. above, note 107); p. 66 speaks of a biçantio di migliarese, the
migliarese being a silver coin, valued (according to the present treatise, for example the present
division) 1/10 bezant. This bezant appears regularly in the treatise; they come from the Maghreb,
but imitations were coined in Pisa and elsewhere in Italy [Travaini 2003: 33]. A biçantio di carato
(Byzantine, Egyptian or from the Crusader states?) turns up more rarely.
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After these tables come (p. 28) a number of rules for divisibility, apparently meant
to facilitate the reduction of fractions and divisions:
– When the letter [i.e., digit] in the beginning (a chapo ) is even, one may reduce

[schizzare, the term used for the reduction of fractions] to half. When proof is taken
for 9 and is 3 or 6 and the first letter is not even, one may reduce to 1/3 .

– When the two letters in the beginning have the 1/4 , all the others have too.
...

– When the letter in the beginning is çefaro (i.e., zero), one may reduce to 1/10 or
1/5 . Beyond the spelling çefaro (closer to original arabic sifr than the zevero that is
often found, and no obvious descendant from Fibonacci’s zephirum [B2;G5]) we may
take note that a multi-digit number is supposed to begin to the right, as in Arabic
(but also in many other abbacus books). The rules are all reasonable and correct; I
have not observed them elsewhere.

Another table follows (p. 28), with heading hoc est lasalma, “this is lasalma”. Lasalma
is related to Fibonacci’s hasam (above, note 84), rendering the Maghreb Arabic term
asamm designating a number that cannot be factorized. Lasalma, however, must come
directly from something like al-asammā , with article, double consonant and (what to
a Pisan merchant looks like) a feminine ending, none of which Fibonacci indicates; it
must come directly from the Arabic.[227] Another indication that the table is not drawn
from Fibonacci (as supposed by Franci [2015: 13]) is that Fibonacci’s table lists only the
prime numbers from 11 to 97 (that is, the asammā numbers), while the present table
lists all numbers from 11 upwards (because of missing leaves we cannot know how far),
indicating either a splitting in two or three factors or that the number in question “has
no rule”[228] – all in fraction form, confirming that division by the number in question
is intended. It appears that the author has not understood (as he would if he had read
Fibonacci) that lasalma means the same as “without rule” (that is, prime) and instead
takes it to mean “factorization”.

For 12, the format is , obviously inspired by the ascending continued fraction
1 1

2 of 6

= 1/12 and a functioning explanation of the reading direction of such fractions but
1 0

2 6

none the less mistaken. The format for 14, 15 and 16 is the same, but from 18 upwards
it changes to “ 1/2 of 1/9 ”, etc. – with the exception of 84, for which “ 1/2 of ” is given.

1 1

6 7

Later in the treatise, mistaken use of the notation for ascending continued fractions
also occurs – in a problem on p. 39, is thus explained to stand for 1/8 , which is next

1 1

2 4

227 The omission of the initial vowel and the misrepresentation of the double consonant suggests
spoken Arabic, which is anyhow what we should expect.

228 Once written sine regula, afterwards non à regula. The former expression is close to what is
used in the Liber abbaci (see note 84); but Fibonacci, as we have seen, speaks of something which
was already said “by us”, and the present words therefore need not come from the Liber abbaci.
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used three times, excluding a writing error. However, the notation for ascending continued
fractions is mostly used correctly, always written (as in Arabic and the Liber abbaci )
right-to-left – as explained on p. 46 concerning 7/11 and 7/9 of 1/11 , “both fractions are to
be written on one stroke and disposed thus ”. Sometimes, they go until three levels

7 7

9 11

(never more). As a rule, however, they are only used when resulting directly from the
calculation, and so rarely that the writer feels obliged to repeat on p. 53 and again on
p. 70, (and repeatedly in more rudimentary form afterwards) the instruction given on p.
46. Much more often, complex fractions are expressed as sums of fractions connected
with e, “and”.[229] Mixed numbers involving a fraction or an ascending continued fraction
may have the fraction to the left (the Arabic and Fibonacci-way), or to the right (the
normal local habit), with a tendency that the former type takes over completely toward
the end of the treatise. Often, mixed numbers are also written with a connecting word
(for example, p. 51) 22 e 2/13 . This writing, often expanded, prevails when a unit is
involved; on p. 66 we thus find both 634 ß e 1/2 and 32 biç. e 10/79 di biç. Complex
fractions expressed as sums invariably stand to the right, as for example (p. 34) “δ 5 e
3/4 e 1/100 e 1/400 di δ” – even when reappearing in schematic calculations deprived of unit.

All in all, even though ascending continued fractions as well as mixed numbers with
the fraction written to the left are shared with Fibonacci, there is no reason to conclude
from this eclectic treatment of fractions that the present Libro di ragioni was inspired
by the Liber abbaci, and even less to find a deliberate attempt to emulate Fibonacci’s
ways. Both features simply reflect Maghreb habits; and as shown by the (badly understood)
notion of lasalma numbers and by his copious reference to Maghreb bezants, the present
writer had direct contact to the Maghreb.[230]

With the exception of two clearly delimited borrowed sequences (below, p. 162
onward), the matters that are taught after the tables are definitely oriented toward what
is commercially useful (and to a large extent linked to Pisa trade). By far the larger part
of what is conserved teaches the rule of three. Often the questions involve several
metrological levels and/or fractions in at least two of the positions – for example (p. 47),
“rotuli 19 and 1/3 cost £ 4 ß 13 and δ 7, at what come rotuli 58 and 1/2 ?” They may also
ask for serial application of the rule, as in this problem (p. 48),

I buy in Palermo the cantare of cheese, which is rotuli 100, at teri 23 and grains 12, I
leave and return to Pisa with my merchandise, and each Palermo cantare in Pisa becomes
pounds 240. In Pisa I sell the centonaio, that is, pounds 100, at £ 7 and ß 13, I want to

229 In the Liber abbaci, in contrast, such sums stand without a connector.

230 Beyond the Maghreb bezant with its subdivisions and coins from the Italian mainland and Sicily,
only tornesi (minted in Tours) and the biçantio di carato (see note 226) are referred to. The Maghreb
can be seen to have remained essential for Pisa trade a good century after the city had sent
Fibonacci’s father there as a public official.
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know what I get per ounce.

Obviously, the calculations can be quite extensive.
Between the tables and the problems, three leaves are missing. We therefore cannot

exclude that the rule of three was introduced in abstract form, as in Jacopo’s Tractatus
and in the Livero (above, p. 17 and note 20), even though the absence of traces in the
language further on makes it doubtful. So much seems certain, however, that an
introduction, if any has been there, did not make use of a counterfactual statement, as
done in Ibero-Provençal works (below, p. 176); as we shall see when analyzing the
“Columbia algorism”, this would have left traces in the formulations of the problems.

Within the long sequence of rule-of-three problems we find two partnership questions,
both of which, however, merely indicate the total capital and the share of a single partner –
which means that these are indeed nothing but rule-of-three problems. The reader will
evidently have learned from this how to solve also problems where the shares of all
partners are given, but the aim of the text is shown by this choice to be training for trade,
not for capital management.

Related to partnership problems, however, are two earlier recreational problems (pp.
51f ) about distribution according to fractions whose sum exceeds or falls short of 1; first
this one,

There are 3 men who should share 75, one should have the 1/2 , the other the 1/3 , and the
other should have 1/4 . I want to know how much each should have. You should do like
this: knowing that these questions are called fallacious [fallace ], why are they called
fallacious? Because when the number is more than a whole part one should have less,
and when the number is less than a whole part, more , ß and δ result. Now you should
do thus: that you should know in what 1/2 and 1/3 and 1/4 can be found, it is found in 2
times 3 multiplied by 4, they make 24, which you can reduce [schizzare ] to 1/2 , and they
are found in 12. Now say, 1/2 of 12 is 6, and 1/3 of 12 is 4, and 1/4 of 3, now join together,
and you have 13. The sharing thus falls to 13. Now say, 13 parts have to share the 75,
what results for the half of 12 which is 6, now you shall multiply 6 by 75, and divide
in 13. [...].

Straightforward application of the partnership rule would have found the first share as
( 1/2 75)/( 1/2 + 1/3 + 1/4 ); what is done here reminds more of a method used in Islamic
inheritance law (Ulrich Rebstock, private communication).

These problems follow a group of recreational problems similar to those treated in
part 12.3 of the Liber abbaci [B173;G296] (the “tree problems”). The first (p. 49) says
about a lance that 1/3 and 1/4 of it are below ground and 32 palms above. It is solved by
means of a single false position, that is, in what Fibonacci called the vernacular way
(above, p. 25). Three other problems belonging to the group deal with pure numbers.[231]

231 Between the first and these comes (p. 50) a problem about buying and selling eggs, of which
only the initial line survives, but might be similar in structure (need not, in any case the numerical
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The two “fallacious” problems are followed by three problems about a house which
is owned collectively, the first of which (p. 52) ( 1/3 and 3/5 of the house is worth 300 ,
what is the value of 1/6 of the house?) makes use of a technique similar to that of the
“fallacious” problems, while the other two (both presupposing the house to be divided
into 24 shares called “carats”) use a more regular rule-of-three procedure. All five
consistently state the monetary unit after the number (e.g., “7 e 10 ß”, whereas the rest
of the treatise follows the habit shared by Fibonacci and most other abbacus treatises,
where this amount would have been written “ 7 e ß 12”. They are thus certainly taken
from a particular source.[232]

After the house problems follows (p. 53) an unusual pure-number problem (unique
in the present work, and unusual in general in the way it is dealt with):

Divide for me 10 into 2 parts, so that one part divided by 3 makes as much as the other
by 4. You shall do like this: 3 and 4 make 7, thus 7 is worth 10, what results from 3 and
from 4? That is, and if you want to say 7, you have to divide 10 so that it comes to 3
and at 4. You should multiply 3, multiplied by 10, and divided in 1/7 , and 4 2/7 results.
The other part you will make like this: 4 times 10 and divide in 1/7 , and 5 1/7 results, as
so much is the other part. One part is thus 4 2/7 and the other part 5 5/7 .

A proof follows – maybe because the writer is not certain the exposition is convincing.
The idea hiding behind the procedure seems to be a variant of the single false position:
let us assume that the numbers are 3 and 4 – obviously, these fulfil the second condition.
Their sum, however, is 7, not 10, and therefore by the rule of three the first has to be
10 3/7 , the second 10 4/7 . If I do not err, the formulation “7 is worth 10” is the only time
the Libro di ragioni comes close to a quasi-counterfactual statement; it is therefore a
reasonable assumption that the present problem belongs together with the “house” and
“fallacious” problems that precede – since no money appears the criterion that kept these
together (monetary unit preceding or following the number) does not apply here, where
no money is spoken of.

This group is an insertion in the long stretch of rule-of-three problems, which continues
from p. 54 to p. 80, ending by the two rule-of-three problems about shares in a partnership.
They are followed by a section teaching how to multiply two mixed numbers (pp. 81–89).
Mixed numbers have evidently been multiplied almost ad nauseam in the many rule-of-
three problems, but by what Fibonacci calls the “vernacular” method (above, p. 62) –

parameters are different) to a problem in the Liber abbaci [B179;G304].

232 Both examples of carato designating 1/24 of a partnership in [Edler 1934: 63] are from Florence.
But for the corresponding Castilian quilate, [Corominas & Pacual 1980: IV, 727] reports the use
about a tax (presumably of 1/24 ) on the sale of fixed property in Murcia around 1300. Further, a
Venetian Libro dabaco [Tagliente 1520x: 48v] speaks of shares of 1/24 of a ship-partnership as carati.
The generalization of the carat, after all, cannot be used to determine the region from where these
problems were adopted.
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just as the method for serial application of the rule of three is his “vernacular” step-by-step
calculation. Here, instead, the method is to “bring to fraction” both factors (in the
terminology of manuscript V of Jacopo’s Tractatus [ed., trans. Høyrup 2007: 241f ]); the
calculation is then controlled by casting out sevens, and the final result expressed by means
of an ascending continued fraction. The products (12 in total) initially are squares;
afterwards the factors are different:

17 3/4 17 3/4
23 2/7 23 2/7
27 5/9 27 5/9
32 1/11 32 1/11

37 1/2 51 0/3

41 1/4 54 1/5
47 5/6 62 2/7
56 7/9 72 3/10

79 2/13 85 5/17

19 25
1 3

3 5

1 2

2 7

29 37
1 5

3 10

1 4

4 11

43 563 7

5 8

1 5

1 17

After each calculation follows the same in schematic form – each time to the right of
another schematic calculation with slightly higher numbers, whose appearance is not
commented upon. At first this:

It seems certain that the whole sequence is borrowed – not least because a very similar
sequence is found in manuscripts M and F of Jacopo’s treatise [ed. Høyrup 2007: 405–407,
cf. p. 55],[233] (schemes only, and no ascending continued fractions, but also there
ordered right-to-left, and with the rare control by casting out sevens). There, there is no
doubt that the sequence is a wholesale intrusion.[234]

P. 89 returns to indubitable Pisa material:

A man makes 3 travels, in the first he goes from Pisa to Lucca and doubles all his money
and disburses δ 12. And then he goes from Lucca to Florence and doubles all his money
and disburses δ 15. And then he goes from Florence to Siena and doubles the money and

233 The diagram just given indeed emulates the style of these two manuscripts (M, fol. 12r–13v, F
facsimile in [Simi 1995: 55–58].

234 Firstly, in contrast to V, M+F do not multiply mixed numbers in the way taught in these schemes.
Secondly, in the two manuscripts the fractions of the two factors are written as far left as possible,
while the integer part is pushed to the right; the fraction of the outcome is surrounded by a curved
line similar to those enclosing the remainders modulo 7, showing that the compiler of this version
did not understand what he copied as mixed numbers.
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spends δ 21, and nothing remained for me. I want to know what my capital was.

This could be inspired by the first problem in the Liber abbaci about repeated travels
with gain and expenses (above, p. 88). It is no less possible that Fibonacci took over a
local Pisa variant of the recreational classic and solved it by means of his own sophisticated
method. In any case there is no doubt that the two problems are linked though different
(there is no mindless copying here, as in the Livero [A89;B315]). The method used in
the Libro di ragioni also differs from that of Fibonacci (copied with or without
understanding in the Livero ), namely a scheme within which the backwards calculation
can be arranged.

Three problems of the same kind but with varying numerical parameters follow. Then
(p. 92) comes a short paradigmatic example showing how to subtract a fraction from a
fraction ( 3/5 from 6/7 ) as a continued ascending fraction. The method proposed is to find
a number of which both can be taken (in case 5 7 = 35); since 3/5 of 35 is 21 and 6/7
of 35 is 30, the difference between the fractions is 9/35 = . This looks like a

4 1

5 7

continuation of the borrowed sequence about the multiplication of mixed numbers that
preceded the travel-problems.

After this comes a sequence of traditional recreational problems – first the beginning
of one about the emptying of a cask through several holes, then after a missing leaf (from
here onward only transcribed by Bocchi) two analogues of the apple-picking problem
we encountered in the Liber abbaci (above, p. 90), though with different parameters and
solved in a different way.

After a single simple partnership problem follows [ed. Bocchi 2006: 70] a problem
comparing two cylindrical volumes (the payment for a projected versus the realized well);
the text is heavily damaged but at least shows that the calculations are wrong.[235] A
last recreational problem [ed. Bocchi 2006: 71] deals with 4 men finding 4 purses. Even
here something is wrong, probably because of ill-understood copying. The contents of
the purses are given, and so are the ratios between the possessions of the men. Firstly,
the ratios are given cyclically in such a way that the first man has 120 times as much
as he has himself; secondly, the two sets of data are unconnected, and even with possible
ratios therefore could not possibly lead to a solution (what remains from the solution also
shows that the data are supposed to be connected).

The next section [ed. Bocchi 2006: 71–75] deals with alloying, said to be divided
into five differencie, much the way the topic is divided in the Liber abbaci (which has
seven differentiae, cf. above, p. 75). Most of the questions begin that “a man” has or wants
to make a coin of specified fineness. We may take note, however, that one [ed. Bocchi
2006: 74] starts “I have coin, which coin is at 4 1/4 ounces per pound” – cf. above, p. 75.

The last two conserved leaves [ed. Bocchi 2006: 75–77] deal with area computation

235 The idea of a badly used source appears to be that the volume of the cylinder is found at half-
diameter times half-perimeter times height. The final result shows that the calculations of the source
were correct, apart from a minor error in the fractions of a δ.
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in Pisa metrology (also described by Fibonacci in his Pratica geometrie [ed. Boncompagni
1862: 3f ][236]).

Area computation is likely to have been the last topic dealt with; all in all we probably
have a good impression of the complete treatise. Summarizing, it seems to show traces
of Maghreb influence not mediated by Fibonacci; the main objective can be seen to have
been the training of the rule of three. Absent are metrological shortcuts allowing to
dispense with the full rule with its multiplications and divisions (part of the 15th-century
“Pisa curriculum”, and also known from Jacopo, see above, pp. 5 and 20). Barter is absent,
and so is interest, and a fortiori discounting; the only commercially useful topic dealt
with beyond the rule of three is indeed alloying. Recreational problems play a rather
restricted role compared with many other abbacus treatises (not to speak of the Liber
abbaci ).

The “Columbia algorism”

Like the Livero, the “Columbia algorism” (henceforth CA ) is known from a 14th-
century vellum copy – once belonging to the Boncompagni collection, since 1902 in the
possession of the Library of Columbia University, New York (Columbia X 511 A13) –
cf. [Cowley 1923: 22f ]. An edition was made in [1977] by Kurt Vogel; references to the
text in what follows point to the pagination of this edition and its numbering of sections.

On the basis of some of the coins included in a coin list Vogel dated the CA to the
second half of the 14th century, while admitting that the coin list might have been included
when the copy and not the original was produced [Vogel 1977: 3f, 158]. Better
identification of the coins in question allowed Travaini [2003: 92] to date the list to “later
than 1278 and before 1284”.

That does not necessarily determine the date of the CA itself. As we have seen (above,
p. 50), Jacopo’s coin list can be dated to 1302, five years before Jacopo’s Tractatus was
written; moreover, it was still copied in two abbacus books in the second half of the 15th
century [Travaini 2020: lxi, lxiv]. Francesco Pegolotti, when putting together around 1340
material useful for international trade in his Pratica de mercatura [Evans 1936:xivf ],
inserted a coin list from ca 1290, with additions to be dated ca 1320 [Travaini 2003: 86].
However, another observation made by Vogel [1977: 12] supports a date close to that
of the coin list: the shapes of the Hindu-Arabic numerals are not those that were current
in the mid-14th century but seem to point to the 13th; apparently (as not quite uncommon)
the copyist tried to emulate his original. As we shall see, the contents also speaks for an
early date. Since most money-exchange problems involve the cortonesi, and since the
coin list often evaluates other coin with reference to these, the likely place of origin is
Cortona, close to the Tuscan border toward Umbria.

Like the Pisa Libro di ragioni, the CA is incomplete, missing the initial as well as

236 Cf. [Høyrup 2019a: 209].
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several later leaves. How much is missing in the beginning cannot be known precisely,
but hardly much, as argued by Elizabeth Buchanan Cowley [1923: 382f ] after analysis
of the binding (unless a complete quire has been lost). A full introduction to the Hindu-
Arabic numerals is therefore not very likely to have been present, and hardly a detailed
explanation of operations with fractions (they are trained in the first conserved problems).
The CA was therefore no algorism,[237] as is Jacopo’s Tractatus, an explanation of the
Hindu-Arabic system (with applications), but another libro di ragioni, “book of problems”.

In the Livero, we saw, ascending continued fractions were used consistently in the
stratum more or less well borrowed from Fibonacci, and never in the basic stratum of
the text. In the Pisa Libro di ragioni, they are used intermittently, and initially the notation
apparently borrowed from the Maghreb is misunderstood. In the CA they are extremely
rare, never go beyond two levels, and the writing direction changes: In problem #39, p.
64, they are to be read in the Arabic way, from right toward left, standing for 5/8

1 1

4 2

and for 7/8 ; in #60, p. 81, the reading goes is left-to-right, now standing for
3 1

4 2

1 1

4 2
3/8 ;[238] mixed numbers, however, are always written left-to-right. Noteworthy is an
emulation of the notation where for instance (#40, p. 65) stands for “1 grana and

1

grana

1

2
1/2 [of a grana ]”, which in combination with the occasional use of (for instance)
1/4 for “the fourth” meant not as a fraction but as the fourth in a sequence shows that the
fraction line is understood, not as a division but as an indication of unit – in other words,
what looks to us as a denominator is instead understood as a denomination. We shall
encounter the pseudo-ascending fractions in Dardi da Pisa’s algebraic notation on p. 215.
Ordinal numbers written in the shape of fractions are widespread in the abbacus corpus.

The Livero, including no introduction to the number system, opened with an abstract
formulation of the rule of three (the one that was going to be the standard of abbacus
books). Whether the Pisa Libro did the same is doubtful (above, p. 162). In the CA, a
general presentation is offered (#11, pp. 39f ) after a sequence of problems and rules mostly
teaching numerical techniques:[239]

237 The line Rascionei d’Algorsmo on top of the first conserved leaf was obviously written when
the initial leaves had already been lost. It is also written in a modern hand [Cowley 1923: 381].

238 Actually, the fraction line is discontinuous, , etc., as in the Livero, and the notation thus1

4

1

2

ambiguous; in #16, with similarly discontinuous fraction lies, p. 45, is meant instead as 1/10+
1/20,

1

10

1

20

and as 1/5+
1/10.

1

5

1

10

239 However, the CA is far from systematic. Within the sequence in question we also find a problem
about repeated travels with gain and expenses (#4, p. 33), solved step by step backwards (with no
use of a scheme, as done in the Pisan Libro (above, p. 165), and in #5, p. 34, the grasping problem
which we know from the Liber abbaci (above, p. 95) – with the numerical parameters which
Fibonacci shares with al-Karajı̄ but merely with an indication of the solution, not even hinting at
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Remember, that you cannot state any computation where you do not mention three things;
and it is fitting that one of these things must be mentioned by name two times; remember also
that the first of the things that is mentioned two times by name must be the divisor, and the
other two things must be multiplied together.

An example dealing with the exchange of money follows. Later this formulation is used
a couple of times (#19, p. 48, and #21, p. 50) in examples that refer explicitly to the “rule
of the three things”. As we see, instead of referring to what is “similar” or “of the same
kind” (cf. note 20) the CA here speaks about what is “mentioned by name two times”.
While the idea is the same, the words are different.[240]

Much more often, however, the problem is reduced to a counterfactual formulation
(invariably so in cases where the rule serves inside a more complex calculation). A simple
instance is a question (#114, p. 124) for two numbers the sum of whose squares is 64.

If you want to do this, find me a number that may be multiplied by two numbers [that
is, which may be produced as the sum of two numbers each multiplied by itself], and which
has a root, which is 25, and one number is 3 and the other is 4, and say thus: the root
of 64 is 8, and the root of 25 is 5. Say, if 5 were 8, what would 4 be, and it would be
6 and 2/5 ; and say, if 5 were 8, what would 3 be, and it would be 4 and 4/5 ; and these
are 2 such numbers which, each multiplied by itself, will make 64 precisely.

Such auxiliary use of the rule of three in counterfactual formulation is found in no less

a method, and thus teaching absolutely nothing. The story is told in words that are very far from
those of Fibonacci.

240 “mentioned two times” is not totally absent from the later Italian record, but it must have been
rare. I know it from only three sources, two of them from 1478. One is Pacioli’s Perugia manuscript
[ed. Calzoni & Cavazzoni 1996: 19f ], which gives this as an alternative to the normal “similar”
formulation (repeated with minimal change in the Summa [1494: fol. 57r]):

The same in other words. The rule of 3 says that the thing which is mentioned twice should
be looked for, of which the first is the divisor, and the second is multiplied by the thing
mentioned once, and this multiplication is divided by the said divisor, and that which
results from the said division will be of the nature of the thing mentioned once, and so
much will the thing be worth which we try to know.

The other occurrence is in Pierpaolo Muscharello’s Algorismus, written in Nola (close to Naples,
thus in a region under strong Spanish influence and outside the core abbacus region) [ed. Chiarini
et al 1972: 59]; it is a simple nod to the “mentioned” formulation within the standard phrasing:

This is the rule of 3, which is the fundament for all commercial computations. And in
order to find the divisor, always look for the similar thing, which is mentioned twice, and
one of these will be the divisor [...].

The third occurrence is much earlier, namely in an odd corner in a Libro d’abaco compiled in Lucca
by several hands around 1330 (see below, p. 199).

We shall return to the appearance in the printed Larte de labbacho (below, p. 319).
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than 18 problems out of 141 sections (problems and rules).[241] Thrice the method is
identified as “by the rule of three”.[242] In 12 cases the multiplication and ensuing
division are specified, in seven (as here) taken for granted. Sometimes the rule is appealed
to without clear indication of which of the two approaches was thought of,[243] or it
is simply applied without being named.[244]

As we shall see (below, p. 176), the approach by means of a counterfactual question
points to the Ibero-Provençal world. There is more to such a connection – Iberian rather
than Provençal. #111, p. 122, runs as follows:

Somebody had δ in the purse and we do not know how many. The 1/3 〈and the 1/5 〉 were
lost, and 10 δ remained for him. I ask, how many δ he had before the 1/3 and the 1/5 were
lost for him. This is its right rule, that we shall say, in what are 1/3 and 1/5 found, and
they are found in 3 times 5, that is, 15; and thus one shall say that he had 15 denari in
the purse. Remove the 1/3 and the 1/5 of 15, 7 escape. Say thus; if 7 were 10, what would
15 be? Say, 10 times 15 make 150, to divide by 7, and from this comes 21 3/7 , and so much
did he have in the purse before the 1/3 and the 1/5 were lost for him.

In a Castilian Libro de arismética que es dicho alguarismo (henceforth
Alguarismo ), a closely related problem is found:[245] only 5 denari remain, and the
story is told in the first and second, not the third grammatical person; apart from that,
we find a quite faithful repetition (only the finding of 15 as 3 5 has been left out):

The 1/3 and the 1/5 of my dineros were lost for me from the purse, and 5 dineros remained
in it, I ask, how many dineros there were in it at first? This is its right rule and calculation,
that you shall say, in what are found 1/3 and 1/5 , which is in 15, let us then say that you
had 15 dineros in your purse, 1/3 and the 1/3 were lost, 7 remained for you, say, if 7 were
5, what would 15 be? Say, 5 times 15 are 75, divide by 7, and from that come 10 5/7 , and
so many dineros were there at first in the purse.

The CA was not widely influential, and no other Italian abbacus treatise identifies the

241 #2, p. 32; #31, p. 57; #35, p. 61; #39, p, 64; #40, p, 65; #45, p. 70; #49, p. 73; #50, p. 74; #56,
p. 78; #57, p. 79; #58, p. 80; #61, p.83; #64, p. 86; #68, pp. 90, 91; #69, pp. 90, 91; #93, p. 109;
#111, p. 122; #112, p. 123; #114, p. 124. #96–98, pp. 110–112, further present three counterfactual
calculations (“if 1/3 and 1/4 of 14 were 1/2 and 1/5 of 11, what would the 1/3 and the 1/5 of 23 be?”,
etc.). They are solved via reduction to simple counterfactual statements (the one just quoted to “if
8 1/6 were 7 7/10 , what would 12 4/15 be?”).

242 #31, p. 57; #39, p. 64; #61, p. 83.

243 Thus # 23, p. 51; #28, p. 54; #29, p. 55; #32, p. 58; #75, p. 96; #94, p. 110.

244 Thus #25, p. 52; #75, p. 96; #95, p. 110.

245 Ed. Caunedo del Potro, in [Caunedo del Potro & Córdoba de la Llave 2000: 167]); further page
references to the Alguarismo point to this edition. The edition is based on a 16th-century copy of
an manuscript from 1393, in itself a copy of an original going back at least to the early 14th century.
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rule of three via a counterfactual structure. It is therefore next to certain that the influence
went the other way, from Iberian vernacular practical arithmetic to the CA. That this could
happen is also not implausible – we remember Fibonacci coping his treatment of barter
from a “Castilian master” (above, p. 72).[246]

In many cases, obvious similarities between the CA and the Alguarismo cannot be
used to link the CA to the Iberian environment. That is the case if the problem type occurs
elsewhere in the Italian corpus; if the phrasing is not characteristically similar; and if
coinciding numerical parameters are either widespread or not sufficiently characteristic.
A number of other instances are more telling, however, and confirm the partial Iberian
inspiration for the CA.[247]

One example is #67 in the CA (p. 88):

There is a tower which is 10 cubits high; and on this tower there is a dove which by day
descends 2/3 of a cubit, and by night returns upwards 1/3 and 1/4 . I ask, in how many days
the dove will come to the ground. This is its rule, how one should make all such
computations, that you shall say how much 2/3 is more than 1/3

1/4 , you see that it is 1/12

of a cubit more. Hence it advances downwards each day 1/12 of a cubit. If one wants to
know in how many days it will be on the ground, one makes the 9 cubits and 1/3 which
it makes in 112 days, and remains to make 2/3 of a cubit which it makes in the last day,
and then it will find itself on the ground, and the computation is made in 113 days. And
many masters say about this question that the dove will be on the ground in 112 days,
not knowing about the hoax behind, that it makes 2/3 on the day of return and finds itself
on the ground.

Obviously, the errors of many masters (including Fibonacci, see above, p. 37) should be
120, namely 10÷ 1/12 . We shall return to this mistake after having looked at how the same
problem is dealt with in the Alguarismo (p. 162) – since the text there is obviously corrupt,

246 One may then ask, why do we not know about abbacus-like writings in large numbers from the
Iberian area.

The primary answer is that in the Italian abbacus-area, the merchant patriciate developed into
nobility, in the Iberian Peninsula it did not manage to do so. Traditional feudal nobility conserves
with pride arms and coats of arms. Similarly, merchants becoming nobility (and their environment)
conserved their sword – the arithmetic book. One of the surviving manuscripts of the Liber abbaci
(namely Vf) was in the possession of a member of the Fugger banker family before it became Church
property.

A secondary answer is that the Iberian area did not have a Warren Van Egmond. As suggested
by [Caunedo del Potro & Córdoba de la Llave 2000] and [Caunedo del Potro 2004], more than
we know may be waiting in library manuscripts.

247 Striking and almost certainly not accidental similarities are found in CA#67, Alguarismo#40;
CA#123, Alguarismo#21; CA#61, Alguarismo#39; CA#106, Alguarismo#60; CA#56, Alguarismo#76;
CA#126, Alguarismo#152.

Similarities that could be accidental are found in CA#108-109, Alguarismo#44,66-67; CA#85,
Alguarismo#48; CA#93, Alguarismo#51; CA#118, Alguarismo#53; CA#108, Alguarismo#66.
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even to the point of being ungrammatical, I shall try to translate even more verbatim than
usually:

There is a dove on top of a tower, and the height of the tower is 10 varas.[248] And
the dove mounts against upwards [sube contra suso ] in a day 2/3 of a vara, I ask you,
in how many days will this dove be on the ground. And many say that it will be on the
ground in 12 days, but it will be on the ground in 113 days, because it descends 9 varas
in 18 days and 1/3 of a vara in 4 days, which are 112 days and 1/3 make in a day, and
in this way it will be on the ground in 112 days.

There are obvious copying errors and misunderstandings – first, the nightly ascent is
omitted, which may be behind the enigmatic “mounts against upwards”; what might hide
behind “descends 9 varas in 18 days” is beyond my imagination. But the reference to
what “many say” is shared with the CA; most likely, both text descend from a text where
the error attribute to “many” had been written “12” instead of “120”. The Alguarismo
has then copied that mistake better than the rest of the text, while the compiler of the
CA, seeing that it cannot be correct, has misrepaired “12” as “112” instead of “120”.

Also interesting is #61 (p. 82) of the CA:

A merchant moved from France with his denari,[249] we do not know how many he
carried. He moved from France to Pisa with these his ß invested and earned 15 of denari
per the hundred. Then he left Pisa and went to Genua and earned 20 per hundred of .
He further left Genua and went to Sardinia and earned 25 per hundred of , and turned
back to Florence and earned 30 per the hundred, and then he counted his denari and found
himself with precisely 1000 of pisani. This is its rule, how one should make all such
computations, which can be made in two ways, one by false position, the other to find
it backwards; let us make it in the way of false position, and say that he moved first from
France with 100, and in Pisa there were 115 and in Genua there were 138, and in Sardinia
there were 172 ß 10, and returns to Florence and makes 224 ß 5. Now it can be made
by the rule of 3, and say, if 1 ß 243 were 1000, what would 100 be, which would be
448 ß 3 δ 2 420/897 .[250]

At first we observe that this appeal to a single false position corresponds to what Fibonacci
does when dealing with the gains in the first problem about repeated travels with gain
and expenses (and repeatedly afterwards; above, p. 88). More striking, however, is what
we find in the Alguarismo (p. 162):

A merchant moved from Lisbon with his dineros and we do not know how many, and
came to Sevil and earned 15 £ per 100, and then came to Valencia and earned 20 £ per

248 The vara is a length unit of around 80–85 centimetres. It corresponds to the Italian cubit
(braccio ) in abbacus texts in the sense that both are used to measure land as well as cloth.

249 Here meaning “money”, cf. above, note 22.

250 Should be 445 ß 18 δ 7 369/897 .
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100, and then he turned to Toledo and earned 25 per 100 and found as capital and gain
thousand £, I ask you, how many dineros he had at first when he moved from Lisbon?
Say that they were falsely 100 £, and in Sevil he earned 15 £, in Valencia he found himself
with 138 and in Toledo he found himself with 172 £ and 1/2 , say, if 172 1/2 were 100, what
would 1000 be? Say, 100 times 1000 are 10000, and divide by 172 1/2 , and from the
division results 579 £ 19 ß and 2 δ, 10/13 of δ.[251]

There is one travel less than in the CA, but apart from that the numbers are the same;
in both cases the traveller is defined to be a merchant, in both cases he discovers how
much he has after the last travel, and in both cases an explicit single false position is used,
which is quite exceptional for this problem type. There can be little doubt that the two
texts depend on the same source for this problem; moreover, we may notice that the three
problems in the Alguarismo that were used for this comparison are immediate neighbours;
at least the Alguarismo must therefore depend for them on a specific written source, not
for something in general circulation; actually, the following 3 problems in the Alguarismo
also have close counterparts in the CA, even though the similarities are less conclusive.

This does not exhaust the list of similarities between the CA and the Alguarismo which
can hardly be accidental, but it should suffice to make the point: not only the main manner
of the former to identify the rule of three but also a number of problems are borrowed
from an Iberian – probably Castilian – environment.[252]

Most of the problems in the CA are commercial or such widespread versions of
traditional recreational problems that nothing precisely can be said about their affinities.
Some are obviously related to problems from the Liber abbaci, but the similarities never
go beyond the shared heritage.

251 Should be 579 14 ß and 2 δ, 10/13 of δ – certainly a simple copying error.

252 Links to the Liber abbaci beyond the use of a single false position for the travel problem can
also be identified. Both the CA (#106, p. 118) and the Alguarismo (p. 167) present a two-participant
“purchase of a horse”, where the participants are defined as “companions”, and the requests are
1/3 + 1/4 respectively 1/4 + 1/5 of what the other has. Both solve by means of an unexplained rule, which
is based on this consideration: if A+qB = B+pA, than (1–p )A = (1–q )B, for which reason the any
pair (A,B ) = (k(1–q ),k(1–p ) is a solution. Fibonacci’s rule (above, p. 86) can easily be derived
from the rule given in the CA and the Alguarismo, but since Fibonacci’s rule only works directly
when the fractions to be transferred are aliquot parts, the Liber abbaci cannot be the source.

In abbacus books, the participants in this kind of deals are mostly just “men”, “merchants”
or “the first, the second, ...”. I have noticed “companions” in a single problem with four participants
in Paolo Gherardi’s Libro di ragioni [ed. Arrighi 1987: 45] (written in Montpellier in Provence,
cf. above, note 39), and a two-participant problem in the Livero [A67;B268], with the same fractions
as in the CA and the Alguarismo but with given price of the horse and therefore with a different
rule; even these two problems from the CA and the Alguarismo thus seem to be related, and
Fibonacci’s two-participant example might therefore (in spite of its bezants) be inspired from the
same environment.
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The Liber habaci

The last abbacus book that may belong to “generation one” or even to “generation
zero” is the Liber habaci.[253] It is anonymous,[254] probably to be dated to ca
1309[255] (two examples in the computus chapter refer to this year, pp. 161 and 163),
and apparently written in Provence.[256]

The reason to see this treatise as a possible reflection of “generation zero” is a unique
feature: all integer numbers are expressed in Roman numerals, Hindu-Arabic numerals
do not appear; fractions are systematically expressed in words. Even the brief explanation
of the place-value system on p. 155 speaks about figure d’abacho but does not show these
but only speaks in the abstract about figure.

Evidently, Italian and Provençal merchants had to calculate also before they learned
to use the Hindu-Arabic numerals. Once these had become commonly known, they
certainly displaced Roman numerals; but the rule of three, and commercial calculation
in general, could also be performed on the basis of the old notation or the spoken numbers
to which they correspond – since Antiquity, keeping track of intermediate results by means
of finger reckoning had been standard.[257] The Liber habaci may therefore be a

253 Florence, Biblioteca Magliabechiana XI.88, [ed. Arrighi 1987]; page numbers will refer to this
edition.

254 Arrighi ascribes it to Paolo Gherardi [1987: 7], basing himself on a library catalogue note “Paolo /
Gerardi / Arim” and on what is written on the spine of the binding, “XI./ Paolo / 418”. The title
on the spine must have been given by Giovanni Targioni Tozzetti when the manuscript was acquired
for the Biblioteca Magliabechiana in 1752/53, at which occasion he assigned it to class XI (“418”
is likely to have been its collocation in the Gaddi collection, from where it came); the catalogue
note must also be due to Targioni Tozzetti, unless it is even later [McCuaigh 1990: 431]; both are
probably inspired by the presence of another abbacus manuscript in the collection explicitly ascribed
to Gherardi. None of this evidence has any weight, and the Liber habaci must be considered
anonymous. We might observe that the orthographic habits of the two manuscripts differ, but even
this is of no consequence, given that the Gherardi text is a copy.

255 Two examples in a computus chapter refer to that year, pp. 161 and 163. Van Egmond [1980:
115] gives ca 1310, and may combine these examples with material from a calendar that is not
included in Arrighi’s edition.

256 The calendar lists the days of saints that were important there but not in Italy [Arrighi 1987:
10]. Part of the mathematical contents points in the same direction. Only part, however – pp. 129f
present Florentine area metrology (not the same as the Pisa metrology encountered in the Pisa Libro
di ragioni ).

257 In this connection we should remember that not only the Liber abbaci but many abbacus books
until Pacioli’s Summa [1494: 26v] presented these finger positions – and even Girolamo Tagliente’s
Libro dabaco from [1520x] – reprinted as late as [1579].
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relatively late reflection of the ways of the earliest abbacus teachers.[258] However, the
avoidance of the place value notation could also have resulted from a choice not to
overburden an audience that did not yet know it.

Supplementary evidence that the Liber habaci is a reflection of an archaic stage is
offered, however, by a list of square roots on p. 119. After the roots of perfect squares
from 1 to 100 follows a list of approximate roots of non-square numbers – in modern
number notation

√2 = 1 3/7 , a little less
√3 = 1 3/4 , a little less
√7 = 2 2/3 , a little less
√10 = 3 1/6 , a little less√12

3 1/2 , a little less
...

√40 = 6 1/3 , a little less
√50 = 7 1/14

√10, √40 and √50 could have been found as the usual “closest approximation” (above,
p. 36), but the rest of the table shows that the underlying idea (not stated in the text, and
probably unknown to the compiler) is

√2 = √(2 49)/7≈ √100/7 = 10/7
√3 = √(3 16)/4≈ √49/4 = 7/4
√7 = √(7 9)/3≈ √64/3 = 8/3
√10 = √(10 36)/6≈ √361/6 = 19/6
etc.

Only √50, not indicated to be an approximation, is taken over from age-old tradition.
There are no approximated square roots in the Livero, nor in the Pisa Libro di ragioni.

The CA (p. 133) explains the “closest” approximation, yet without using this
characterization. The Primo amastramento, probably close kin of the Livero (above, p.
158) extracts many square roots, never explaining how it is done but in ways that definitely
excludes the “closest approximation”. When extracting √14 [ed. Arrighi 1991: 10] it finds
3 7/9 as its più sutile root, which cannot come from the “closest approximation”, neither
from above not below; possibly, the basis is that √14 = √(14 81)/9 = √1134/9≈ √1156/9 =
34/9 = 3 7/9 .The identification of 8 2/3 as the “most subtle” root of 75 [ed. Arrighi 1991:
13] can be explained either as a “closest approximation” from above or from the calculation
√75 = √(75 9)/3 = √675/3 ≈ √676/3 = 26/3 = 8 2/3 . Other radicands such as 194 8/11

(claimed to have the root 13 19/20 [ed. Arrighi 1991: 15]) will have required further
approximation, and therefore defy explanation. All in all, however, the method of the Liber
habaci may also have been the basic method of the Primo amastramento, confirming the
archaic character of both.

However that may be: even though the Liber habaci is slightly later than Jacopo’s
Tractatus algorismi from 1307 (as we know it from the Vatican manuscript), it does not
know the key innovation introduced by Jacopo, namely algebra. In spirit, it belongs

258 “Relatively late” – but the Trento Algorisimus, printed only 70 kilometres north of Verona on
the trade route toward southern Germany, was to do the same in ca 1475 – see below, p. 362.



– 175 –

together with the Livero, the Pisa Libro di ragioni, and the CA, if not to an even earlier
stage.

As we have already seen (above, note 20), the Liber habaci and the Livero introduce
the rule of three in what was going to be the standard way of the abbacus tradition; how
(and whether) it was introduced in the missing sheets of the Pisa Libro di ragioni we
cannot know (above, p. 162); the CA is clearly different on this account. When it comes
to the contents, recreational problems play a much larger role in the Liber habaci than
in the Pisa Libro di ragioni or in the basic stratum of the Livero, in this respect bringing
it closer to the CA. If we consider the commercial aspect, on the other hand, the Liber
habaci comes somewhat closer to the Pisa Libro than to the others; but it contains a single
problem on barter, absent from the Libro (p. 147); in contrast to the Libro, it also considers
simple interest. Geometrical computation, basic as well as recreational, interspersed among
commercial and recreational-commercial matters, plays a larger role in the Liber habaci
that in the others; its contents and methods, though not identical, is similar to what we
saw in Jacopo’s Tractatus (above, p. 34), seemingly reflecting the particular orientation
of Tuscan abbacus authors writing in Provence.

All in all, the four surviving representatives of the first abbacus generation show no
signs of descending from the Liber abbaci, apart for the easily separable and not
necessarily well-digested sophisticated stratum of the Livero. Moreover, in their general
character they differ so much from each other and suggest so many different contacts
outside the Italian area that it is difficult to imagine that they should derive from an
accurately defined common root – what holds them together as a “generation” is
chronology, no particular mathematical style. Their authors or compilers appear instead
to have responded to a shared social need mediated and shaped by the newly arising
abbacus school; this they did by drawing on shared commercial techniques and on
inspiration from a variety of contacts in the Mediterranean world.



An Ibero-Provençal aside

The way of Ibero-Provençal writers to deal with the rule of three was referred to
repeatedly in the preceding section. Which are the sources?

Oldest are two works freely translated from Arabic material into Latin somewhere
around 1160: the Liber mahameleth and the so-called “Toledan regule” [ed. Burnett, Zhao
& Lampe 2007]. The two are closely related, see [Burnett, Zhao & Lampe 2007: 145],
and note 76 above.

The next representatives of the area are all written in vernaculars, and all postdate
the first Italian generation:
– The 14th-century Castilian Alguarismo (above, p. 169). Certain aspects call to mind

the Liber mahameleth, enough to show it to be partially rooted in an Iberian tradition
going back to the Arabic period.

– The anonymous “Pamiers Algorism” [ed. Sesiano 2018], according to monetary
evidence written in the 1430s.

– The equally anonymous mid–15th-century Franco-Provençal Traicté de la praticque
d’algorisme [ed. Lamassé 2007], related to the “Pamiers algorism” but neither a
descendant nor a source – see [Sesiano 2018: 9].

– Barthélemy de Romans’ Compendy de la praticque des nombres, probably written
around 1467 but only known from a revision prepared by Mathieu Préhoude in 1476
[ed. Spiesser 2003], somehow connected to the Traicté.

– Francesc Santcliment’s Catalan Suma de la art de arismetica [ed. Malet 1998: 163],
printed in Barcelona in 1482.

– Francés Pellos’s Compendion de l’abaco, printed in Nice in 1492.

The Liber mahameleth [ed. Vlasschaert 2010: II, 185; ed. Sesiano 2014: 221] and
the “Toledan Regule” [ed. Burnett, Zhao & Lampe 2007: 155] begin by an approach to
the rule of three which I know from nowhere else. Of four numbers in proportion, the
first and the fourth are declared “partners” (socii ), and so are the second and the third.
If one is unknown, then its partner shall divide any of the other two, and the outcome
be multiplied by the third number; this, of course, is not the rule of three, where
multiplication is performed first. Afterwards, both specify differently (without pointin
out that there is a difference), namely in agreement with what we may call the “naked
rule of three”,

thus, if three are proposed and the fourth is unknown, multiply the second in the third,
and divide what results by the first, and what comes out will be the fourth.

No later Ibero-Provençal source contains anything similar to the socii explanation;
being isolated from past as well as from future, this Latin explanation is thus likely to
be a local invention in the learned Toledo environment which had no bearing on what
merchants and their schools were doing.

The Alguarismo [ed. Caunedo del Potro & Córdoba de la Llave 2000: 147] explains
the procedure as follows:
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This is the 6th species, which begins “if so much is worth so much, what will so much
be worth”.

Know that according to what the art of algorism commands, to make any calculation
which begins in this way, “if so much was so much, what would so much be?”, the art
of algorism commands that you multiply the second by the third and divide by the first,
and that which comes out of the division, that is what you ask for. As if somebody said,
“if 3 were 4, what would 5 be?”, in order to do it, posit the figures of the letters[259] as
I say here, the 3 first and the 4 second and the 5 third, 3, 4, 5, and now multiply the 4,
which is the second letter, with the 5, which is the third, and say, 4 times 5 are 20, and
divide this 20 by the 3, which stands first, and from the division comes 6 2/3 , so that if
they ask you, “if 3 were 4, what would 5 be?”, you will say 6 2/3 , and by this rule all
calculations of the world are made which are asked in this way, whatever they be.

As we see, this combines the “naked” formulation of the Latin writings with use of
the counterfactual calculation used as general model.

The “Pamiers algorism” [ed. Sesiano 2018: 285] says that the rule

is called rule of 3 because there are always 3 things, 2 similar [semblantz ] and one
dissimilar. And if there are more, they are reduced to these 3. [...[260]].

Multiply that which you want to know by its contrary, and then divide by its similar.

This is evidently the same rule as we know from the Italian material (including Italians
writing in Provence), excepting the use of the term “contrary”, which might refer to a
rectangular scheme similar to that used by Fibonacci; it replaces the “companion” of the
Latin treatises. The formulation has nothing to do with the alternative of the Latin treatises
(nor with their primary formulation). The examples [ed. Sesiano 2018: 286f ], on the other
hand, differ in style from what we find in Italy:

And first you ask, if 〈so much is worth so much〉, how much is so much worth, For
example, if 4 are worth 7, what are 12 worth? [...].

Further, 4 1/2 are worth 7, what are 13 worth? [...].
Further, 4 1/2 are worth 7 2/3 , what are 13 worth? [...].
Further, 4 1/2 are worth 7 2/3 , what are 13 3/4 worth? [...].

These are evidently not quite counterfactual, only so abstract that they become similar
to that category – close enough for the Alguarismo to slide impercetibly from one to the
other. Only after these (and three more of the same kind) come the concrete examples
where different monies are spoken of (mostly using the same numerical parameters), as
we know it from Jacopo’s Tractatus (above, p. 18), and as also habitual in other Italian
abbacus books.

The presentation of the rule of three in the Traicté [ed. Lamassé 2007: 469] runs thus:

259 Elsewhere the author explains “the letters of algorism” to be the Hindu-Arabic numerals.

260 Extensions to rule of 5 and rule of 7.
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This rule is called rule of three for the reason that in the problems [raisons ] that are made
by this rule three numbers are always required, of which the first and the third should
always be similar by counting one thing. And from these three numbers result another
one, which is the problem and conclusion of that which one wants to know. And it is
always similar to the second number of the three. By some this rule is called the golden
rule and by others the rule of proportions. The problems and questions of this rule are
formed in this way: “If so much is worth so much, how much will so much be worth?”.
As for example, “if 6 are worth 18, what would 9 be worth?”. For the making of such
problems there is such a rule:

Multiply that which you want to know by its contrary and then divide by its similar.
Or multiply the third number by the second and then divide by the first.

Here we see a combination of the second Toledan and the “Italian” way, leading to an
abstract, quasi-counterfactual specification (the examples that follow are of the same kind).

Barthélemy de Romans’ Compendy de la praticque des nombres says about the rule
of three [ed. Spiesser 2003: 255–257] that it is “the most profitable of all”, and gives two
versions of the rule,

Multiply that which you want to know by its contrary, and then divide by its similar,

and

Multiply that which you know by that which is wholly dissimilar to it, and then divide
by its similar,

after which it goes on with the composite rules. The first version, as we observe, is shared
with the Traicté: the second, by using the term dissimilar (dissemblant ) instead of contrary,
is close to the Italian type. The exemplification is again of the abstract, quasi-counterfactual
type.

Santcliment’s Suma de la art de arismetica introduces the regla de tres in these words
[ed. Malet 1998: 163]:

It is called properly the rule of three, since within the said species 3 things are contained,
of which two are similar and one is dissimilar. This said species is common to all sorts
of merchandise. There is indeed no problem nor question, however tough it may be, which
cannot be solved by it once it is well reduced.

And in our vernacular [nostre vulgar ] the said species begins: If so much is worth
so much, what will so much be worth?

The solution of this rule is commonly said: Multiply by its contrary and divide by
its similar.

The first example offered after this explanation is abstract and quasi-counterfactual,
“if 5 is worth 7, what is 13 worth?”.

Once again we encounter a combination of the Italian phrasing with an abstract, quasi-
counterfactual explanation and the reference to the “contrary” instead of the dissimilar
in the formulation of the rule; most interesting is the identification of the latter as the
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“vernacular”, very close to what Fibonacci says when he explains the finding of a fourth
proportional by means of the (unnamed) rule of three, “in our vernacular usage” (above,
p. 77). This leaves little doubt that the environment to which Fibonacci’s “we” refers on
that occasion is Iberian of Provençal, since counterfactual formulations seem to be absent
from Arabic sources.[261]

Pellos’s Compendion de l’abaco starts by a general introduction to the theme [ed.
Lafont & Tournerie 1967: 101–103] which does not look in detail like anything else we
have seen except by speaking about the “contrary” in the concluding General rule to find
every thing; in its entirety is likely to be Pellos’s own description of the situation, yet
still referring to familiar Ibero-Provençal parlance:

In this chapter I want to give you a good mode and way in which you can always quickly
and without great toil find all things that you want to buy or sell. And know that this
chapter is called the chapter and rule of three things. In every computation of trade three
numbers are indeed necessary.
The first number.

The first number is always the thing bought or sold, and you need to keep it well
in memory.
The second number.

Know that the second number shall always be the value or the price of that which
you have bought or sold.
The third example or number.

And the third number shall always be the thing that you want to know, that is to say,
the thing that you want to buy.
Remember that the first and the third numbers are always the same thing [una causa ].

And know further that the first number and the third shall always be one thing. And
if they are not certainly one thing, then you shall reduce them to a form where they speak
of one thing, or matter, for in no way on earth may they be different, as appears afterwards
in the examples.
General rule to find every thing.

Always multiply the thing that you want to know by its contrary. And the outcome
of this multiplication you divide by its similar, and that which comes out of such a division
will be the value of the thing that you want to know.

[section on reduction of units]
This is the way how you should say in matters that ask: if so much is worth so much,

how much is so much worth? In this way, you may understand more clearly in the following
examples.

The first examples that follow ask “if 4 are worth 9, what are 5 worth?”, “if 3 and a half
is worth 6, how much are 4 worth?”, etc.

261 Actually, since Arabic does not use the copula, “if 5 were 7” would be a rather meaningless
“if 5 7” in Arabic; the abstract “being worth” formulation is obviously not impossible and can also
be found, but this is not what Fibonacci writes.
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All in all we may conclude that the Tuscans who went to Montpellier and Avignon
and wrote their treatises there may in general have gone to learn; but regarding the central
piece of abbacus mathematics (if we do not count the Hindu-Arabic numerals), namely
the rule of three, they brought it from home; that will have been something any future
abbacus writer had learned long before going abroad.

On the other hand, the affinity of the CA with Iberian ways seems to be confirmed.
Before we leave this topic we should take note that the “Italian” formulation did not

originate in Italy – see [Høyrup 2012] for precise references. From Bhāskara I onward
Sanskrit mathematicians refer to the “similar” and the “dissimilar” in secondary
formulations of the rule (which even for them is a “rule of three things”) – apparently
adopted from a vernacular, that is, mercantile environment. It is used (pace
misunderstandings in the translations into Latin, English, French and Russian) by al-
Khwārizmı̄ in his presentation of the rule in his algebra, and also by other Arabic writers
as a secondary formulation (the learned Arabs mostly prefer to begin with Euclidean
concepts). So, it appears to have been shared by a mercantile community spread over
the whole trading zone from India to the Mediterranean.



The “second generation”: crystallization of a tradition, and the arrival of algebra

As was concluded above (p. 175), the authors or compilers of the first generation
of abbacus books “responded to a shared social need mediated and shaped by the newly
arising abbacus school [...] drawing on shared commercial techniques and on inspiration
from a variety of contacts in the Mediterranean world”.

We still encounter non-Italian inspiration in what we may speak of as the “second
generation” – those abbacus writers who were active between 1305 and 1340. They can
be spoken of as a generation because of this chronology; that this generation shares more
than their epoch will follow from the analysis.

Two figures, at least one of whom was influential, worked in Montpellier, and one
almost certainly in the Papal city Avignon. Yet beginning in the early decades of the 14th
century we can reasonably speak of the formation of an Italian abbacus tradition. More
precisely, of a North Italian tradition – until the later 15th century we have no evidence
at all south of Umbria. As we shall see, one things that marks the second generation and
thus this maturing tradition was the adoption of a particular variety of algebra (which
certainly did not mean that all abbacus treatises from now on took up the topic – as we
have seen in chapter II, the revised version of Jacopo’s Tractatus actually eliminated it).

Jacopo’s Tractatus

The earliest known representative of this generation is Jacopo da Firenze, writing
in Montpellier in 1307. We already encountered his Tractatus algorismi above (p. 8) –
but not Jacopo’s original but a redaction, produced no later than ca 1410 (probably well
before that year). This version was adapted to the abbacus school curriculum and is thus
a fitting representative of the abbacus tradition as it took form over the 14th century.

There are some (mostly minor) differences between the chapters contained in both
V and M+F; some of them were identified above in the presentation of the latter version
in chapter II. Beyond that, V contains several chapters that are not to be found in M+F:
– Algebra until the second degree, with rules and examples;
– Algebra of the third and fourth degree, rules only;
– a quasi-algebraic sequence of problems about wages in continued proportion;
– and a second collection of mixed arithmetical and geometric problems, not overlapping

the earlier collection of mixed problems.

I have discussed the relation between the two versions in painfully pedantic detail
in [Høyrup 2007: 12–25], and shall therefore only sum up the outcome:

Firstly, V is a meticulous copy of a meticulous copy of Jacopo’s original, or at worst
and not likely of an early stylistically homogeneous revised version.[262]

262 Fol. 46v starts by stating that a section on silver coins has been omitted by error and is inserted
de rimpecto nel sequento foglio, “opposite on the next sheet” (it follows indeed on fol. 47r ) – but
the organization of the page shows that this passage was not inserted after the writing of the
following section on “the alloys of small coins”. It must hence have been present (together with
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Secondly, M+F is a revised version descending either from Jacopo’s original or from
the hypothetical early stylistically homogeneous version from which V would also descend,
making use of supplementary material circulating in Provence. For convenience I shall
speak of the common archetype for all three manuscripts as the work of Jacopo: we cannot
get behind it, and if not really his it must in any case be close to him in time.

Thirdly, the material in V with no counterpart in M+F goes back to Jacopo’s original
version or to the hypothetical early revision, and it has been eliminated in the preparation
of the archetype for M+F.[263]

Not mentioning the chapter on geometrically increasing wages, Van Egmond [2008:
313; 2009: 44] claims that the algebraic chapters in V descend from the algebra of Tratato
sopra l’arte arismetricha (Florence, BNC, fondo princ. II.V.152, mentioned above, note
151, and described in some detail below, p. 236). Beyond glaring differences in level and
style[264] he overlooks that a treatise which he himself dates to ca 1365 contains an
algebra that indubitably descends from the one contained in V, which must therefore be
earlier.

The algebra in V (of which I shall henceforth speak as “Jacopo’s algebra”) is the
earliest abbacus algebra we possess. There is also evidence that Jacopo himself saw it
as new, or at least as something new to his reader: The specific algebraic terminology
is never abbreviated, in contrast to what happens elsewhere in the Tractatus – even meno,
appearing as in the coin list, is written in full.

Though early, Jacopo’s algebra is not the archetype from which all later abbacus
algebras descend, but it is representative of their distinctive character and style and of
the ways in which they differ from the algebras of al-Khwārizmı̄, Abū Kāmil and
Fibonacci. So, for the general argument it is immaterial whether V really presents us with
the earliest abbacus algebra – apart from details, the other early abbacus algebras
collectively would allow us to draw the same conclusions. In any case, it is clear that
the algebra in V descends from some source or cluster of sources which inspired the whole
abbacus algebraic tradition; it is therefore merely a convenient window to that source

a mark †† indicating the location of the omitted section) in the original used by the ultimate copyist,
who will have preferred not to run the risk that attempts to repair would lead to extra errors.

263 In his review, Van Egmond [2009] denies all of this. If I may be approximately as frank as Van
Egmond, this review simply reveals his ignorance of what anybody able to read French (no need
for Arabic) and interested in the matter (including in the innovations due to the abbacus masters)
should know since [Woepcke 1853]; etc. I shall not persevere, anybody interested may look at
[Høyrup 2009b], which is open access.

264 The only thing the two presentations of algebra have in common (apart from what all algebras
have in common) is that they contain no false rules; but the Tratato shows how one type of
irreducible cubic equation can be transformed into another one, which is far beyond the horizon
of V. All of this is obvious in Raffaella Franci’s and Marisa Pancanti’s edition of the algebra of
the Tratato [1988].
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cluster, not a historical milestone.
In one respect, unfortunately, V is not representative – but the reason is that something

(probably a single sheet) has been lost in a precursor manuscript (not in V itself, since
it would have belonged between the recto and the verso of fol. 36); this is shown by a
later backward reference, see below, p. 187. When discussing Giovanni di Davizzo (below,
p. 201), we shall see what kind of material this missing sheet may have contained. Before
that, it must also be supposed to have carried some kind of announcement of what follows,
similar to those in the beginning of other sections, for example the one dealing with the
rule of three (above, p. 17).

So, the algebra of V begins (p. 304) so to speak in medias res, with a sequence of
rules with appurtenant examples for the first and second degree:[265]

When the things are equal to the number, one shall divide the number in the things,
and that which results from it is number. And as much is worth the thing.

I propose to you an example to the said computation. And I want to say thus, make
two parts of 10 for me, so that when the larger is divided in the smaller, 100 results from
it. Do thus, posit that the larger part was a thing. Hence the smaller will be the remainder
until 10, which will be 10 less a thing. [...].

Again, I want to propose to you another example, and I want to say thus, there are
three partners who have gained 30 £. The first partner put in 10 £. The second put in 20 £.
The third put in so much that 15 £ of this gain was due to him. I want to know how much
the third partner put in, and how much gain is due to (each) one of those two other part-
ners. Do thus, if we want to know how much the third partner put in, posit that the third
put in a thing. Next one shall aggregate that which the first and the second put in, that
is, 10 £ and 20 £, which are 30. And you will get that there are three partners, and that
the first puts in the partnership 10 £. The second puts in 20 £. The third puts in a thing.
So that the principal of the partnership is 30 £ and a thing. And they have gained 30 .
Now if we want to know how much of this gain is due to the third partner, when we have
posited that he put in a thing, then it suits you to multiply a thing times that which they
have gained, and divide in the total principal of the partnership. And therefore we have
to multiply 30 times a thing. It makes 30 things, which it suits you to divide in the
principal of the partnership, that is, by 30 and a thing, and that which results from it, as
much is due to the third partner. And this we do not need to divide, because we know
that 15 £ of it is due to him. And therefore multiply 15 times 30 and a thing. It makes
450 and 15 things. Hence 450 numbers and 15 things equal 30 things. Restore each part,
that is, you shall remove from each part 15 things. [...].

When the censi are equal to the number, one shall divide the number by the censi.
And the root of that which results from it is worth the thing.

Example to the said rule. And I want to say thus, find me two numbers that are in
proportion[266] as is 2 of 3 and when each (of them) is multiplied by itself, and one

265 As above, page references to V point to the edition in [Høyrup 2007].

266 Abbacus writers, when at all referring to ratios and proportions, mostly use proportione for both.
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multiplication is detracted from the other, 20 remains. I want to know which are these
numbers. Do thus, and posit that one number was 2 things and the other was 3 things.
And they are well in proportion as are 2 and 3. Next one shall multiply the numbers, each
(one) by itself. And remove one multiplication from the other. And 20 shall remain. And
therefore multiply each (one) by itself, and say, two things times 2 things make 4 censi.
And three things times 3 things make 9 censi. Now remove one multiplication from the
other, that is, 4 from 9. 5 censi is left, which equal 20 numbers. And we say that one shall
divide the numbers in the censi, so that one shall divide 20 numbers in 5 censi. From which
results 4 numbers, and as much is worth the thing, that is, its root, which is 2. We said
that the first number was 2 things and the second 3 things. Therefore you see clearly that
2 things are 4 numbers. And three things 6 numbers. And thus I say to you that these
numbers are 4, one, and 6, the other. And such part is 4 of 6 as 2 of 3. Now if you want
to verify it, multiply 6 times 6, it makes 36. And multiply 4 times 4, it makes 16. Detract
16 from 36. 20 is left, and it goes well. And thus all the similar computations are done,
that is, according to this rule.

This beginning already shows us the most important distinguishing features of Jacopo’s
and later abbacus algebra:

First, all rules are presented in non-normalized form. The complete sequence of cases
can be summarized as on p. 138:

Ja1 αt = N
Ja2 αC = N
Ja3 αC = βt

Ja4 αC+βt = N
Ja5 βt = αC+N
Ja6 αC = βt+N

C stands for censo, t stands for cosa, “thing”, N for number, α and β for undetermined
coefficients signalled by the use of a plural. As we observe, this differs from al-
Khwārizmı̄’s original sequence in three ways. Firstly, the thing has taken the place of
the root even in the presentation of the cases. Secondly, the first and the third case have
been switched; the new order will probably have been felt to be natural, once the thing
is understood as the unknown. Thirdly, since all cases are now presented in non-normalized
form, the first step in the corresponding rules is a normalization.

All six cases are provided with examples, sometimes one, sometimes two, the case
Ja5 (the one allowing a double solution[267]) with three:

1a. Make two parts of 10 for me, so that when the larger is divided in the smaller, 100 results

I shall abstain from straightening their terminology and translate “proportion” for both within the
present chapter. When they distinguish (genuine) proportions using the term proportionalità, I shall
translate “proportionality”.

267 It should be observed that these two solutions (when they exist) are regarded as possibilities –
if one does not work, the other certainly will. The unknown is really seen as an unknown but already
existing number, and not as a variable that may take on different values which fulfil the given
condition.
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from it.
1b. There are three partners, who have gained 30 libre. The first partner put in 10 libre. The

second put in 20 libre. The third put in so much that 15 libre of this gain was due to him.
I want to know how much the third partner put in, and how much gain is due to (each)
one of those two other partners.

2. Find me two numbers that are in proportion[268] as is 2 of 3: and when each (of them)
is multiplied by itself, and one multiplication is detracted from the other, 20 remains. I
want to know which are these numbers.

3. Find me 2 numbers that are in proportion as is 4 of 9. And when one is multiplied against
the other, it makes as much as when they are joined together. I want to know which are
these numbers.

4a. Someone lent to another one 100 libre at the term of 2 years, to make (up at the) end
of year. And when it came to the end of the two years, then that one gave back to him
libre 150. I want to know at which rate the libra was lent a month.

4b. There are two men that have denari. The first says to the second, if you gave me 14 of
your denari, and I threw them together with mine, I should have 4 times as much as you.
The second says to the first: if you gave me the root of your denari, I should have 30
denari. I want to know how much each man had.

5a. Make two parts of 10 for me, so that when the larger is multiplied against the smaller,
it shall make 20. I ask how much each part will be.[269]

5b. Somebody makes two voyages, and in the first voyage he gains 12. And in the second
voyage he gains at that same rate as he did in the first. And when his voyages were
completed, he found himself with 54, gains and capital together. I want to know with how
much he set out.[270]

5c. Make two parts of 10 for me, so that when one is multiplied against the other and above
the said multiplication is joined the difference which there is from one part to the other,
it makes 22.[271]

6. Somebody has 40 gold fiorini and changed them to venetiani. And then from those
venetiani he grasped 60 and changed them back into fiorini at one venetiano more per
fiorino than he changed them at first for me. And when he has changed thus, that one
found that the venetiani which remained with him when he detracted 60, and the fiorini
he got for the 60 venetiani, joined together made 100. I want to know how much was

268 Actually written in propositione. Most likely Jacopo copied from a text whose terminology he
did not understand – the idea of proportions was generally unfamiliar to early abbacus authors;
but we cannot fully exclude that the scribe of an intermediate or the final copy expanded an
abbreviation wrongly. In any case, the mistake is systematic – in total, there are seven instances
of propositione, whereas proportione is wholly absent.

269 Choosing the thing to be the lesser part, Jacopo obtains that the smaller of the two solutions
is valid; he does not try the other, which indeed does not work.

270 Here, both solutions are shown to be valid.

271 Because he chooses the thing to be the smaller part, Jacopo obtains that only the subtractive
solution works; he tries the additive solution and shows that it is not valid.
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worth the fiorino in venetiani.

As we see, five are pure-number problems, five deal with pretended commercial questions.
Of the former, three are of the classical “divided 10” type, which we know from Fibonacci
(above, p. 144) but which was already used many times by al-Khwārizmı̄ as illustrations
of the potency of his algebraic technique (showing that it was already a familiar question
type and thus still older). No examples are formulated simply in terms of censi and things
(corresponding to the initial census-root-number examples used by al-Khwārizmı̄, Abū
Kāmil and Fibonacci). Instead there is an easy substitute – we may say a cheap way to
create seeming complexity – namely numbers in given ratio. These were to become very
popular in abbacus algebras, and when more than two number are involved the ratios are
always given so as to fit nicely together, for example as 2 : 3, 3 : 4, ... . In that way the
number can be posited as 2things, 3things, 4things (Jacopo’s examples, being restricted
to two numbers, do not demand this trick); the above example for the second case shows
how this allows to construct an example corresponding to a given case.[272]

The first monetary problem (1b), the second illustration of the first case, is in itself
very simple – no wonder, it illustrates the first-degree case. But we observe how Jacopo
circumvents the difficulty that he is not allowed to divide by an algebraic binomial (“this
we do not need to divide”) – as we shall see, his successors would soon take for granted
that this division was permissible and write it as a “formal fraction”. The operations would
evidently be the same.

The second (4a) deals with compound interest (“making up the account at the end
of year”). It shares its mathematical structure with Fibonacci’s first problem about repeated
travels with constant profit rate, which Fibonacci solved simply by finding a mean
proportional. Jacopo, wanting an algebraic problem and an illustration of the fourth case
instead chooses the thing to be the interest in δ per month of 1 £, and thus obtains a nicely
intricate problem.

The third (4b) is a give-and-take problem, but in contrast with those we know from
Fibonacci it involves a square root, and it is therefore of the second degree; positing that
the possession of the first man is a censo (adequate for taking a square root), Jacopo is
led to the fourth case, and finds that the thing is √54–2. Wanting to calculate the possession
of the first man, Jacopo needs to determine the censo, which must be (√54–2)2 = 58-4√54.
According to prevalent aesthetics, this should be expressed 58–√864, but being unable
to calculate 16 54 mentally Jacopo leaves an open space – and forgets to return.[273]

272 It also shows that Jacopo uses “restore” to designate subtractive (and elsewhere, as Fibonacci
and al-Khwārizmı̄, additive) operations on both sides of an equation. Opporre (corresponding to
Latin opponere and Arabic muqābalah ) is absent from Jacopo’s text; however, as mentioned above,
note 193, the original meaning of muqābalah/oppositio was probably the confrontation leading to
the construction of a simplified equations, and this is probably reflected in the term raoguaglamento
used in example Ja5b (p. 316) about a simplified equation.

273 As explained in note 262, what we possess is not Jacopo’s autograph but a copy of a copy; but
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The fourth (5b), about repeated travels with constant profit rate, belongs to a family
we already know from Fibonacci. But the way to use this dress to produce a mixed second-
degree problem differs from what we know from Fibonacci (above, p. 134); Fibonacci,
moreover, makes use of proportion theory and Elements II in key version, not of algebra.

The dress of the fifth (6) brings to mind some of the more intricate exchange problems
of the earlier abbacus books and of Jacopo’s collections of mixed and geometric problems
(above, p. 28), but its mathematical substance is wholly different, and indeed leads to
a second-degree equation – positing 1 fiorino to be worth a thing of venitiani, Jacopo
derives the reduced equation

40censi = 120things+100 .

These rules and examples for the first and second degree are followed (p. 320) by
the announcement

Here I end the six rules combined with various examples. And begins the other rules that
follow the six told above, as you will see,

which confirms that there must have been a corresponding opening of the algebra section
promising these six rules and thereby that a whole sheet (if not more) has been lost (cf.
above, p. 183).

The “other rules” concern solvable cases of the third and fourth degree, which can
be summarized thus (K standing for cubo, CC for censo of censo, that is, the fourth power
of the thing ):

Ja7 αK = N
Ja8 αK = βt
Ja9 αK = βC

Ja10 αK+βC = γt
Ja11 βC = αK+γt
Ja12 αK = βC+γt
Ja13 αCC = N

Ja14 αCC = βt
Ja15 αCC = βC
Ja16 αCC = βK
Ja17 αCC+βK = γC
Ja18 βK = αCC+γC
Ja19 αCC = βK+γC
Ja20 αCC+βC = N

No examples are given. The biquadratics corresponding to the cases Ja5 and Ja6 are
missing, apart from that all cases that can be solved by means of division, pure root
extraction or the substitution C→ t are there – and only these. That the rules that are
offered are correct is not revolutionary, at least since Abū Kāmil and al-Karajı̄ such

this copy of a copy leaves open ca 2 cm and writes in the margin così stava nel’originale spatii,
“thus it was in the original, spaces”, which must have been transmitted through the whole chain.
It cannot be excluded that this chain contained more than two steps, but all must then have strived
at faithfulness.

The lacuna indicates that Jacopo calculated on his own, and did not just copy.
Jacopo cannot have been a brilliant calculator. After all, 16 54 can be found as 16 (50+4),

and 16 50 = 800, 16 4 = 64.
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equations had been solved routinely in Arabic algebra, as also in the avere cluster of Liber
abbaci 15.3. Neither Abū Kāmil nor Fibonacci had offered any similar systematic
exposition, however; al-Karajı̄, on the other hand, had formulated general rules [Woepcke
1853: 71] for all mixed cases where the three powers involved are in continued proportion.
Though presenting us with no new mathematical insights, Jacopo’s approach (that is, the
approach of his source) thus differs from how Abū Kāmil and Fibonacci had dealt with
reducible higher-degree problems.

Even these rules, as we see, are defined for non-normalized cases.

Soon after these properly algebraic sections follows one about the manager of a
fondaco (a warehouse located abroad, from Arab funduq ), whose wages grow geometrically
from year to year. In between, however, comes what thematically looks like an intruder –
an alligation problem dealing with the mixing of two grain sorts with different prices.
It makes use of a diagram that also serves in the later chapter about alloying (in V only,
M and F have none though once referring to it, cf. above, p. 54), and is therefore likely
to be original. It therefore may serve as a reminder that the following fondaco group was
not understood by Jacopo as belonging to algebra. Apart from that the grain problem tells
us nothing new.

The fondaco section does. If a, b, d and (when needed) e designate the wages of the
consecutive years, it contains the following problems (we remember that the wages grow
geometrically):

F1 a+d = 20 , b = 8
F2 a = 15 , e = 60

F3 a+e = 90 , b+d = 60
F4 a+d = 20 , b+e = 30

F1 begins like this (p. 324):

Somebody stays in a warehouse 3 years, and in the first and third year together he gets
in salary 20 fiorini. The second year he gets 8 fiorini. I want to know what he received
accurately the first year and the third year, each one by itself. Do thus, and let this always
be in your mind, that the second year multiplied by itself will make as much as the first
in the third. And do thus, multiply the second by itself, in which you say that he got 8
fiorini. Multiply 8 times 8, it makes 64 fiorini. Now it suits you to make of 20 fiorini,
which you say he got in the first and third year together, two parts which when multipli〈ed〉
one against the other makes 64 fiorini. And you will do thus, that is that you always halve
that which he got in the two years. That is, halve 20, 10 result. Multiply the one against
the other, it makes 100. Remove from it the multiplication made from the second year
which is 64, 36 is left. And of this find its root, and you will say that one part, that is,
the first year, will be 10 less root of 36. And the other part, that is, the second year, will
be 8 fiorini. And the third will be from 10 less root of 36 until 20 fiorini, which are fiorini
10 and added root of 36. And if you want to verify it, do thus and say: the first year he
gets 10 fiorini less root of 36, which is 6. Detract 6 from 10, 4 fiorini is left. And 4 fiorini
he got the first year. And the second year he got 8 fiorini. And the third he got fiorini
10 and added root of 36, which is 6. Now put 6 fiorini above 10 fiorini, you will get 16
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fiorini. And so much he got the third year. And it goes well. And the first multiplied
against the third makes as much as the second by itself. And such a part is the second
of the third as the first of the second. And it is done.

As we observe, the notion of “proportion” is absent from the problem (though not from
the formulation of F3, which has the usual mistake propositione ); this indicates that we
have to do with a standard problem type, in which the geometric increase is taken for
granted.

None of the four problems refer to thing or censo, or to anything else that points
toward algebra. Obviously, neither Jacopo nor his source made that connection. Already
here we may notice a parallel to part 15.1 of the Liber abbaci (above, p. 129).

There, Fibonacci solved problems about proportions, drawing heavily on Elements
II in “key” version (without referring to this term, found instead in the beginning of chapter
14 (p. 115). There is no such justification here, Jacopo merely explains the numerical
steps leading to the solution (an “algorithm”, but a trivial algorithm without branchings,
that is, a formula).

The algorithm used to find a is the same as the one used by Fibonacci to solve the
analogous problem #1 in part 15.1:

a = – .
a d
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That is not too informative. The same procedure is used by Diophantos in Arithmetica
I.27 (ed., trans. Tannery 1893: I, 60–62), and also used to find the sides of a rectangle
from the sum of the sides and the area in Abū Bakr’s Liber mensurationum [ed. Busard
1968: 91; ed. trans. Moyon 2017: 160f ]. But alternatives exist, and one is indeed used
by Jacopo himself in example 5a (above p. 185).

The remaining problems have no counterpart in part 1 of Liber abbaci chapter 15,
but they make use of a trick that is known from the Liber mahameleth, going via the
proportionality factor p between the wages of successive years – cf. [Høyrup 2021:
46f ]. In F2, this yields the solution
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In the fourth, equally simple,

p = , a = , d = (a+d )–a , b = , e = (b+e )–b .
b e
a d
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1 p 2

The third is more intricate, and quite astonishing. It makes use of the insight that

a e = b d = .
(b d)3

3(b d) (a e)
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after which Elements II.5 in “key” version can be applied. Even these formulas are most
easily derived if we make use of the factor of proportionality (b = pa, d = p2 a, e =
p3 a ), since then

= = a2p3 = a ap3 = ap ap2 .
(b d)3

3(b d) (a e)
a 3p 3(1 p)3

a (3p 3p 2 1 p 3

It is not quite as easy in words, but it is still possible, and it does not go beyond principles
of polynomial algebra that had been known at least since al-Karajı̄ [Rashed 1984: 37].
However, to my knowledge (supported by that of all those whom I have asked) precisely
this consequence of what was familiar had not been drawn in known works. Most likely,
we have to do with another invention of the al-Andalus-environment which produced the
Liber mahameleth and gave to Fibonacci the sophisticated version of the unknown heritage
and Liber abbaci, part 15.1 (and bits of part 15.2).

The formula turns up in Pacioli’s Summa [1494: 87v], in a pure-number version that
does not seem to descend from Jacopo [Høyrup 2009d: 100] but rather from a shared
source – very likely together with his “keys” about numbers in continued proportion
(above, p. 117), close to which they stand; it returns on fol. 96v, there indeed with a
reference to these “keys”. From Pacioli it was borrowed by Tartaglia, who appears to
have used it for his (claimed but undivulged) first solution of irreducible cubic equations
(those involving cube, censi and number) – see [Kichenassamy 2015].

Beyond the algebraic sections and these four problems about numbers in continued
proportion, V also contains a final chapter with mixed arithmetical and geometric problems
that has no counterpart in M+F. Even though there are no repetitions of what has been
dealt with in earlier chapters, they do not bring much fundamentally new. A few things
may be mentioned.

As mentioned in passing in note 112, one problem (p. 360) is of type “unknown
heritage”. It does not deal with a heritage, however, but with apples:

I go to a garden, and come to the foot of an orange. And I pick one of them. And then
I pick the tenth of the remainder. Then comes another after me, and picks two of them,
and again the tenth of the remainder. Then comes another and picks 3 of them, 3, and
again the tenth of the remainder. [...].

As we have already seen it in the first collection of mixed problems (above, p. 45), Jacopo
here takes a familiar dress (though with oranges, not apples) and then applies it to a new
mathematical structure – this time more advanced, but since Jacopo offers a solution only
but no argument, from his point of view it was probably simpler than the backward
calculation.

The solution he offers is the usual one: the number of men, and the number of apples
each one gets, equals the denominator of the fraction diminished by 1, that is, 9. Jacopo
(or, as usual, his source) may have been aware that in the absence of argument a proof
is needed, and he offers one.

The very first problem in the chapter (p. 347) is a partnership, where the partners
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do not enter at the same time. As reasonably, the gains are distributed proportionally to
the investments of the single partner weighted by the time they stay.

On p. 350 comes a more convoluted variant of the “fish problem” (above, p. 25),
here dressed as dealing with a goblet:

A goblet of silver consists of three pieces, or three parts. That is, the stem, the cup, and
the lid. The cup weighs 1/3 and the 1/4 of itself and of the stem. The lid weighs the 1/4
and the 1/5 of itself and of the cup. And the lid weighs ounces 6. I ask you what the stem
weighs and what the cup weighs by itself, and what all the goblet weighs.

This gives Jacopo occasion to introduce the method of a single false position, only hinted
at but not really used in the twin problem (above, p. 23) (he never mentions nor uses the
method of the double false position).

Quite without parallel in earlier chapters is a problem

Find a number which, when the 1/2 and the 1/4 and the 1/6 are detracted from it, and the
remainder multiplied by itself, makes this same number.

Similar problems are found in the Liber abbaci [B175;G298] (above, p. 79), the Livero
[ed. Arrighi 1989: 124] [A124;B385]; and in the CA [ed. Vogel 1977: 31]. All of these
make use of a single false position – sometimes mentioning it by name, sometimes not.
Jacopo too uses it, and since he is only going to introduce the method slightly later, even
he obviously does not refer to the method by name. Since the fractions are different, there
is no reason to believe in any direct connection – the type was already widespread in
Arabic algebras (see [Høyrup 2007: 133f ]), and thus no invention of the abbacus
environment (nor of Fibonacci).

Paolo Gherardi

The two next datable abbacus books from the second generation which we possess
were also written in Provence – Paolo Gherardi’s Libro di ragioni [ed. Arrighi 1987]
(henceforth “Gherardi’s Libro”; page references point to Arrighi’s edition), and the
anonymous Trattato di tutta l’arte dell’abacho (henceforth Tutta l’arte; above, pp. 12
and 35), existing in a number of manuscripts, two of which I have consulted.[274]

274 See the index listing in [Van Egmond 1980: 365] – not all are complete. Van Egmond ascribes
it to Paolo Dagomari alias Paolo dell’Abbacho, but his only reason is apparently that a 15th-century
manuscript announces a fragment as “some small rules drawn from Master Paolo’s book, and various
ancient measures and weights” [Van Egmond 1980: 145], which rather shows that the compiler
of that manuscript thought of Paolo’s Regoluzze, contained in the three preceding sheets. Comparison
of how Tutta l’arte deals with the geometry of the circle and how that is done in the Regoluzze
should exclude common authorship, see [Høyrup 2019a: 304 n. 29]. The two manuscripts I have
used are Florence, BNC, fond. prin. II,IX.57 (henceforth Tf); and Rome, Accademia Nazionale
dei Lincei, Cors. 1875 (henceforth Tr).

Arrighi [1980] also ascribes Tutta l’arte to Paolo, but giving no other reason than a reader’s
or librarian’s note written “in a considerably later hand” than the 14th-century hand in which the
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According to its colophon, Gherardi’s Libro was written in Montpellier in 1327; what
we have, however, is a not too conscientious copy [Van Egmond 1978: 162]; it is even
plausible that the book was not written by Gherardi himself but by an assistant or a
listener – the colophon says that this “book of problems [ragioni ] will be written according
to the rules and the abbacus course held by Paolo Gherardi of Florence”; which gives
us the extra information that Gherardi was actually holding school. For simplicity, in the
following I shall speak of the author as Gherardi. Occasional Provençal spellings (e.g.,
nubre, valura ) confirm that the book was written or copied in Provence (probably both).

After the colophon comes the rule of three in abstract formulation for integers and
explanation of how to eliminate fractions. The words are the same as in the Livero and
the Liber habaci (above, note 20) – and thus the same as those of Jacopo, apart from
the latter’s slight expansion of the final step, in M+F “divide in the other, that is, in the
third thing” and in V “divide in the third thing, that is, in the other that remains”. Gherardi
thus does not copy from Jacopo but clearly belongs to the same tradition (and does not
here follow the Catalan-Provençal habit).

After the rule of three with three examples follow multiplication and division of mixed
numbers, and a sequence of number problems (n stands for a single unknown number,
a, b, ... for sequences of numbers, for instance resulting from the splitting of a given
number, u/v for an unspecified fraction):

p. 16 (1+ 1/2 + 1/4 + 1/5 )n+3 = 25 (1)
p. 17 [(1– 1/3 – 1/8 )n ] = 120 (2)
p. 17 (1– 1/2 – 1/4 )n = √n (3)
p. 17 If 9 is 1/2 of 16, what part is 12 of 25? (4)
p. 17 3/5 a = 5/9 b , ab = a+b (5)
p. 18 12 = a+b , 5a = 8b (6)
p. 18 a2+b2 = 1 (7)
p. 18 6 = a+b , ( 1/4 + 1/5 )a = ( 1/5 + 1/6 )b (8)
p. 18 4 = a+b , a = ( 1/3 + 1/4 )b (9)
p. 19 (1+ 1/3 + 1/4 )n+5 = 6n (10)
p. 19 n+5 = 1 , n–5 = 2 (11)
p. 19 n2+ 1/4 n = 19 (12)
p. 19 12 = a+b, ab = 31 (13)
p. 20 10 1/2 = a+b , a+11 1/5 = 2b (14)
p. 20 14 = a+b, a /b = 4 (15)
p. 20 a2+b2+c2+d2+e2 = 1/7 (16)
p. 21 n2+24 = (17)
p. 21 n2 = 11+ u/v (18)
p. 21 ( 1/3 n ) ( 1/4 n ) = 20 (19)
p. 21 3 1/5 n = 17 1/3 (20)

manuscript is written.



– 193 –

Many are solved by means of the rule of three (4), other basic arithmetic (5, 6, 14, 10,
20) or a single false position (1, 2, 3, 7, 8, 9). Others make use of algebra (12, 13, 19),
still others of what could be considered elementary number theory – (17), for instance,
gives the solution n = ( 24/4 –1)2, which, for p = 24, corresponds to the identity

= ,
p

4
1

2
p p

4
1

2

related to the one that produces Pythagorean triples, and to what is used in (11)
This fundament for the solution goes unexplained (as do most of the others, even

when the reason for the numerical steps of the prescription are less than evident). None
the less, while Gherardi does not borrow from the Liber abbaci, the environment on which
he draws evidently shares interests beyond the commercially relevant with that which
had once inspired Fibonacci. The writings from “generation 1” as well as Jacopo’s
Tractatus, though containing some problems of the same kind, all treat the topic as less
important.

These number problems are followed (pp. 21–26) by a presentation of the arithmetic
of (square) roots and of binomials containing roots, ending by the rule for finding the
“closest root” (Gherardi says la più proximana ) – the same approximation as the one
Jacopo as well as other abbacus authors designate thus (and, like Jacopo, approximating
only from below).

Commercially relevant matters begin on p. 26, though not in any convincing
pedagogical order or progression. At first:
– Calculation of average price;
– rule of five (cf. above, p. 73)
– transformation between interest per year, month and day (pp. 27–29);
– alloying of silver and gold (pp. 29–32);
– exchange (pp. 33–37).
Before going on with partnership (pp. 38–41) Gherardi presents two recreational outsiders,
the “twin problem” (above, p. 23n), and the “unknown heritage” (above, p. 90); the former
of these at least has the excuse that Gherardi (as Jacopo) solves it by means of an explicit
fictitious partnership, but before partnerships proper are dealt with; the second is a bona
fide outsider, a purely recreational teaser (and, since it does not explain the method, a
teaser which teaches nothing, not even indirectly)

The partnership section is followed by a sundry collection of mixed, mostly recreational
problems – and mostly of kinds we have already encountered. On p. 47, however, we
find a puzzling variant of the pursuit problem. The two runners move along a circle, which
one of them completes in 4 days, the other in 5 1/2 days. It is asked, firstly, when the
faster runner will reach the slower for the first time, and secondly, when they will both
be together at the starting point. What is puzzling is not the mathematics but the dress:
before the hands of pendulum clocks and wristwatches and when the ancient circus was
forgotten, what ran around in circles were planets rather than men. Could Gherardi’s
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variant of the pursuit problem somehow be an echo of astronomical calculation, perhaps
of the Indian “pulverizer” (hardly of the technique), cf. [Plofker 2009: 134]?

Noteworthy is also Gherardi’s version of the grasping problem (above, p. 95): the
shares ( 1/2 , 1/3 and 1/4 ) differ from those of Fibonacci; moreover, the solution is obtained
by means of first-degree algebra with unknown thing (the amount the three participants
put back) – Fibonacci would probably have spoken about regula recta, but Gherardi does
not know that expression. A four-participant “purchase of a horse” of the type where each
asks his neighbour in the sequence (p. 45) is solved by means of a double false position –
not called by name, instead the text speaks about “adjusting” one (position) with the other.

A problem on p. 49 combines a dress that is familiar from the collection of arithmetical
epigrams contained in book XIV of the Greek Anthology [ed. Paton 1918: 31, 101] with
a counterfactual calculation: So large a part of the night has passed that “if 1/3 had been
1/4 of the part that has passed and 1/4 were 1/5 of what is to come, then it would be
midnight”.

Two more make use of algebra: One (p. 49) is a number problem a /b = 2/3, ab =
a+b, dressed up as dealing with the denari possessed by two men; the other (p. 59) is
a three-participant give-and-take problem, where algebra is subordinated to a double false
position.

A long section (pp. 61–83) deals with geometry. As pointed out above, note 39,
Gherardi distinguishes between rules di misure and di giomatria, where the former could
refer to Arabic misaha while latter could refer back to the Latin post-agrimensor tradition,
which was probably more alive in Provence than in Italy;[275] but with no other evidence
for such a distinction, this remains hypothetical.

After another sequence of mixed (commercial, recreational-commercial and geometric)
problems (pp. 83–97) Gherardi closes his book with a systematic presentation of “the
rules of the thing”, that is, algebra.[276] He gives rules for the following cases:

275 One problem named giomatria and certainly going back to the agrimensor tradition was mentioned
above, note 49 and preceding text; it determines the area of a regular pentagon with side 6 as
(62–6)÷2. This is the formula for the sixth pentagonal number, and believed to determine the area
of a regular pentagon for example in the Geometria incerti auctoris, in ps-Varro, Fragmentum
geometriae, and in Epaphroditas et Vitruvius Rufus [ed. Bubnov 1899: 346, 504, 534]. With an
extra mistake, we remember (omission of the halving), the formula is also used in Jacopo’s Tractatus,
V as well as M+F, and with further repair of the dimensional nonsense in Tutta l’arte – more in
[Høyrup 2007: 96]. A paving problem on p. 62 (above, note 38) is also categorized as giometria.

276 [Van Egmond 1978] is an edition of this section, with English translation and mathematical
interpretation.
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Gh1 αt = N
Gh2 αC = N
Gh3 αt = βC
Gh4 αC+βt = N
Gh5 βt = αC+N
Gh6 αC = βt+N
Gh7 αK = N
Gh8 αK = √N

Gh9 αK = βt
Gh10 αK = βC
Gh11 αK = βC+γt
Gh12 αK = βt+N
Gh13 αK = βC+N
Gh14 αK = βt+γC+N
Gh15 αK+βC = γt

All are provided with examples – never more than one for the single case, even when
(as in Gh5) the rule speaks of a double solution.

Two of the examples for the first six rules coincide with examples given by Jacopo;
the data of Gh4 – a compound-interest problem – are those of Ja4 divided by 5, otherwise
the examples are identical (cf. above, p. 186); Gh3 is a slight numerical variation of Ja3
(numbers in ratio 2 : 3 instead of 3 : 4); the example for Gh2 is a new pure-number
problem, (n– 1/3 n– 1/4 n )2 = 12. Most interesting is the example for Gh6, the division of
100 by some quantity and then by 5 more, the sum of the two divisions being given:

100÷q + 100÷(q+5) = 20 .

With subtraction instead of addition, we know this problem type not only from the Liber
abbaci but also from Abū Kāmil and the extended version of al-Khwārizmı̄’s algebra
(above, p. 149). Without being fully unfolded, however, Gherardi’s way to solve the
problem builds on a new idea: formal fractions. In its full form (as we encounter it in
later texts), the “quantity” is posited to be a thing, the quotients written as fractions and
“added as if they were fractions”

+ = = = 20 .
100

t
100
t 5

100 (t 5) 100 t
t (t 5)

200 t 5
C 5 t

Gherardi does not mention fractions, but he performs all the requisite operations, and he
does refer to the scheme for cross-multiplication that produces the numerator (forgotten
in the copy but easily reconstructible):

The full form is found often in later abbacus books, which cannot have derived it from
Gherardi’s obscure rudiment; Gherardi must have borrowed it from earlier writers to whom
other abbacus authors had access, too. Similar formal calculations had been made in the
Maghreb since the outgoing 12th century – see [Abdeljaouad 2005: 24–29]; a link is
plausible, but details cannot be traced.

We find more innovations in the higher-degree rules. Those cases that can be solved
by extraction of a cube root or reduced by a division to second-degree problems are already
in Jacopo’s Tractatus; the rules for the cases Gh12, Gh13 and Gh14 are false. The



– 196 –

solutions given for Gh12 and Gh13 are identical,

t = + ,
⎛
⎜
⎝

⎞
⎟
⎠

β
2α

2 N
α

β
2α

just copied from the solution to Gh6. Gh14 is no less preposterous,

t = + .
⎛
⎜
⎝

⎞
⎟
⎠

β
2α

2 N γ
α

β
2α

Anybody who understood algebra would have seen that Gh12 and Gh6 can only have
the same solution if K = C, and hence if t = 1, that is, if α = β+N (or, if against the
prevailing habits of the time, t = 0, which entails N = 0). One might believe that the
examples would uncover the fraud, but since the solutions contain irreducible radicals
and approximations were never made in abbacus algebra, that was less easy.

These fake solutions were a great success; more would be added over the next century,
and Gherardi’s three false solutions were still repeated by Bento Fernandes in 1555 [da
Silva 2008: 200]. We shall return to the question why some abbacus masters (not all)
would indulge in such pseudo-mathematics on p. 386.

The rule for the case Gh9 is correct, but a modern reader might wonder why it is
listed separately from the preceding case. We should remember, however, that only positive
integers and fractions were accepted as numbers, and think of the difficulty which the
appearance of an irrational coefficient had caused Fibonacci (above, p. 148). √N is not
a coefficient but also not a number; its appearance here instead of the number term
forebodes a practical widening of the number concept which was to take place over the
following centuries, only maturing in the 16th century (cf. [Oaks 2017]).

All examples for the higher-degree cases, reducible as well as non-reducible, are of
the easy type asking for numbers in given ratios – for example (Gh7) “find me three
numbers where the first be such part of the second as 3 of 4, and the second be such part
of the third as 4 of 5” – with the variation that Gh14 and Gh15 instead use the terminology
“be in proportion”.[277]

Tutta l’arte

As noticed by Van Egmond [1980: 140], manuscript Tf of Tutta l’arte (above, note
274) is the author’s draft. From internal evidence Jean Cassinet [2001] has shown that
it was written in Provence and almost certainly in Avignon. It is dedicated (Tf fol. 17r)
to Pope Benedetto, with space left open for his number; this, as further pointed out by

277 The text writes in positione, certainly a mistake for “in proportione” – the formulation which
Jacopo or his copyist had changed into in propositione, we remember from note 268. Whether
Gherardi made the mistake (abbreviation perhaps assisting) when copying from his source or his
compiler or a subsequent copyist miscopied is undecidable.
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Cassinet, implies that the dedication was written while it was still undecided whether the
previous Benedetto had been a pope or an antipope – that is, in 1334.

Various aspects of Tutta l’arte were presented above (pp. 12, 35, and note 49). In
order to illustrate the emergence of abbacus algebra we shall also have a look at how
this topic is dealt with.

In Tf, the draft manuscript, one page (fol. 171v ) contains the beginning of an
introduction to “the rules of the thing, by means of which many beautiful and subtle
problems can be solved”. It is written in a different hand, and the date therefore uncertain.
The cases are defined in the usual terms and solved by the usual rules; they may be
abbreviated thus:

αt = N
αC = N

αK = N
αC+βt = N

As we see, the order is unusual (and not to be found in later treatises I know about). The
examples are quite elementary (the example for the fourth rules is missing; on the next
page, fol. 172r, the text goes on in a different hand with medical advice):
– Find me a number which, multiplied by 3 and divided by 4 makes 20.
– Find me a number which, when 1/3 and 1/4 (of it) are subtracted and the remainder

multiplied by itself, makes 12. This is the same as Gherardi’s example for the case
in question (one of the two where Gherardi deviates by more than a change of
numerical parameters from Jacopo).

– Find me a number which, multiplied by itself and then multiplied by this number,
makes 12.

In Tutta l’arte proper, there is no systematic presentation of algebra, but a number of
problems are solved by means of thing and censo (all but one listed in [Cassinet 2001:
124–127]) – I indicate the folio numbers in Tf:

157r (1– 1/3 – 1/4 )n–5 = 1/3 (1– 1/3 – 1/4 )
157v (three men having money, with structure) A+B+C = 104, A<B<C, A : B =

B : C,[278] A = 8
158v a+b = 16 , ( 3/4 a )2 = ( 3/4 b )2–20
160r a /b = 5/7 , a /c = 5/9,[279] ab+c = c2

161v a+b = 10 , ab /(a–b ) = 2 2/3
162v (1+ 1/3 + 1/4 )n = √n
166r (60÷q ) 60÷(q+2) = 150
166v A rectangle with area 180 square cubits, length = 1 1/3 width

278 Expressed in terms of proporzioni.

279 Expressed as “such part as”; the text has b /c = 5/9, but the rest of the text shows this to be a
slip caused by the habitual sequential formulation.
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167v Repeated travels with given profit rate and given costs and given net profit
rate, equivalent to 8/7 ( 6/5 C–25) = 6/5 C

Together with Gherardi’s scattered use of algebra (above, pp. 193 and 194), this gives
us an impression of the form in which algebra was disseminated in the Provençal abbacus
environment around 1330.

It was not disseminated in Provence alone. That will follow when we look at three
representatives of the second generation written in Tuscany.

The Lucca Libro d’abaco

The first of these is a Libro d’abaco written in Lucca by several hands – according
to internal evidence around 1330.[280] We may guess that it was produced by an abbacus
master and his assistants or apprentices, or perhaps of the latter alone – where else would
we find a group that had occasion to engage in such a work?

There is no algorism, that is, no introduction of Hindu-Arabic computation. It opens
with the rule of three (p. 17), in words that only differ slightly from what we have seen
so far:

When you make some calculation [ragioni ] by the three things, always take the thing
you ask for or want to know, and that which is not of the same kind [ragione ] or quality,
and multiply one against the other, and divide that amount in the other thing, and that
which results will be the effect of the question of the calculation.

This is followed by an example, first solved according to the rule just enunciated (where
the missing “not similar” turns up),

8 cubits of cloth are worth 11 fiorini, what will 97 cubits be worth? You should do like
this. The thing that we ask for is what 97 cubits will be worth, the not similar thing to
the said cubits is 11 fiorini, and therefore we should multiply 11 times 97, [...].

Then, rather unusually, come the two alternative methods where the intermediate result
is meaningful; either that 97 cubits is 97/8 times as much as 8 cubits, for which reason
the price must be 97/8 times 11 fiorini; or that the price of 1 cubit is 11/8 fiorini, whence
the price of 97 cubits will be 97 times 11/8 . These alternatives – in particular the first one,
there called “by relation” (nisba ) – are well-known in Arabic mathematics. For instance,

280 Lucca, Biblioteca Statale, ms, 1754. ed. [Arrighi 1973], cf. [Van Egmond 1980: 164f ]; page
references point to Arrighi’s edition. A change of hand in the middle of fol. 23v shows that it is
the result of collaboration, not of discordant works or fragments put together – and also that what
we possess is the original, not a copy.

The dating follows from (fictional) loan contracts (pp. 182–188) expiring in 1329–1333. Such
dates may evidently have been thought of as being in the future, but hardly in distant future; in
some cases they are indeed in similar fictional loan documents in Tutta l’arte, but no more than
five years [Cassinet 2001: 107].
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both are discussed by al-Karajı̄ in his Kāfı̄ [ed. trans. Hochheim 1878: II, 16f ]; but even
though they may occasionally be used by abbacus authors (cf. above, p. 22), they are rarely
expounded directly as here.[281]

As elsewhere, the presentation of the rule of three invites the teaching of multiplication
and division of fractions (called “elements of fractions”, Elementi de’ rotti, evidence of
some kind of interaction with university mathematics).

In the very end (pp. 201–205) comes another version of the habitual beginning of
abbacus treatises: First arithmetical tables (not reproduced by Arrighi); then metrological
shortcuts; and then the rule of three in the unusual “mentioned”-formulation (above, p.
168), duly followed by teaching of how to deal with fractions and mixed numbers, and
finally a case of proportional sharing said to be “strange” and called “oblique
[traverso ] sharing” – namely the sharing between partners of which one should have
1/2 and the other 1/3 . The type is not rare – we have encountered it in the Pisa Libro di
ragioni (above, p. 162), where it is spoken of as “fallacious”; but I have not noticed the
present name elsewhere.

What we find between these two beginnings is a fairly full coverage of the usual
abbacus topics and methods – sometimes going beyond the usual, for instance when
teaching the rule of five and the rule of seven systematically, and when offering (p. 151)
a rule for gauging the volume contained in a Florentine standard wine barrel.[282]

Particularly noteworthy is a long account (pp. 153–175) of the weights, measures and
customs of a number of trading places, and the relations between metrologies. The places
spoken of reach from Accra, Alexandria and Constantinople in the East over Bejaïa, Tunis,
Messina and Palermo in the South to Mallorca, Nîmes, Montpellier and Marseille in the
West and North; numerous cities from the Italian mainland are also listed. At the end
of this tariffa comes a list of the fairs of France, Flanders and Apulia, with their calendars.

As Gherardi’s Libro and Tutta l’arte, this Libro d’abaco solves scattered problems
by means of algebra, thereby illustrating what was diffused in the environment; moreover,
it contains not merely one but two systematic presentations, a Regola della cosa (pp.
108–113), and an Aligibra amichabile, pp. 194–197).

The Regola della cosa states 16 rules:

Lc1 αt = N
Lc2 αC = N
Lc3 αC = βt
Lc4 αC+βt = N
Lc5 βt = αC+N

Lc9 αK = βC
Lc10 αCC = βK
Lc11 αCC = N
Lc12 αCC = βt
Lc13 αCC = βC

281 Unfortunately a third method follows, where 97 cubits becomes 97 fiorini.

282 Namely as 11/25 of length×diameter2. In the 16th century, German Rechenmeister were to integrate
this topic (“doliometry”) in their teaching – see for example [Ries 1550: 182–196], and below,
p. 366.
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Lc6 βt+N = αC
Lc7 αK = N
Lc8 αK = βt

Lc14 αK+βC = γt
Lc15 βC = αK+γt
Lc16 αK = βC+γt

All cases are also dealt with in Jacopo’s Tractatus, and thus only reducible cubics
and quartics appear. Moreover, in the likeness of Jacopo, the present compiler provides
the first six cases with examples (only one for each), while the cubics and quartics have
none. Apart from changed numerical parameters, the examples for Lc4 and Lc5 agree
with problems offered by Jacopo, the others are different – sometimes even simpler than
the “such part” problems, for instance (Lc6),

find me a number which, when 30 is added to it, makes as much as when it is multiplied
by itself.

The example for Lc2 coincides with what is proposed by Gherardi (above, p. 195), apart
from a changed numerical parameter.

After the higher-degree rules come four divided-ten problems solved by means of
algebra (all of the second degree), and two stated explicitly to be solved without the thing.

Given how close the rules are to what we know from Jacopo’s Tractatus, it appears
certain that the compiler draws (directly or indirectly) either on Jacopo or on a close
precursor to his algebra chapter; the new examples he may have drawn from what was
already circulating (they fit what we know from Gherardi and from Tutta l’arte ), or he
may have constructed them himself (the example for Lc6 being nothing but an instantiation
of the rule, with specification of the numerical parameters).

The Aligibra amichabile (pp. 194–197) states 13 rules:

La1 αt = N
La2 αC = N
La3 αC = βt
La4 αC+βt = N
La5 βt = αC+N
La6 (omitted)

La7 αK = N
La8 αK = βt
La9 αK = βC
La10 αK+βC = γt
La11 βC = αK+γt
La12 αK = βC+γt
La13 αCC = N

These are simply Jacopo’s first 13 cases in the same order.[283] The first five are
provided with a single example – all but the one for La2 coinciding with examples we
know from Jacopo, sometimes with changed numerical parameters; that for La2, however,
coincides exactly with Gherardi’s example (above, p. 195). The phrasing of the example
for La4 is so similar to that of Lc4 (both numerical variants of the first example for Ja4,
which however is phrased very differently) that they must clearly make use of a shared

283 That La6 has been omitted by mistake follows from the line following where it should have
been (p. 196), “these are the six rules of aliabra amichabile”.
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source ultimately depending on Jacopo or his source but already reformulated.
As mentioned above, the Lucca Libro also contains scattered problems solved by means

of thing and censo. Most of them are similar in type to the scattered problems of Gherardi
and Tutta l’arte, but one has close kin only in Jacopo’s algebra (namely his second
example of Ja4b – above, p. 186): a variant of the “purchase of a horse” which would
hardly be imaginable without the prospect of solving it by means of algebra (p. 132):

There are two men, and they want to buy a horse which is worth £ 10. The first says to
the second, if you give me 1/3 of your denari, I shall buy it. The second says to the first,
if you give me the root of your denari and £ 5 more, I shall buy the horse. I want to know
how many denari each one had. You should do like this: Posit that one had a censo, and
then the other must have 30 less 3 censi. [...].

Over the next century and a half, similar problems turn up in many of the more
advanced abbacus treatises.

Giovanni di Davizzo

My final representatives of the second generation are only known from being quoted
in later works. One is the Florentine Giovanni di Davizzo (fl. 1339–1344), whose father,
brother and two nephews were also abbacus masters [Ulivi 2002a: 39, 197, 200]. Within
a sequence of number problems in the manuscript Alchune ragione from 1424,[284]

starting on fol. 25v and ending on fol. 38v, on fol. 28v–31r are inserted six pages announced
as being

extracted from a book from the hand of Giovanni di Davizzo dell’abacho from Florence,
written the 15th September of year 1339, and this is 1424.

A later hand has added a heading Algisbra, which is indeed quite adequate. Fol. 28v–29r

gives us a general idea (nothing more!) of what may have been lost in Jacopo’s algebra
(see above, p. 183).

At first come, mixed up with the four sign rules in §2, rules for the multiplication
and division of powers:

¶[§1] Know that to multiply number by cube makes cube
and number by censo makes censo

284 Vatican, Vat. lat. 10488, see [Van Egmond 1980: 230]. It is written by several hands, often
shifting in the middle of a page and thus a planned collaborative effort – once again we may think
of the assistants of an abbacus master with or without the participation of the latter. Occasional
personal opinions (e.g., fol. 35r, in the running text, not a marginal note) about procedures show
that those who wrote were competent abbacists, not merely scribes. My references refer to the earliest
foliation.

According to Van Egmond, the manuscript should be Venetian; he does not cite any evidence,
and the language/orthography seems to fit Florence perfectly (and not at all Venice), which would
make it less strange that Giovanni di Davizzo’s text was available in 1424 to the compilers.
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and number by thing makes thing.
¶[§2] And plus times plus makes plus

and less times less makes plus
and plus times less makes less
and less times plus makes less.

¶[§3] And know that a thing times a thing makes 1 censo
and censo times censo makes censo of censo
and thing times censo makes cube
and cube times cube makes cube of cube
and censo times cube makes censo of cube.

¶[§4] And know that dividing number by thing gives number
and dividing number by censo gives root
and dividing thing by censo gives number
and dividing number by cube gives cube root
and dividing thing by cube gives root
and dividing censo by cube gives number
and dividing number by censo of censo gives root of root
and dividing thing by censo of censo gives cube root
and dividing censo by censo of censo gives root
and dividing cube by censo of censo gives number
and dividing number by cube of cube gives cube root of cube root
and dividing thing by cube of cube gives root of cube root
and dividing censo by cube of cube gives root of root
and dividing cube by cube of cube gives cube root
and dividing censo of censo by cube of cube gives root
and dividing censo of cube by cube gives number———— censo[285]

and dividing number by censo of censo of censo of censo gives root of root of
root of root

and dividing number by cube of cube of cube of cube gives cube root of cube
root of cube root of cube root.

¶[§5] If you want to multiply root by root, multiply root of 9 times root of 9, say, 9
times 9 makes 81, and it will make the root of 81, and it is done.

To divide root of 40 by root of 8, divide 40 by 8, it gives 5, and root of 5 let
it be.

To divide root of 25 by root of 9, divide 25 by 9, it gives root of 2 7/9 , done.
If you want to multiply 7 less root of 6 by itself, do 7 times 7, it makes 49, join

6 with 〈49, it makes〉 55, and 7 times 6 makes 42, then multiply 7 times

285 From later versions it can be seen that this line was originally
“and dividing censo of cube by cube of cube gives number”

Somewhere in the process, this had become
“and dividing censo of cube by cube gives number”

Noticing the error, somebody – almost certainly the writer of the 15th-century manuscript, since
the correction is made there – saw that this was wrong, and stated a correct result (but of a division
Giovanni had not intended).
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42, it makes 294, and multiply then 4 times 294, it makes 1176, I say that
55 less root of 1176 will it make when 7 less root of 6 is multiplied by
itself.

¶[§6] If you want to detract root of 8 from root of 18, do 8 times 18, it makes 144,
its root is 12, and say, 8 and 18 makes 26, detract 24 from 26, and root of
2 will remain, done.

It you want to join root of 8 with root of 18, do 8 times 18, it makes 144, its
root is 12, and say, 12 and 12 makes 24, and say, 8 and 18 makes 26, and
join 24 and 26, it makes 50, and root of 50 will the number be.

If you want to multiply 5 and root of 4 times 5 less root of 4, do thus and say,
5 times 5 makes 25, and say, 5 times root of 4, do thus, bring 5 to root,
it makes 25, and do, root of 25 times root of 4, it makes root of 100, and
do, 5 times less root of 4, it makes less root of 100, 25 still remains, now
detract 4 from 25, 21 remains, and 21 they make.

If you want to multiply 7 and root of 9 times 7 and root of 9, do 7 times 7, it
makes 49, put (above) this 9, you have 58, and 9 times 49 makes 441,
multiply by 4, it makes 1764, you have that it will make 58 and root of
1764, which is 42, done.

If you want to divide 35 by root of 4 and by root of 9, do thus, from 4 to 9 there
is 5, multiply 5 times 5, it makes 25, and say, bring 35 to root, it makes
1225, now say, 4 times 1225 makes 4900, divide by 25, it makes 196, and
do 9 times 1225, it makes 11025, divide by 25, it gives 441. We have that
dividing 35 by root of 4 and by root of 9 gives root of 441 less root of 196,
and it is done.

The rules for the multiplication of powers (§3) show, firstly, that the names for higher
powers are based on multiplication, not embedding: cube of cube stands for t3 t3, not
for (t3 )3; and secondly, that Giovanni has a full mastery of the sequence of successive
powers.

Those for division (§4), on the other hand, demonstrate that here Giovanni’s intuition
fails. He appears to have nourished a vague idea that the inverse of taking a power is
to take a corresponding root – raising to the third power and then taking the cube root
evidently leads us back to the starting point. This is then mis-applied to negative powers
(and we observe that all divisions in §4 apart from the one resulting from a copying error
should give a negative power), which are identified with roots – with some difficulty
corresponding to t–1, which becomes number. The multiplicative composition of these
“roots” confirms that they are nothing but postulates – when genuine roots are meant,
also by abbacus writers, the cube root of 256 is 8, and the cube root of the cube root of
256 therefore 2, the ninth, not the sixth root.[286]

§5 and §6 deal with the arithmetic of monomials and binomials containing square

286 This is the reason I have chosen to italicize these “roots” (but not “roots” in the normal sense),
just as I italicize the algebraic powers thing, censo, cube, etc.
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roots; it is noteworthy that Giovanni often makes use of rational roots “as if they were
irrational”; this would allow him to control the correctness of the calculations, but he does
not do so, and the expression in quotes is not found in Giovanni’s text but only in Dardi
da Pisa’s slightly later treatise (below, p. 214), which suggests Giovanni to have borrowed
(which we would anyhow expect).

After these introductory matters come, as usual, a list of algebraic cases – rules only,
no examples:

Gi1 αt = N
Gi2 αC = N
Gi3 αC = βt
Gi4 αC+βt = N
Gi5 αC+N = βt
Gi6 αC = βt+N
Gi7 αK = N
Gi8 αK = βt
Gi9 αK = βC
Gi10 αK+γt = βC

Gi11 αK = βC+γt
Gi12 αCC = N
Gi13 αCC = βt
Gi14 αCC = βC
Gi15 αCC = βK
Gi16 αCC+γC = βK
Gi17 αCC = βK+γC
Gi18 αCC+βC = N
Gi19 γt+αCC = βK ?

All cases but the last are solvable; all agree, also in order, with what we know from
Jacopo. Two of Jacopo’s cases (Ja11 and Ja16) are skipped, however, and Gi10 is the
mirror image of Ja11. It may not be significant that the rule Gi10 does not mention the
possibility of a double solution, since it is added, apparently in the same hand, as having
been omitted by mistake in the rule for Gi5, and since it is conserved in the rule for Gi16.
All in all, however, Giovanni seems to share a source with Jacopo rather than copying
from him.

The rule for Gi19 is almost illegible, just leaving enough traces to show that it cannot
have been valid and to suggest that it was not one of Gherardi’s false rules. A user of
the manuscript appears to have discovered that the rule is wrong, and glued a slip of paper
over it. The slip has disappeared, but the glue has made the paper as dark as the ink. In
any case it appears that the fashion of inventing new false rules was spreading, as was
algebra.

Biagio il vecchio

Our last representative of the second generation is Biagio il vecchio, “the old”, a
Florentine abbacus master who died around 1340.[287] Our source for his mathematics

287 “Old” because the sources who refer to him also know another, younger abbacus master named
Biagio.

In spite of his fame, there is no reason to discuss Paolo dell’Abbacho, first a student and then
apparently a partner of Biagio. Van Egmond [1977: 16] concludes that his fame was first of all
due to his “cultivating friendship with prominent figures”, and this even in spite of ascribing to
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and for our scarce knowledge about Biagio himself is Benedetto da Firenze’s Trattato
di Praticha d’arismetrica (henceforth “Benedetto’s Praticha”). This work, about which
much more will be said in the following, was an “abbacus encyclopedia” written in 1463
and containing both Benedetto’s own mathematics and extensive systematic extracts from
predecessors.[288]

Book XIV of the Praticha is announced as demonstrating “exemplary cases of the
rule of algebra according to what master Biagio writes”.[289] Benedetto explains that
he reports what Biagio writes in his Trattato di praticha “not because others have not
written rather copiously [about the topic] but because [Biagio] was, according to master
Gratia de’ Castellani the first who reduced this treatise to a good practice [una buona
praticha ]”. There is no mentioning of Jacopo or Gherardi, perhaps because Benedetto
does not know about them, perhaps because he restricts the perspective to precursors within
his own school tradition, perhaps – and most likely – because only Biagio’s extensive
treatment of the topic has the depth that deserves the characterization as a praticha.[290]

Benedetto promises to follow Biagio’s order, and starts by showing some editorial
caution. The first problem asks for a “number”, but Benedetto doubts Biagio would speak

him the Tutta l’arte on more than dubious grounds (cf. above, note 274). He also points out that
Paolo’s fame among contemporaries was due to his (routine) astrological activity and not to his
practising of mathematics.

It is possible that Van Egmond is overly severe and that Paolo made noteworthy contributions
to abbacus mathematics; this could be suggested by a reference in a later manuscript to a treatise
in several parts from his hand dealing with “continuous quantities” (see below, note 405); even
then, however, there is no reason to discuss him, given that we do not know what these contributions
should be.

288 The Praticha survives in three manuscripts [Van Egmond 1980: 356], of which Siena, Biblioteca
Comunale L.IV.21 is Benedetto’s working manuscript, as can be seen occasionally when
computations have been made first and the text written afterwards in whatever space was left –
an example is shown below, p. 292. The other two extant manuscripts are incomplete.

There is no full edition of the manuscript, but a number of partial editions have been made
on the basis of the Siena manuscript. When referring to the manuscript and not to one of these
editions, I shall use the foliation of the Siena manuscript.

289 Ed. [Pieraccini 1983: 1]. Further references in the format “p. n(#m )” refer to page n, problem
m in this edition (the problem numbering is due to Benedetto, and could well go back to Biagio).

290 When Fibonacci wrote a Pratica geometrie in 1220, the meaning was probably (this would agree
with the philosophical epistemology of the time) that geometry comprises two parts: a theory
(artificium ) and a practice (exercitatio, practising of the theory) – cf. [Høyrup 2017: 209]. We
have no certainty that this was still strictly meant when Benedetto wrote, but it was certainly still
present as a connotation, remembered not least because of Fibonacci’s work. However that may
be, Biagio’s algebraic Praticha certainly had no theoretical counterpart proper (unless the term
designates not his algebra but an all-encompassing Praticha di arithmetica, which cannot be
excluded).
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thus, and therefore corrects to a question about a “quantity”; Benedetto seems to have
suspected the text he possessed had been tampered with.[291]

References within the problem solutions show that the problem collection comes from
a larger algebraic work, which must then be Biagio’s Praticha. It follows after a chapter
stating the rules for solving 19 cases and promises (p. 27, #32) another chapter containing
biquadratic mixed equations among other matters. The order of rules in the preceding
chapter (as they are referred to in the problem collection) is as follows:[292]

Bi1 αC = βt
Bi2 αC = N
Bi3 [αt = N ]
Bi4 αC+βt = N
Bi5 αC+N = βt
Bi6 αC = βt+N
Bi7 αK = βC
Bi8 αK = βt
Bi9 αK = N

Bi10 αK+βC = γt
Bi11 αK+γt = βC
Bi12 [αK = βC+γt ]
Bi13 αCC = βK
Bi14 αCC = βC
Bi15 αCC = βt
Bi16 αCC = N
Bi17 αCC+βK = γC
Bi18 αCC+γC = βK
Bi19 αCC = βK+γC

One might suspect the references to rule numbers to be due to Benedetto, but
Benedetto’s order (as given in chapter XIII of the Praticha ) is different.[293] There can

291 If anything, the tampering has probably gone the other way. Neither the Lucca Libro nor
Gherardi – both roughly contemporary with Biagio – uses quantità when asking about a pure number.
With one exception, the Lucca Libro only uses quantità when a concrete entity is referred to, as
one of several possessions or a quantity of bullion. The exception to the rule (p. 195) is that if a
quotient is multiplied by the divisor, then the result is “the quantity that is divided”. The only time
Gherardi speaks of a quantità that is not specified to be a quantity of something is when he divides
100 by “some quantity” and then by 5 more (above, p. 195). The use of quantità as a synonym
for “number” may have originated in the second half of the 14th century (in note 325 we shall
encounter it in Antonio de’ Mazzinghi).

292 No appeal is made to the third rule in the problems, and by mistake #76 identifies the rule for
αk = βC+γt as the 11th rule, which however has been explained in #75 to pertain to the case
αK+γt = βC.

293 Benedetto’s own list as contained in the Praticha (Book XIII, chapter 3 – fol. 374r–388v ) is as
follows (R stands for cubo relato, the fifth power of the thing):
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be no doubt that Biagio’s own numbering is quoted; there are certainly a few identifiable
intrusions of Benedetto’s pen, but these have the character of commentaries.

The order of the simple cases is the traditional Arabic order; for higher-order cases
we discover a system inspired by Bi1–Bi2, Bi4–Bi6, for each power to the left, first
decreasing powers to the right, and afterwards three cases that can be reduced to Bi4–Bi6
by division. Given how this system differs in part from what we find in Jacopo, Gherardi
and the Lucca Libro it is likely to have been created by Biagio.

The majority of Biagio’s 114 problems deal with abstract numbers (often spoken of
as “quantities”).[294] However, recreational commerce is not absent; we find repeated
travels, interest, alloying, and several other mercantile dresses – all of course representing
artificial questions that would never arise in real trade. The first problems are very similar
to what we already know from the second generation and quite simple (n stands for
“number”, q for “quantity”):

Be1
Be2
Be3
Be4
Be5
Be6
Be7
Be8
Be9
Be10
Be11
Be12
Be13
Be14
Be15
Be17
Be16
Be18

αC = βt
αC = N
αt = N
αC+βt = N
αC+N = βt
αC = βt+N
αK = N
αK = βC
αK = βt
αK+βC = γt
αK+γt = βC
αK = βC+γt
αCC = βK
αCC = βC
αCC = βt
αCC+βK = γC
αCC = N
αCC+γC = βK

Be19
Be20
Be21
Be22
Be23
Be24
Be25
Be26
Be27
Be28
Be29
Be30
Be31
Be32
Be33
Be34
Be35
Be36

αCC = βK+γC
αR = βCC
αR = βK
αR = βC
αR = βt
αR = N
αR+βCC = γK
αR+γK = βCC
αR = βCC+γK
αKK = βR
αKK = βCC
αKK = βK
αKK = βC
αKK = βt
αKK = βN
αKK+βR = γCC
αKK+γCC = βR
αKK = βR+γCC

We observe the absence of mixed biquadratics from Biagio’s list; Biagio promises to deal with
them in his next chapter, as also with cases to be solved by false rules. We also take note that the
order of the basic six cases is that of al-Khwārizmı̄ – perhaps because chapter 1 of the Biagio’s
Praticha drew on a translation of al-Khwārizmı̄’s algebra (the three Florentine encyclopedias,
including Benedetto’s Praticha, all draw on al-Khwārizmı̄ in Guglielmo de Lunis’s translation,
cf. below, p. 306, and they all belong within a tradition going back to Biagio).

Pieraccini [1983: iii] mistakenly exchanges Be5 and Be6, thereby producing Fibonacci’s order.

294 At the end of the book (p. 143) Benedetto tells us that “I could still write many more cases,
but because I want to give space to others I shall finish this book”. Biagio’s original thus contained
“many more” problems than the 114 copied by Benedetto.
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p. 1 #1 ( 1/3 + 1/4 )n = √n
p. 2 #2 (q– 1/3 q– 1/4 q ) = √q
p. 2 #3 (q– 1/3 q– 1/4 q+) = √q
P. 3 #4 ( 1/3 q ) ( 1/4 q ) = q
P. 4 #5 ( 1/3 q+3) ( 1/4 q+4) = q

However, the last of these, when the quantity is posited as a thing, leads to an equation
having no solutions (for us, to two negative solutions), so Biagio points out that the
question is not “reasonably set”.

Further on, many illustrations of the higher-degree cases make use of the such-part
structure – for instance (p. 68, #69), “find me three quantities so that the first be such
part of the second as two of three, and the second be such part of the third as 3 of 4”.
If we look at the problems in mercantile dress it is sometimes glaringly clear that the
dress is not taken seriously – thus in this problem (p. 134, #109):

Somebody makes a certain number of travels, and as many travels as he makes, so many
denari he brings. In each travel he earns 40 per 100, and after all the travels he has made
in all 6 δ. It is asked with how many δ he set out.

At first it is shown that the number of travels is between 5 and 6, and it is posited that
the merchant makes 5+t travels. t is then found to be √7 1643489177/4007902864 –2 26839/63308 , and the
amount of denari he brought therefore to be 3 24733/63308 +√7 16434891177/4007902864 . Discreetly,
Biagio does not state that this is also the number of travels (cautiously he also has not
asked for that). In contrast, as we remember, when Fibonacci finds a non-integer number
of travels he adjusts the parameters in order to get an integer solution (above, p. 90).

We find a similar paradoxical acceptance of a non-integer result in a problem about
a chess-board (p. 122, #101). In an ordinary chess-board with its 64 cases, as Biagio
observes, 28 of these are at the edges and 36 are internal. Now Biagio asks for a chess-
board where the two numbers are equal. In brief, in an n×n-chess-board, 4n–4 cases are
at the edges, and n2–4n+4 therefore internal. Equating these, Biagio finds the solution
to be 4+√8 – tacitly omitting the other solution, 4–√8, and (discreetly once more) not
saying that this is the number of cases along each edge.

As we have seen (above, p. 195), Gherardi at one point refers to a cross-multiplication
that only makes sense if connected to formal fractions involving algebraic binomials. Such
formal fractions turn up in several of Biagio’s problem solutions (#64, #92, #94, #97,
#98, #99, #102). Mostly they make use of the abbreviation ρ (obviously not meant as
the Greek letter rho but fairly similar to it) for cosa, “thing”, and mê for meno, “less”
(addition is indicated by juxtaposition). In #95 (p. 112) Biagio explains how to perform
the addition

+ =
360
1ρ

360
1ρ mê 6

1080ρ mê 2160
2censi mê 6ρ

by means of cross-multiplication (similarly in #98, p. 117); next, when he has established
that equals 39 fiorini,

1080ρ mê 2160

2censi mê 6ρ



– 209 –

in order not to have fractions, multiply both sides by two censi less 6 things, and you
get that 1080 things and 2160 are equal to 78 censi less 234 things [...][295]

None of Biagio’s problems correspond to any of Gherardi’s false rules. One, however,
presents us with another, related innovation: the introduction of rules that only function
under specific (non-specified) circumstances. #31 (p. 25) asks this question:

Find a number which, when multiplied by itself and over this is joined its root, makes 18.

To this Benedetto observes that

in this our master gets lost, since he wants to compose a rule which does not apply to
other similar questions. And the rule and way that he indicates is this. He says, you will
posit that this number be a censo; multiplied in itself it becomes 1 censo of censo; put
unto it the root of the said number, which is a thing, they make 1 censo of censo and a
thing. Which you first bring to a censo of censo,[296] and you get the same, and then
halve the thing, the half being 1/2 thing, which multiplied in itself make 1/4 , and again
multiplied in itself make 1/16 , which, added to 18, make 18 1/16 , whose root is 4 1/4 , from
which quantity, when the square on the half is cut away, that is 1/4 , remain 4, and so much
is the censo worth. And you posited that [the number] was a censo, thus it was 4, and
as you see the rule is good for this case, but proposing it for other numbers does not serve,
and therefore we call it the pronic root [radice pronicha ]. And I think he did not look
for other ways, or perhaps, since he did not intend so, it was written into his works.

It is not clear from this whether the pronic root of 18 is 4 or 2; elsewhere in his Praticha
(fol. 361v ) Benedetto states that it is 2. Other sources do not all agree, but at least confirm
that the concept was widely spread. Pacioli [1494: I, 115v] has this:

By radice pronica one normally understands a number multiplied in itself, and above it
set the root of the said number, of this sum that number is called radice pronica. As 9
multiplied in itself makes 81, and above it set the root of 9, which is 3, it makes 84. The
radice pronica is called 9 by practitioners,

according to which the pronic root of 18 should be 4. Piero della Francesca’s abbacus
collection [ed. Arrighi 1970b: 91f ] agrees in different words, and so does the manuscript
Florence, BNC, Palatino 575 [ed. Simi 1992: 20f ]. On the other hand, Gilio da Siena
[ed. Franci 1983: 18f ], writing in 1384, as well as Pierpaolo Muscharello in his Algorismus
from 1478 [ed. Chiarini et al 1972: 163], state that the pronic root of 84 equals 3. In any
case, it is clear that the pronic root serves to solve equations CC+t = N. It also seems

295 That this incipient use of symbolism is not added by Benedetto can be seen from an explanation
given in Book XIII (fol. 374r ); Benedetto himself would also have used ρ for the thing but further
have written c for censo. Cf. also note 327 below.

296 This is evidently a reference to the normalization contained in a rule – a rule we may presume
to have been contained in Biagio’s next chapter.
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to follow from Benedetto’s words (“we call it”) that Biagio did not use the term, and in
any case a “rule” would not be needed if tabulated pronic roots were at hand. In the actual
case, the rule only works because 1/2 C = t, that is, because t = 2.

We shall soon encounter other special roots meant to solve irreducible equations.

The second generation – summary observations

Summing up, we may say that the second generation was strongly marked by an Italo-
Provençal group, but that is also presents us with the establishment of a more
homogeneous, properly Italian tradition than what we find in the first generation. The
most conspicuous innovation of the second generation, however, is the introduction of
algebra.

Abbacus algebra, already from this beginnings, differed in characteristic ways from
the algebra that was known in Latin – the translations of al-Khwārizmı̄, Fibonacci, and
(scarsely diffused) the Liber mahameleth and the translation of Abū Kāmil’s algebra.

Firstly, there are no geometric proofs, and (perhaps connected to that) the first power
of the unknown (really the unknown) is a thing (cosa ), no root (radice ); secondly, all
cases are defined in non-normalized form, entailing that the first step of rules is a
normalization; thirdly, there is systematic exploration of the possibilities to solve problems
of higher than the second degree, as opposed to the solution of single cases we have
encountered in the avere group of Liber abbaci, part 15.3 (some abbacus writers trying
to show off by postulating false rules for higher-degree cases which only a modicum of
algebraic understanding could unmask). Fourthly, algebra is applied to a range of
sometimes complicated recreational business problems, reflecting that abbacus algebra
was practised within and grew out of an environment fundamentally engaged in the
teaching of commercial arithmetic. Finally, there is scattered evidence of incipient formal
calculations and use of letter abbreviations within these, enough to show that formal
calculations existed and were made use of – which implies that these abbreviations served
as symbols serving the mathematical argument directly and not through virtual expansion
into a rhetorical argument.



Further into the 14th century

By 1340, abbacus schools were well established in many places. From now on it would
be meaningless to single out “generations”: the fundamental curriculum as we have seen
it described above (p. 5) and as we have seen implemented in the revised version of
Jacopo’s Tractatus (above, chapter II) did not change perceptibly neither over the rest
of the century nor before the advent of printing. There is no reason to go into details.
The innovations that took place concerned the supra-utilitarian level, first of all the algebra.
They went in many different directions, evidence of active and creative interest in the
field. Some innovations converge and prepare what happened in the 15th century, other
seem not to have invited emulation (with the proviso that much – probably most – of
the evidence has been lost).

Dardi da Pisa and the Aliabraa argibra

Biagio may have written the first extensive treatise (a praticha ) on algebra, but we
know it from Benedetto’s extract only. The first extant treatise dedicated solely to algebra
is the Aliabraa argibra, written by a certain Dardi da Pisa in 1344 – perhaps identical
with the abbacus master Dardi Ziio (or Dardi de Zio) who is known to have taught in
Venice in 1346 [Ulivi 2002b: 131]: beyond the date and the not very common name, a
Venetian origin would also fit internal evidence.[297]

Dardi’s treatise is extensive and falls in three parts, preceded by a preface opening
with an echo of the “four causes” dear to contemporary university philosophy, explaining
that the present book like others was made by four rispetti.[298] First comes the title,
which we may assume is thought of as the formal cause – here Aliaabra, explained to
be Arabic and to mean “explanation of subtle question”; second the author’s intention
(probably seen as efficient cause), namely to solve some questions by means of numbers

297 I have used the following versions:
– Vatican, Chigi M.VIII.170 (ca 1395, cf. [Van Egmond 1980: 211]); henceforth D1 (when

referring, I use the recent foliation);
– Raffaella Franci’s edition [2001] of Siena, Biblioteca Comunale I.VII.17 (ca 1470, cf. [Van

Egmond 1980: 188]); henceforth D2;
– Warren Van Egmond’s personal transcription of the Arizona manuscript, written in Mantua

in 1429, for which I thank him heartily; henceforth D3.
A fourth manuscript is Florence, Biblioteca Mediceo-Laurenziana, Ash 1199, from c. 1495. I have
only seen the extract in [Libri 1838: II, 349–356], according to which it is quite close to D2.

The Vatican manuscript is generally but not in all respects the best, cf. [Høyrup 2007: 170
n. 331, n. 332]. It follows Venetian orthography. Moreover, the abbreviation ç for censo, used in
all manuscripts, corresponds to the northern writing çenso (in the 15th century changing into
zenso ); it therefore seems fairly certain that Dardi wrote in Venice or at least in north-eastern Italy
(just like Fibonacci, in Pisa he would not have be identified as “from Pisa”).

298 The preface is in D2 only [ed. Franci 2001: 37f ]. It is lost in D1 and replaced by a different one
in D3 which speaks about the copying of that manuscript itself.
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and others by means of roots, namely those that have no discrete solution; third the matter
which it deals with (the material cause), namely the “names” (in our terminology “powers”)
things, censi, cubi, censi of censo and cubi of cubi. Fourth (the final cause) the utility
of the book, namely that the one who understands it well will be a good arithmetician
and geometer – matters which when dealt with as theory (spechulativamente ) belong to
natural philosophy.

Even though abbacus masters did not belong to the university environment,[299]

the intellectual separation was not absolute – and from the last observation it is clear that
Dardi intends his present book to develop theory and thus to be counted among
philosophers.

The preface goes on with an explanation of the meaning of the terminology for powers:
the thing is a linear length and the root of the censo; the censo

is a surface width and the square [quadrato ] of the thing, and called censo from cerno
cernis,[300] which stands for “to choose” because the censo chooses the mean proportional
between the thing and the cube. The cube is a corporeal thickness, whose body includes
the length of the thing and the surface of the censo, and is called cube according to the
arithmetic of Boethius from this name cubus cubi[301] which says as much as aggregation
of numbers.

The final statement is inspired by De institutione arithmetica II.39 [ed. Friedlein 1867:
136; trans. Masi 1983: 163], according to which cubes are sums of subsequent odd
numbers: 13 = 1, 23 = 3+5, 33 = 7+9+11, etc. It is not meant by Boethius as an explanation
of the name; Dardi seems to write from rather approximate memory of what he has learned
(not that his etymologies are more fanciful than so many others from the epoch).[302]

The first of the three parts is introduced as a

treatise about the rules that pertain to the multiplications, the divisions, the joinings and
the subtractions of roots. And further to know to find the roots of square and cube numbers

299 Some of them taught astrology with the necessary astronomical underpinning at the medical
faculties, where astrology served prognostication. One who did so was Giovanni di Bartolo, on
whom below, p. 255 – see [Ulivi 2002a: 39 n. 141].

300 “I distinguish, you distinguish” – a trace of how Latin verbs were taught in school. Apart from
the other obvious flaws of the explanation, Dardi’s proposed translation from the Latin is at best
approximative.

301 Hardly meant as “cube of cube” but presumably another trace of Latin as taught at the introductory
level (nominative+genitive form). Dardi probably frequented a grammar school but hardly university,
where such references to declination schemes would have been left behind.

302 It is not to be excluded that Dardi builds on an intermediate source misquoting Boethius. Jacopo,
with many others, certainly treats Boethius worse than Dardi, cf. above, note 9.
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and other subtle rules that give to understand calculations magisterially (maistravile ).

In principle it thus corresponds to fol. 28v–29r of the extract from Giovanni di Davizzo
and to the missing introduction to Jacopo’s algebra. It is much longer, however (12 to
15 folio sheets in the various manuscripts). A full translation into modern symbolism of
the contents can be found in [Franci 2001: 8–10]; here I shall point to some significant
features, keeping closer to the text.

When teaching the multiplication of binomials, Dardi makes use of diagrams. For
example (D1 fol. 6r ), for (3–√5) (3–√5)

( abbreviates radice, “root”).
Instead of just stating the sign rules as Giovanni di Davizzo does (above, p. 202),

Dardi uses a similar diagram (m̃, strictly , stands for meno, “less”) to support an
argument for the most difficult of them (D1 fol. 4v ):

Now I want to demonstrate by number how less times less makes plus, so that every times
you have in a construction to multiply less times less you see with certainty that it makes
plus, of which I shall give you an obvious example. 8 times 8 makes 64, and this 8 is
2 less than 10, and to multiply by the other 8, which is still 2 less than 10, it should
similarly make 64. This is the proof. Multiply 10 by 10, it makes 100, and 10 times 2
less makes 20 less, and the other 10 times 2 less makes 40 less, which 40 less detract
from 100, and there remains 60. Now it is left for the completion of the multiplication
to multiply 2 less times 2 less, it amounts to 4 plus, which 4 plus join above 60, it amounts
to 64. And if 2 less times two less had been 4 less, this 4 less should have been detracted
from 60, and 56 would remain, and thus it would appear that 10 less 2 times 10 less two
had been 56, which is not true. And so also if 2 less times 2 less had been nothing, then
the multiplication of 10 less 2 times 10 less 2 would come to be 60, which is still false.
Hence less times less by necessity comes to be plus.

As we see, we are well beyond the limit of established algebraic thought: instead of just
arguing that (–2)×(–2) must be 64–60 since that is what is missing, Dardi has to make
a double indirect proof[303] in order to rule out the possibilities (–2)×(–2) = –4 and
(–2)×(–2) = 0.

When explaining (D1 fol. 11v ) how to perform the division of 8 by 3+√4, Dardi makes

303 Often, indirect proofs are believed to be much more difficult to grasp than direct proofs, and
only introduced when mathematicians interacted with philosophers – most famously in [Szabó 1969:
341–346]. Dardi puts this assumption to rest (if need be, Aesopus’s salta hic should suffice to do
so).
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use of the rule of three: Since (3+√4) (3–√4) = 5, 5/(3+√4) = 3–√4; 8/(3+√4) must
therefore be (8 [3–√4])/5. That √4 appears in the example is no accident. Dardi makes
repeated use of rational roots “as if they were irrationals”; this should obviously make
it possible to control the outcome, but Dardi mostly leaves it to the reader to do so.[304]

Giovanni di Davizzo does the same, we remember (see above, p. 204), but never explains,
nor does he take advantage. We may assume that both took over the idea from earlier
writings but only Dardi understood. [Added: Actually, al-Khwārizmı̄ applies the trick to
√9 √4 [ed. Hughes 1986: 244].]

Giovanni di Davizzo shows in two examples how to simplify the sum of two roots
or their difference (say, √a±√b ) – above, p. 203), but only as an unexplained numerical
prescription, and does not specify that the method leads to a simplification if and only
if ab is a square. Dardi (D1, fol. 9r,v ) first explains this condition and then shows in the
examples that the method builds on the squaring of √a±√b. Once again, Dardi certainly
understands what he is doing, while Giovanni di Davizzo may simply have copied.

The second part of the Aliabraa argibra presents the six basic cases.[305] The order
is the usual abbacus order, as we known it from Jacopo, both algebra presentations in
the Lucca Libro, and from Giovanni di Davizzo; quite
outside the beaten path, however, is Dardi’s use of
geometric demonstrations. Their principle is the same as
we know from al-Khwārizmı̄’s demonstrations, but the way
of lettering is different. We may compare the
demonstration for the fourth case with al-Khwārizmı̄’s
corresponding demonstration (above, p. 139). Already al-
Khwārizmı̄ had deviated from the Greek canon by using
letters to designate areas; Dardi deviates from this as well
as from the canon of geometers (ancient Greek or of his
own times) by designating identical areas by the same

304 At an early point (D1 fol. 3v ), Dardi explains the multiplication of root by root on the example
√4 √9 = √(4 9) = √36, and as “prova manifesta” he explains that √4 = 2, √9 = 3, and 2 3 =
6 = √36. Dardi may have expected his reader to have understood the principle and that repetition
was superfluous.

305 In D1, a sheet has been lost, and it therefore starts in the very end of the third rule.
For equation, instead of Jacopo’s raoguaglamento (also used by others) Dardi uses the term

adequation (D1, e.g., fol. 15v ) or adequatione (D3, e.g., fol. 24v ). Seduced by the normal appearance
of the word in the composite l’adequation (written without the apostrophe, not yet invented) and
interpreting this as la dequation, the scribe of D2 at least in the beginning believes the term to be
dequatione (thus nelle dequationi [ed. Franci 2001: 64]); but la ditta adequatione, overo de
adequatione and la adequatione [ed. Franci 2001: 73, 77, 88] show that the original term was
equation(e). Franci takes over the mistake except in a few cases where a preceding vowel differing
from a prevents it. It may be noticed that adequazione (derived from adeguare ) was in attested
Tuscan use around 1350 [Crusca, p. 21], while no cognate of dequation can be found.
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letters. Once more it seems that Dardi works according to approximate memory of what
was done in writings he had seen – this time producing a pedagogically efficient tool.

In this part, Dardi starts using the abbreviations c for cosa, “thing”, and ç for censo
(referring to the Venetian spelling çenso, cf. note 297 – for relative ease of reading I shall
use Ç ); m̃ is still used for meno. Most striking is a quasi-fractional notation for monomials,
similar to the use of quasi-fractions for denominated numbers in the CA (above, p. 167):
thus (D1 fol. 15r, 22r, 46v ), stands for “1 censo”, for “30 things”, for “21 (in)

1

Ç

30

c

21

n

numbers”, for 36 cubes, (emulating an ascending continued fraction) for “5 1/3
36

cu

5

c

1

3

things”. Nothing but a compressed linguistic expression and no operatory symbolism
however rudimentary is intended. That can be seen from the way “1 censo of censo” is
expressed (D1 fol. 47r ) – namely as de Ç.

1

Ç

This algebraic notation is not Dardi’s invention – there is a single unexplained instance
( ) in Tutta l’arte (Tf, fol. 159r ), showing that already the compiler of this work knew

10

cose

it in 1334, and that even he was not its inventor.
Using a notation that looks like a fraction but where the “denominator” is a

denomination, if anything a factor rather than a divisor, would obviously give rise to
ambiguities if it were combined with the use of formal fractions involving algebraic
polynomials. But it never is, by Dardi nor in any other Italian work I have inspected.[306]

On another account, Dardi is our first source for another strain in the development
of algebraic symbolism, related to the algebraic parenthesis. Here, a possible
misunderstanding should be cleared away. A parenthesis is not a bracket but an expression
enclosed, for example, in a pair of brackets; in written language it can also be delimited
between two dashes, and in spoken language by pauses. An algebraic parenthesis is a
composite expression that is dealt with as a single entity – so, in (a+b )2, (a+b ) as a whole
is submitted to the squaring operation. Post-Cartesian algebra and analysis could not exist
without the algebraic parenthesis. It is so pervasive that we tend to forget its crucial role.
Cf. [Høyrup 2015].

We have already encountered one kind of algebraic parenthesis above, namely in the
formal fractions. In Biagio’s , the fraction line takes care that the numerator

1080ρ me 2160

2censi me 6ρ

(1080ρ me 2160) as well as the denominator (2 censi me 6ρ) are algebraic parentheses.
In modern notation, the extended root sign also delimits a parenthesis. The abbreviation

cannot do that, and Dardi uses (invents?) a way to indicate that a root is to be taken
of a composite expression – for example (D1 fol. 8v ), he expresses

1

4
12

306 The “German algebra” (on which below, p. 355) does combine the two, but only because this
late-15th-century compilation is an eclectic combination of material drawn from a variety of sources.
The very last problem [ed. Vogel 1981: 43] makes use of a formal fraction; but precisely this bit
of text uses a different notation for the cossa, namely a superscript c known from other Italian
writings.
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as “ de zonto 1/4 con de 12 ”, “root of, joined, 1/4 with root of 12”. Later abbacus
writers instead speak of a radice generale, radice universale or radice legata (“general”,
“universal” or “bound root”), or use , an encircled . The notation is somewhat
ambiguous, it is not always clear how far the composite expression goes; but normally
it is restricted to two members, and it mostly fulfilled its purpose within the ambit of
abbacus algebra.[307]

Part 3 of the Aliabraa argibra presents rules and examples for “194 regular and 4
irregular” cases – thus announced in the preface [ed. Franci 2001: 38]. The “regular” cases
are those which can be solved by root extraction or by being reduced to one of the six
fundamental cases; the irregular cases are solved correctly but only for particular
parameters.

The reason Dardi reaches 194 regular cases is that he makes extensive use of radicals
(square as well as cube roots, sometimes both within the same equation). Since the whole
sequence is shared by no other writer, there is no need to recapitulate all of it.[308] After
16 cases where no radicals appear come these:

Da17 N = √(αt)
Da18 αt = √N
Da19 αC = √N
Da20 N = √(CC )
Da21 αK = √N

Da22 N = √(αK)
Da23 αCC = √N
Da24 N = √(αCC )
Da25 αt = √(βt )
Da26 αC = √(βt )

We observe that Da21 coincides with Gherardi’s Gh8; this tells us that Dardi does not
start completely from scratch. So far, everything looks quite simple from our perspective,
in particular if we replace t, C and K by powers of x. However, as said in connection
with Gherardi (above, p. 196), we should remember “that only positive integers and
fractions were accepted as numbers, and think of the difficulty which the appearance of
an irrational coefficient had caused Fibonacci”.

Later on things become more intricate, and more difficult to express. For instance,
the rule for Da41, N = αK+√(βK ) runs

you shall divide the number [N ] by the quantity of cubes [α], and serve what results
separately. And then multiply the quantity of cubes that are not roots [α] in itself, and
divide the quantity of cubes [β] that are said to be roots by this multiplication. And the
fourth of that which results for you, join it above the division that you served, and the

307 In note 334 we shall see how Antonio de’ Mazzinghi invented a way to eliminate the ambiguity
when he needed to get around it. Apparently it did not spread, probably because the need was not
there.

308 Full lists in modern symbolism can be found in [Van Egmond 1983: 402–417] as well as [Franci
2001: 26–33]; the former list also indicates the rule given by Dardi for each case in modern symbolic
language.
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root of this sum, that is, the cube root, less the root of this fourth that you joined, that
is, the division that results for the cubes called roots in the multiplication of cubes that
are not roots. And so much is worth the root of the cube, and this root multiplied in itself,
so much is worth the cube, and the cube root of this multiplications comes to be worth
the thing

– corresponding to the formula

t = .

3
⎛
⎜
⎝

⎞
⎟
⎠

1

4

β

α2

N

α

1

4

β

a 2

2

The formula makes heavy use of parentheses. As we see, Dardi instead calculates the
single constituents separately; in the subsequent example, he does the same. We also
observe that Dardi has an explicit concept of coefficients, “quantity of cubes” instead of
the habitual “the cubes” (D2 mostly returns to the customary way).

In many cases, Dardi explicitly reduces a question to a another one which he has dealt
with before – for example in Da82, αt+β√C = γC,

You shall detract the things on each side [parte ], and on one side will remain for you
censi less things, and on the other root of censo, and then multiply that which remains,
each part in itself, and you will have on one side censi and on the other censi and censi
of censo less cubes. Then detract the smaller quantity of censi on both sides, and give
the cubes that are missing on one side to both sides, and you will have that the equation
will come to be that of the 70th or the 71st chapter,[309] and then proceed according
to the way of the chapter already dealt with.

All 194 rules are correct, with two exceptions: for Da177, √(αt ) = 3√(βCC ), the rule stated
is t = 3√(β2/α3 ) instead of t = 5√(β2/α3 ), for Da179, √(αK ) = 3√(βt ), the rule gives t =
4√(β2/α3 ) instead of t = 7√(β2/α3 ). As argued by Van Egmond [1983: 417], the likely reason
is that no terminology was as yet available for the fifth and the seventh root.

All regular cases are provided with examples (as already Jacopo, Dardi offers three
examples for the fifth rule). All are stated in terms of pure numbers – almost half ask
for two or three numbers in given ratio (in “such part” formulation),[310] more than
a fourth for a number which fulfils the conditions of the equation, around 15% are divided-
ten problems.

Between Da182 and Da183[311] the four “irregular cases” with appurtenant rules

309 Respectively (Da70) αCC+γC = βK and (Da71) αCC = βK+γC.

310 The “proportion” notion only appears when numbers in continued proportion are spoken of
correctly (D1 fol. 44r,) or misunderstood (fol. 23r ).

311 In D3, they have been moved to the very end, and the order of the first two rules has been
inverted.
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are inserted,

D-i1 γt+βC+αK = N, t = –
3

γ /α

β /α

3 N

α

γ /α

β /α

D-i2 δt+γC+βK+αCC = N t = –
4

δ /α

β /α

2 N

α

δ /α

β /α

D-i3 δt+γC+αCC = N+βK t = + –
4

γ

4α

2 N

α

β

4α

δ /α

2β /α

D-i4 δt+αCC = N+γC+βK t = + –
4

γ

4α

2 N

α

β

4α

δ /α

2β /α

These rules are said (D1 fol. 100r ) to be true only for the cases for which they have been
arranged (ordinati ) but included because “by some accident the said rules may turn up
in certain problems”.

The first two examples deal with compound interest, the other two build on a divided
ten. A look at the first will reveal how the rule is produced (D1, fol. 100r ):

Somebody lends to someone else £ 100, and in the end of three years he receives £ 150
in earning and capital, interest being made up at the end of year. I ask at what rate it was
lent a month.

We have encountered a similar problem above (p. 186), namely Jacopo’s first illustration
of Ja4, where the money was lent for two years. There as here, a simple way to solve
the problem would be to take the value to which 1 £ (or 100 £) has grown after a year
as the unknown, then the problem would be reduced to the extraction of a square or cube
root; that is indeed the way Biagio (pp. 69, 84) solves problems about a capital growing
over three respectively four years. Jacopo, as we remember from p. 186, instead produced
a mixed second-degree problem by taking the monthly interest of 1 £ in δ as his unknown.
Exactly the same trick works here. We may take the interest rate to be t ß per £ per month
(and thus 12/20 t £ per year and £); then we have that 100 (1+ 12/20 t )3 = 150, whence

t = – .
3

20

12

3 150

100

20

12

If instead we develop the equation we get

t3+3 t 2+3 t = – .
20

12

20

12

2 20

12

3 150

100

20

12

3

We observe that can be found as the quotient between the coefficients of t and t2, and
20

12

that arises as the sum of the number term and ; and further, that t results( 20

12
)3 150

100

20

12

3

if from this sum we extract the cube root and afterwards subtract – and that is exactly
20

12

Dardi’s rule.
The second rule can be derived in a similar way. The examples for D-i3 and D-i4

both have the structure
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10 = a+b , = √N ,
ab

a b

N being respectively 18 and 28. If we posit a = 5+t, b = 5–t,[312] we get in both cases
biquadratic problems (if we accept square roots as number terms, as done in Da18 and
Da21, quadratic equations). Positing instead t = a or t = b we get the equation types D-i3
and D-i4, and comparison once again allows us to derive the rule valid in these particular
cases.

Whoever devised these rules was a very good algebraist, at the level of Biagio and
certainly far above that of Gherardi. We can be confident that it was not Dardi. Firstly,
there is no reason Dardi should depart from his constant use of pure-number problems
just for the first two irregular cases and nowhere else; secondly, the way he distances
himself when introducing them (D1 fol. 100), “hereafter will be written certain chapters
[...] though by some accident the said rules may turn up in certain problems” (when
speaking about what he does himself, for instance in the preface, Dardi is not afraid of
speaking in the first person singular).

Since (as we have seen) Biagio possessed the tools to derive the irregular rules, they
may have come from his hand and have been among those that were not transcribed by
Benedetto. As we have observed (p. 209), Biagio did not shy away from devising rules
for higher-degree questions that only apply to specific cases. But we have no firm
foundation for the belief that Biagio was the sole abbacus writer of his kind and level.
In any case, it is not certain that Biagio or whoever it was knew that the rules derived
by means of the ingenious method we have seen had no general validity; that may well
have been Dardi’s discovery.

Further evidence that the irregular cases and their rules did not originate in the
Aliabraa argibra comes from their afterlife. A number of manuscripts contain sometimes
only the two compound-interest problems, sometimes all four – sometimes with, sometimes
without the examples.[313] A few also contain an extra case, γC+βK+αCC = √N, with

312 This is done by Biagio (pp. 39, 47, 49, 51) in five other divided-ten problems.

313 I know of the following instances:
– Florence, BNC, Fond. princ. II.III.198 (see [Franci 2002: 96f ]);
– Parma, Bibl. Palatina, Ms. Pal. 312 (the Libro de conti e mercatanzie, [ed. Gregori & Grugnetti

1998: 24f ]);
– Palermo, Biblioteca Comunale, Ms. 2Qq E13; contains also the third irregular case (see [Franci

2002: 97f ]);
– Vatican, Vat. lat. 4825 (Tomaso de Jachomo Lione), fol. 80r–81r; contains also the third case;
– probably also in Florence, Ricc. 2252, which according to [Franci 2002: 98] should be “quite

similar” to the Palermo manuscript;
– Florence, BNC, Palatino 567 (Raffaello Canacci, Ragionamenti d’algebra [ed. Procissi 1954:

441]); as Tomaso di Jachomo di Lione, yet without examples;
– Vatican, Vat. lat. 10488, fol. 93v, brings Dardi’s first irregular Rule without example;
– Florence, BNC., Palatino 575 [ed. Simi 1992: 53], rules alone;
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the example (certainly as basis for the rule for solving the case) that 50 £ grow in 2 years
to (50+√484) £.[314] None of these sources ever mentions the restricted validity of the
rules, as one might have expected at least some of them to do if they had borrowed from
Dardi.

Beyond reporting the first of Dardi’s irregular cases, Vatican, Vat. lat. 10488, fol.
94v, also give fully valid rules for αt = √N, N = α√t, αC = √N and N = √C, while
Florence, BNC, Palatino 575 [ed. Simi 1992: 52–55] has rules for αC = M+√N, α√CC =
N, α√KK = N, α√CC+M = N and α√CC–M = N.[315] Together, the only partial overlap
with Dardi’s material, the simple character of these cases and the closeness in style to
Gh8, αK = √N, suggest however that these rules are not borrowed from Dardi but instead
(like Gh8) representatives of the type which had inspired Dardi for his vast exploration
of its possibilities.

So, however brilliant it is, and even though a number of copies of the treatise were
made, Dardi’s exploration was a dead end.

Alcibra amuchabile

Another compilation (rather than treatise) dedicated solely to algebra is a Trattato
dell’alcibra amuchabile from c. 1365 (henceforth Alcibra amuchabile ).[316]

In the likeness of the Aliabraa argibra (and many other algebras from al-Khwārizmı̄
onward), the Alcibra amuchabile consists of three parts. The first of these teaches
multiplication and division of roots or expressions containing roots. For the product of
binomial by binomial, a diagram is introduced to illustrate the procedure – for instance
(p. 18), for (5+√20) (5–√20):

.

– finally, the first three rules with the usual examples are copied in Bento Fernandes’s Tratado
da Arte de Arismética from 1555 [da Silva 2008].

314 The example contains writing or copying errors as well as erroneous calculations, but the
underlying idea is as good or as bad as in Dardi’s irregular cases. Since we do not possess Biagio’s
treatment of the arithmetic of roots and arithmetical polynomials we do not know whether the
appearance of √484 (= 22) is compatible with ascription of the irregular rules to Biagio.

Canacci has the rule without the example. Bento Fernandes copies both.

315 Rules only, no examples. The former group coincides with Da18–20, the first two in the latter
group with Da38 and Da24, while the last three have no counterparts in the Aliabraa argibra.

316 Florence, Biblioteca Riccardiana ms. 2263, ed. [Simi 1994]. Page references will be to Annalisa
Simi’s edition. Date according to watermarks. Written in two or three different hands [Van Egmond
1980: 151].
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Division of 100 by 10+√20 is accompanied by a similar diagram

,

which serves to illustrate that both dividend and divisor are to be multiplied by 1–√20.
These look like reduced versions of Dardi’s schemes, but since there is no hint that

the compiler knew the Aliabraa argibra, either Dardi made a more elaborate version of
what he knew from a shared background, or the present compiler reduced what was around;
the existence of a shared source or source tradition is in any case beyond doubt.

The second part lists 24 algebraic cases with rules and examples:

AA1* αt = N
AA2* αt = N
AA3* αC = βt
AA4* αC+βt = N
AA5* βt = αC+N
AA6* αC = βt+N
AA7¤ αK = N
AA8¤ αK = βt
AA9¤ αK = βC
AA10¤ αK = βC+γt
AA11 αK = √N
AA12 αK = βt+N
AA13 αK = βC+N
AA14° αK+γt = βC
AA15* αK+βC = γt
AA16* βC = αK+γt
AA17* αCC = N
AA18* αCC = βt
AA19* αCC = βC
AA20* αCC = βK
AA21* 1αCC+βK = γC
AA22* βK = αCC+γC
AA23* αCC = βK+γC
AA24 αCC+βC = N

Ja1
Ja2
Ja3
Ja4
Ja5
Ja6
Ja7;Gh7 Example differs
Ja8;Gh9 Same example
Ja9;Gh10 Same, with error
Ja12;Gh11 Same example
Gh8 Same example
Gh12 Same example
Gh13 Same example
(Ja11)
Ja10;Gh15 Example in Gh15
Ja11
Ja13
Ja14
Ja15
Ja16
Ja17
Ja18
Ja19
Ja20

An asterisk * means that the rule and example (if such exists) are the same and use the
same words as Jacopo’s algebra. A pillow ¤ indicates that the rule coincides with Jacopo’s
corresponding rule, but that an example has been added – the last column states whether
the example is shared with Gherardi or not. A degree symbol (°) indicates that the rule
is worded differently than Jacopo’s corresponding case.
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As we see, the Alcibra amuchabile copies all of Jacopo’s cases very faithfully. In
four of the regular cases involving cubes an example is provided (as we remember, Jacopo
supplied no examples after the first six cases). On one point, however, a telling correction
is made. In the second example for Ja4 [ed. Høyrup 2007: 312f ], Jacopo at one point
has to compute (√54–2)2, which should give him 58+ 4√54, which according to prevailing
norms should be expressed as 58+√(16 54) = 548+√864. As pointed out above, note 273,
Jacopo does not perform the computation 16 54 but leaves the space open (five times
in total); at least two consequent copyists reproduce this faithfully, the last of them (if
not both) writing in the margin “così stava nel’originale spatii”, “thus it was in the original,
spaces”. The Alcibra amuchabile instead completes the calculation.

This shows beyond all doubt that “Jacopo’s algebra” (that is, the algebra contained
in manuscript V of Jacopo’s Tractatus ) was older than ca 1365; in view of its almost
certain influence on the two algebra sections of the Lucca Libro, we may say with
reasonable confidence that if not already present in Jacopo’s original from 1307, it cannot
be much younger.

It could of course be older, in which case Jacopo would have copied it so faithfully
from some source that he did not even take the trouble to perform the multiplication 16 54
while none the less making it stylistically homogeneous with the rest of his treatise – see
[Høyrup 2007: 23–25]. This seems quite implausible; so is a stylistically harmonizing
insertion of the algebra chapter in the Tractatus between 1307 and 1330.

As shown by the scheme, the Alcibra amuchabile also deals with a number of cases
with a counterpart in Gherardi but none in Jacopo, and most of the new examples coincide
with examples given by Gherardi. The example for AA7 does not, however, and the precise
wording is never faithful as when the compiler copies Jacopo. Moreover, Gherardi’s only
four-term rule is absent. There is no reason that a compiler who copies one model verbatim
should paraphrase another one; we must therefore conclude that Gherardi is no direct
source, and therefore that the compiler drew on material that had also been at Gherardi’s
disposal in 1327.[317]

The third part of the Alcibra amuchabile consists of 41 solved problems. While those
examples in part 2 that do not come from Jacopo are all pure-number problems of the
“part-of” type, such questions are totally absent from part 3. Problems 1–10 concern a
divided 10, problem 11 a divided 20. Then follow 9 dealing with 100 divided by some
quantity (we shall return to one of them), 3 about compound interest (one involving the
square root of money already in the data) and 10 about exchange of money. One concerns
the partial excavation of a well, which (since labour can be supposed to increase
proportionally to depth) involves the formula for summation of an arithmetical series.

317 As we remember from p. 192, “Gherardi” stands for a treatise “written according to the rules
and the abbacus course held by Paolo Gherardi”. The real Gherardi could thus be somewhat earlier
than 1328.
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At the end come three give-and-take problems, one of them involving a product and thus
of the second degree; and amidst these, problems about 60 δ divided first between a
number of men and then between one or two more.

The most remarkable feature is the use of formal fractions. We may look at problem
13 (p. 41), which we have already encountered in Gherardi (above, p. 195):

Somebody divides 100 in a quantity, and then he divides 100 in 5 more than at first, and
these two results joined together made 20. I want to know in what 100 was divided at
first and in what it was divided afterwards.

The method somehow presupposed by Gherardi is fully spelled out here with reference
to a diagram

Posit that you divided 10 in a thing, 100 divided in a thing results. And then say that you
divide 100 in 5 more than at first, you shall thus divide 100 in a thing and 5, 100 divided
in a thing and 5 results. Now you have to join 100 divided in a thing with 100 divided
in a thing and 5. Now I will show you something similar so that you may be well advised
about this joining and I will say thus: I will join 24 divided by 4 with 24 divided by 6,
which you see should make 10. Thus posit 24 divided by 4 in the way of a fraction, from
which results 24/4 . Also similarly posit 24 divided by 6 in the way of a fraction. Now
multiply in cross, that is 6 times 24, they make 144, and now multiply 4 times 24 which
is above 6, they make 96, join with 144, they make 244. Now multiply that which is below
the strokes [verghe ], that is 4 times 6, they make 24. Now you should divide 240 by 24,
from which 10 should result. I say that if I multiply 10 which should result from it, against
the divisor 24, it will make the multiplied, that is, 240,[318] and so it does precisely.
Let us therefore return to our problem. Let us take 10 divided by a thing and therefore
posit these two divisions as if it were a fraction, as you see it drawn hereby. And now
multiply in cross, as you did before, that is, 100 times a thing, which makes 100 things.
And now multiply the other way [schisa, literally “cleaving”], that is, 100 times a thing
and 5, they make 100 things and 500 numbers; join to 100 things, you have 200 things
and 500 numbers more. Now multiply what you have below the strokes, one against the
other, that is, a thing times a thing and 5 more, they make a censo and 5 things more.
Now multiply the results, that is, 20 against a censo and 5 things more, they make 20
censi and 100 things more,

100 100

per una cosa per una cosa e piu 5

which quantity is equal to 200 things and to 500 numbers. Now take from each side 100
things, you will have that 20 censi are equal to 200 things and to 500 numbers. Bring
to one censo, that is, that you divide each thing by the censi, you will have that one censo
is equal to 5 things and to 25 numbers. [...].

Per se, the final step in the addition of the two genuine fractions seems superfluous. From
the division of 240 by 24, not only 10 should result, evidently it results. It reflects that

318 Thus, correctly, the manuscript. Simi writes 24, apparently taking the small final zero for a spot
of ink.
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the use of the formal fractions is still a step “behind” how we would treat them. Instead
of just multiplying an equation p÷q = r by q without thinking about why the step is valid,
the text argues from the very definition of division, namely that the equation means that
p = qr.[319]

For further elucidation we should remember a passage in Jacopo’s second example
for Ja1 [ed. trans. Høyrup 2007:305], a partnership problem (and as such involving a
division) – quoted above, p. 183. There, no formal fractions were made use of, but we
find the same reference to what the division means:

[...] And therefore we have to multiply 30 times a thing. It makes 30 things, which it suits
you to divide in the principal of the partnership, that is, by 30 and a thing, and that which
results from it, as much is due to the third partner. And this we do not need to divide,
because we know that 15 libre of it is due to him. And therefore multiply 15 times 30
and a thing. It makes 450 and 15 things. Hence 450 numbers and 15 things equal 30 things.

As we see, the use of formal fractions has not yet eliminated the need to keep in mind
the underlying meaning of the operations that are performed on them. We may observe
that the progress inherent in the above “behind” consists exactly in elimination of this
need, freeing the mathematical mind for more creative task – in more recent times, say,
solving integral equations without thinking about the definition of equations.

So, the author of this piece of text – whether the compiler of the Alcibra amuchabile
or some predecessor – is on his way on “the royal road to us” – but he has still not
advanced so far on it that the starting point has been lost from view.

Problem 22 (p. 48) illustrates how far away from us he is. It deals with a loan at
compound interest over two years, and in this connection gives a general explanation that
the solution

for one year follows from number, and in two years it comes by simple root, and in 3 years
it comes by cube root, and in 4 years it comes by root of root, and in 5 years it comes by root
of cube root, and in 6 years it comes by [cube?] root of [cube?] root.

As we see, at least the fifth root emulates the naming of the fifth power by multiplication;
a copying error prevents us from seeing whether this was also the case for the sixth power.
In any case, since the problem deals with two years, the compiler has no occasion to
discover the absurdity.

Antonio de’ Mazzinghi

Some of those abbacus books from the later 14th century that try to present the whole
of abbacus mathematics leave out algebra; this we have seen exemplified by the redaction
of Jacopo’s Tractatus. Those that present the discipline mostly teach us little new; we

319 That Biagio had already multiplied by the denominator as a matter of course (above, p. 209)
merely shows that we are not dealing with linear progress; nothing indicates that the present compiler
knew Biagio’s text.
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shall return to an exception to this rule and bypass the others.
At first, however, we shall look at an outstanding figure, Antonio de’ Mazzinghi from

Florence, a representative of the school tradition spanning from Biagio il vecchio to
Benedetto da Firenze.

According to Benedetto’s Praticha (above, p. 205), fol. 451r, transcr. [Arrighi
2004/1965: 157]), Antonio was a student of Paolo dell’Abbacho and began his career as
an abbacus teacher when Paolo died (that is, in 1367); Benedetto further relates that
Antonio was said to have died around the age of 30. On fol. 431v this is said to have
happened around 1390. Weighing this incongruous information (Antonio, however bright,
cannot have started teaching at the age of 7!) against a number of documents from the
Florence archives, Ulivi [1996] concludes that Antonio must have been born between 1350
and 1355, and probably died in 1385–86 – thus essentially confirming what had been
suggested by Van Egmond [1976: 354–356] on a narrower basis.

We know Antonio’s mathematics from reports and excerpts in various later treatises.
The encyclopedic manuscript Florence, BNC, Palatino 573 (above, note 151) relates (fol.
258r, ed. [Arrighi 2004/1967: 183]) that Antonio is said to have produced the first tables
of compound interest. The tables are reproduced on fol. 262v–277v; they deal with the
value, on one hand of 100 £, on the other of 1 £ (expressed in £, ß and δ) after 1, 2, 3,
... 20 terms, at the rate of 5, 5½, 6, 6½, ..., 20 percent per term (thus expressed, not as
mostly done in δ per £ per month); as we remember from p. 20, 15 percent per year was
in the upper end but still permissible.[320] The same treatise refers (fol. 397r, ed. [Arrighi
2004/1967]) to a Gran Trattato from Antonio’s hand in which he presupposes the reader
to be familiar with part 15.1 of the Liber abbaci.

According to Benedetto’s Praticha (fol. 451r, ed. [Arrighi 2004/1965: 158], Antonio
“left many volumes about geometry and arithmetic, but the most sublime is the one entitled
Fioretti, in which are written the cases that I shall show; so, be attentive”.

Ulivi [1996: 123] suggests that this collection of “small flowers” should be identified
with the Gran trattato. The title (in particular when used by somebody as familiar with
Fibonacci as Antonio) seems rather intended to intimate a relation to the Gran trattato
similar to that of Fibonacci’s Flos to the Liber abbaci. There is also nothing in the Fioretti
that relates to Fibonacci’s part 15.1. In any case, what Benedetto copies corresponds well
to the Flos, being a collection of often intricate and supposedly beautiful problems
(whoever can be charmed by mathematics will agree).[321]

320 Tables for the growth of 100 £ are also found in the manuscript Vatican, Ottobon. lat. 3307,
fol. 225r–233r, with an inversion on fol. 229v. The announcing words on fol. 221v state that such
tables “were first composed” by Antonio, and thus do not promise to render Antonio’s original
faithfully.

321 It may be worth noticing that Antonio gave to Fibonacci’s Flos the Italian title Fioretto – see
the quotation in the manuscript Vatican, Ottobon. lat. 3307, fol. 348v [ed. Arrighi 2004/1968: 221].
In the same quotation, Antonio speaks of the Liber abbaci as Fibonacci’s Praticha d’aresmestricha
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Starting just after Benedetto’s “be attentive”, Arrighi [1967a] contains an edition of
the Fioretti, which I shall use in the following (checking the manuscript when there seems
to be a reason to do so).[322] The text contains a number of editorial observations made
by Benedetto (as does his extract from Biagio – cf. above, p. 207); but they are clearly
separate, and what remains can (precisely because of Benedetto’s care to make clear where
he intervenes) be ascribed with fair certainty to Antonio; so can, as is particularly
important, the order of the problems.

Quite apart from its appeal to the aesthetic feeling of mathematicians, the Fioretti
as we know it from Benedetto is of the highest interest because it turns out at closer
inspection to be a work in progress, or at least a work where Antonio has done nothing
to eliminate the traces of his progressing insight. The most direct evidence for this (we
shall come back to strong indirect evidence) is problem 29 (p. 63)

10 = a + b , a 2 + b 2 +√a +√b = 86 ;

Antonio makes a position a = 5 – t ; b = 5 + t, which leads to

= 36 – 2t 2 .5 t 5 t

At this point, Antonio exclaims “I do not like it, and therefore I do not complete it” –
after which he goes on with a problem about three numbers in continued proportion.[323]

Also unexplainable unless we assume a work in progress is the beginning of problem
34 (p. 70) – a false start:

Make two parts of 10 for me so that, when one is divided by the other and the other by
the first and they are joined together, etc.

Make two parts of 10 for me so that, when one is divided by the other and the other
by the first and each division is multiplied in itself and they are joined together [...].

Benedetto’s editorial intention is expressed on p. 47, where he says that something
could be expressed in a particular way; “but since we speak like Master Antonio, we shall
say” – and then the matter is formulated by means of formal fractions involving algebraic
polynomials. There is thus no doubt than Benedetto tries to render notation as well as
mathematical procedures faithfully.

The extract from the Fioretti ends (p. 94) with the words

and about many Florentine citizens possessing Fibonacci’s works.

322 Problem and page numbers in the following refer to this edition. The problem numbering is too
similar to what Benedetto does elsewhere to make us sure that it originated with Antonio; on the
other hand, it agrees so nicely with what is found in other abbacus writings that nothing excludes
Antonio’s hand.

323 If problem numbers had been supplied by Benedetto, it would have been natural to provide this
new problem with one of it own. That this does not happen may be taken as a strong suggestion
that the numbering is due to Antonio.
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I would have many things to say; but for lack of time and because the volume would grow,
we shall put an end to this chapter, and therefore to the book

– namely to book XV of Benedetto’s Praticha. Comparison with the corresponding clause
at the end of the extract from Biagio (above, note 294) seems to tell us that Benedetto’s
version of the Fioretti is complete.

The Fioretti consists of 45 problems[324] and a section mirabile dictum about
properties of continued proportions. The most striking innovation in the treatise is the
gradually developed use of two algebraic unknowns, wholly different from what we (and
Antonio) have encountered in the Liber abbaci.

In problem 9 (p. 28) the beginning of the procedure suggests the use of two unknowns.
It deals with two numbers (A and B ), fulfilling the conditions that

AB = 8 , A2 + B 2 = 27 .

At first, “though the case does not come in discrete quantity”, Antonio solves it by means
of Elements II.4, according to which (when it is read as dealing with “quantities” and
not line segments)

A2 + B 2 + 2AB = (A + B )2 .

This leads to

A = + , B = – .10 3

4
2 3

4
10 3

4
2 3

4

Next Antonio states that

we can also make it by the equations [aguagliamenti ] of algebra; and that is that we posit
that the first quantity[325] is a thing less the root of some quantity, and the other is a
thing plus[326] the root of some quantity. Now you will multiply the first quantity
[A ] by itself and the second quantity [B ] by itself, and you will join together, and you
will have 2 censi and an unknown quantity, which unknown quantity is that which there
is from 2 censi until 27, which is 27 less 2 censi, where the multiplication of these
quantities [those of which the square root was taken] is 13 1/2 less a censo. The smaller
part is thus a thing minus the root of 13 1/2 less a censo, and the other is a thing plus the

324 The second-last and the last are both designated 44.

325 The two numbers of the statement have now become “quantities”. There is nothing unusual in
this, Antonio often replaces one word by the other. In the following lines that creates some
confusion, only to be kept under control by keen unspoken awareness of what the various “quantities”
refer to. Further on Antonio shows to be aware of the difficulty and to know how to eliminate it.

326 “Plus” translates più, literally “more” – but the expression “una chosa più la radice d’alchuna
quantità” is ungrammatical if più is understood in this literal way. The word instead functions as
a quasi-preposition, just like our “plus”. Fortunately the English word “less” can serve as a quasi-
preposition as well as in adjective function, just like Antonio’s meno.
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root of 13 1/2 less 1 censo. [...].

If Antonio had worked with two algebraic unknowns, taking the “some quantity” as the
second unknown (say, q ), he would have started with these steps (C stands for censo ):

A = t +√q , B = t –√q

A2 + B 2 = 2C + 2(√q )2 = 2C + 2q

whence

q = 13 1/2 –C ,

which corresponds to the numerical steps in Antonio’s argument, and obviously to his
understanding. But what he does can instead be expressed

a = t +√? , b = t –√?
a2 + b2 = 2C + ?? ,

and the fact that “??” equals two times “?” stays in his mind.
From this point onward, the method is algebraic, but with only one unknown.

The following problem 10 (p. 30) begins

Find two numbers whose squares are 100, and the multiplication of one by the other is
5 less than the squared difference. Posit that the first number be a thing plus the root of
some quantity, and the second be a thing less the root of some quantity, and multiply each
number by itself and join the squares, they make two censi and something not known.
And these squares should make up 100. Whence this unknown something is the difference
there is from 100 to 2 censi, which is 100 less 2 censi. [...].

Antonio here gets even closer but still does not fully implement the possibility of working
algebraically with two unknowns. But he is clearly preparing mentally; then, in problem
18 (p. 41) the idea is unfolded:

Find two numbers which, one multiplied with the other, make as much as the difference
squared, and then, when one is divided by the other and the other by the one and these
are joined together make as much as these numbers joined together. Posit the first number
to be a quantity less a thing, and posit that the second be the same quantity plus a thing.
Now it is up to us to find what this quantity may be, which we will do in this way. We
say that one part in the other make as much as to multiply the difference there is from
one part to the other in itself. And to multiply the difference there is from one part to
the other in itself makes 4 censi because the difference there is from a quantity plus a
thing to a quantity less a thing is 2 things, and 2 things multiplied in itself make 4 censi.
Now if you multiply a quantity less a thing by a quantity plus a thing they make the square
of this quantity less a censo; so the square of this quantity is 5 censi. And if the square
of this quantity is 5 censi, then the quantity is the root of 5 censi; whence we have made
clear that this quantity is the root of 5 censi. And therefore the first number was the root
of 5 censi less a thing and the second number was the root of 5 censi plus a thing. We
have thus found 2 numbers which, one multiplied in the other, make as much as to multiply
the difference of the said numbers in itself; and one is the root of 5 censi less a thing,
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the other is the root of 5 censi plus a thing. Now remains for us to see whether one divided
by the other and the other by the one and these two results joined together make as much
as the said numbers. Where you will divide the root of 5 censi less a thing by the root
of 5 censi plus a thing, this results, that is, [ ]. And then you

ra of 5 c less 1ρ

r of 5 c plus 1ρ

ra di 5c mê 1ρ

r di 5 c piu 1ρ
will divide the root of 5 censi plus 1 thing by the root of 5 censi less a thing,

r. of 5 c plus 1ρ

r. of 5 c less 1ρ
results.[327] And these two results should be joined together; where you will multiply the
root of 5 censi plus a thing across,[328] that is, by the root of 5 censi plus a thing, they
make censi plus the root of 20 censi of censo; and further multiply root of 5 censi less
a thing across, that is, by root of 5 censi less a thing, they make 6 censi less root of 20
censi of censo.[329] Which, joined with 6 censi and root of 20 censi of censo, make 12
censi. And this quantity we should divide in the multiplication of the root of 5 censi less
a thing in root of 5 censi plus a thing, which multiplication is 4 censi because root of
5 censi in root of 5 censi make 5 censi, and a thing plus multiplied in a thing less[330]

make a censo less, and when it is detracted from 5 censi, 4 censi remain, and multiplying
1 thing plus by root of 5 censi and 1 thing less by root of 5 censi, their joining makes
0. So the said multiplication, as I have said, is 4 censi, so these two results are 12 censi
divided in 4 censi, from which comes 3. And we want they should make as much as the
sum of the said numbers, whence it is needed to join the root of 5 censi less a thing with
the root of 5 censi plus a thing, they make 2 times the root of 5 censi, which is the root
of 20 censi. Whence the joining of the said numbers is the root of 20 censi, and we say
that it should be 3; so 3 is equal to the root of 20 censi. Now multiply each part in itself,
and you will have 9 to be equal to 20 censi; so that, when it is brought to one censo, you
will have that the censo will be equal to 9/20 . So the thing is equal to the root of 9/20 , and
if the thing is equal to the root of 9/20 , the censo will be worth its square, that is, 9/20 . So
the first number, which was the root of 5 censi plus a thing, was 1 1/2 plus the root of
9/20 ; and the second number, which was the root of 5 censi less a thing, was 1 1/2 less the
root of 9/20 . And so is found the said two numbers [...].

This probably goes beyond what Antonio was able to do by mental implicit use of a second

327 We observe that Antonio, as Biagio (above, p. 208) uses ρ for the thing and mê for meno, “less”;
but also that addition is not made by mere juxtaposition but indicated by a fully written piu, “plus”,
while censo is abbreviated c. The difference between the ways Biagio’s and Antonio’s texts are
dealt with confirms that Benedetto does not impose his own ways on the texts he copies. To the
same effect we may add that the manuscript Vatican, Ottobon. lat. 3307, also copying Antonio,
uses the same notation when Benedetto does so – as seen for example on fol. 338r in the Ottoboniano
manuscript confronted with fol. 456 in Benedetto’s text.

328 The cross-multiplication is shown in a symbolic operation on the two formal fractions in the
margin in the manuscript (fol. 458v ) – Benedetto’s autograph, but certainly copied from Antonio,
as argued in [Høyrup 2010: 31–33]. A similar marginal calculation occurs when Biagio adds two
formal fractions on fol. 403v.

329 Arrighi has “20 censi”, but the manuscript (fol. 458v ), correctly, has “20 censi di censo”.

330 We observe a distinction between additive and subtractive (not yet negative) numbers.
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unknown, or at least beyond what he found it possible to convey to a reader in this way.
This is the likely reason that he now makes the use of two unknowns explicit, and also
chooses a more stringent language, pointing out that the same quantity is meant in the
two positions. Awareness that something new and unfamiliar is presented to the reader
is reflected in the explanation that now “it is up to us to find what this quantity may be” –
it is never stated that the thing has to be found, neither here nor elsewhere in problems
with a single algebraic unknown, that goes by itself.

It is also noteworthy that from this point onward, quantity in general use (cf. note
325) disappears from all problem solutions where that term is used to designate one of
two algebraic unknowns (but not from other problems – in these quantity is still used
profusely.[331]

The procedure can be translated into familiar symbols as follows:

AB = (A – B )2 , A/B + B/A = A +B

with the algebraic positions

A = q – t , B = q + t .

Then

(A – B )2 = 4C , while AB = q 2 – C ,

whence

q 2 = 5C ,

that is,

q = .5C

In consequence we have the preliminary result

A = , B = .5C t 5C t

Inserting this in the other condition we get

+ = +
A
B

B
A

√(5C ) t
√(5C ) t

√(5C ) t
√(5C ) t

which, after cross-multiplication, becomes

+ = = = = 3 .
A
B

B
A

(√(5C ) t )2 (√(5C ) t)2

5C C
6C 6C

4C
12C
4C

Therefore, since

A + B = 2q = 2 5C

331 There are two apparent exceptions, one in the present problem (“this quantity we should divide
in the multiplication of the root of 5 censi less a thing in root of 5 censi plus a thing”), one in
problem 28 (pp. 61f ). Both, however, turn up after the algebraic quantity has been eliminated,
and the problem thus reduced to one with a single unknown thing.
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we have
= = 3 ,2 5C 20 C

whence

20C = 9 .

Tacitly interchanging “first” and “second” number, Antonio thereby obtains that

B = 1 1/2 +√ 9/20 , A = 1 1/2 –√ 9/20 .

This would probably have been very difficult even for a mathematician of Antonio’s calibre
without the explicit use of two unknowns. Once Antonio had decided to make the step,
things were easy. As we can see in the marginal calculations, Antonio routinely performed
formal calculations involving ρ (standing for the thing, we remember) and c or c o (both
standing for censo ) – his “multiplication across” refers to that.

Now, once the method has been invented and introduced, Antonio makes use of it
even in problem 19 [ed. Arrighi 1967a: 43], which could have been solved according to
the pattern we know from problems 9 and 10:

Find two numbers so that the root of one multiplied by the root of the other be 20 less
than the numbers joined together, and their squares joined together be 700. It is asked,
which are the said numbers? You will make position that the first number be a thing less
some quantity, and posit that the other number be a thing plus some quantity. And then
you take the square of the first, which we said was one thing less one quantity, and its
square is one censo and the square of this quantity less the multiplication of this quantity
in a thing. And the square of the second number, which we say is a thing and some
quantity, is a censo and the square of this quantity plus the multiplication of this quantity
in a thing.[332] Which, joined together, make 2 censi and 2 squares of 2 quantities.[333]

And we say that they should make 700, whence one of these squares is 350 less one censo.
This quantity is thus the root of 350 less once censo. And we posited that the first number
was one thing less one quantity, that is was hence one thing less the root of 350 less one
censo. And the second number, which was posited to be a thing and a quantity, was one
thing and root of 350 less one censo. And thus we have solved a part of our question,
that is, to find two numbers whose squares joined together make 700. Now it remains
for us to see what it makes to multiply the root of one by the root of the other. Therefore
you thus have to multiply the general root of one thing less root[334] of 350 less one

332 Obviously, the product of quantity and thing should be taken twice here as well as in the square
of the first number. Antonio abbreviates, knowing that the two elliptical expressions cancel each
other.

333 2 quadrati di 2 quantità – namely “the two squares coming from the two distinct quantities”.

334 Underlined root renders or an encircled fully written radice (Arrighi does not indicate the
encirclings, they have to be traced in the manuscript). Antonio may well be the one who introduced
this notation for the “universal” or “bound” root, the root taken of a binomial (cf. above, p. 216).
As we see, Antonio avoids the inherent ambiguity by using the further notion of a “general root”,
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censo by the general root of one thing plus root of 350 less one censo, they make root
of 2 censi less 350; and this is their multiplication. For these matters one has to keep the
eye keen, I mean of the mind and the intellect, because even though they seem rather
easy, none the less, who is not accustomed will err. Therefore we have thus found that
this multiplication is the root of 2 censi less 350, and this we say is 20 less than the
numbers joined together. And the said numbers joined together are 2 things, that is joining
a thing less root of 350 less a censo with a thing plus root of 350 less a censo, which
indeed make 2 things. Whence we have that 2 things less 20 are equal to the root of 2
censi less 350; whence, in order not to have the names[335] of roots, multiply each part
in itself, and you will have that root of 2 censi less 350 multiplied in itself make 2 censi
less 350, and 2 things less 20 multiplied in itself make 4 censi and 400 less 80 things.
So 2 censi less 350 are equal to 4 censi and 400 less 80 things. Where you should make
equal the parts giving to each part 80 things and removing 2 censi; and we shall have
that 2 censi and 750 are equal to 80 things, which is the fifth rule. Where you bring to
one censo, and you will have one censo and 375 equal to 40 things. Where you will halve
the things, and let the half be 20, multiply in itself, they make 400, detract the number,
they will make 25, that is, detracting 375 from 400, of which 25 take the root, which is
5, and detract it from 25, 15 remain. And you will say that the thing is worth 15, and
the censo will be worth its square, which is 225. Whence the first number, which we
posited that it was a thing less root of 350 less a censo, detract 225, which is worth the
censo, from 350, 125 remain. And you will say, one part was 15 less root of 125, and
the second number was 15 plus root of 125. [...].

In our usual translation:

√A √B = A + B – 20 , A2 + B 2 = 700 ,

with the position

A = t – q , B = t + q ,

where Antonio no longer feels the need to point out that the two “some quantity” (alchuna
quantità ) refer to the same quantity. He does not quite return to the formulation of
problems 9 and 10, A = t –√q, B = t +√q, since with the explicit position of q he can now
operate freely with its square. Antonio calculates

A2 = C + q2 – [2]qt , B 2 = C + q2 + [2]qt ,

whence

2C + 2q2 = 700 , q2 = 350 – C , q = √(350 – C ) .

Therefore

A = t –√(350 – C ) , B = t +√(350 – C ) ,

where the “general root of one thing less root of 350 less one censo” stands for √(t–√[350–C ]).

335 Nomi. At least from Dardi onwards (above, p. 212) the algebraic powers (cosa, censo, cubo,
etc.) were spoken of as “names”; as we see, Antonio sees the roots of powers as belonging to the
same category.
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which is seen as a partial answer, and is inserted in the other condition:

AB = = = ,t √(350 C ) t √(350 C ) C (350 C ) 2C 350

a calculation which seems straightforward but where, according to Antonio, the untrained
will none the less err.[336] At all events, with the correct calculation we now have

= A + B – 20 = 2t – 202C 350

whence after squaring

2C – 350 = 4C + 400 – 80t ,

which can be reduced to

2C + 750 = 80t .

Solving this equation by means of the standard rule or algorithm for the fifth algebraic
case Antonio finds t = 15 – silently discarding the other solution t = 25.[337]

Several more problems are solved by means of two algebraic unknowns: number 20,
number 21, number 22 (twice during the procedure), number 24, number 25 and number
28. All seven make the position

A = t – q , B = t + q ,

and all seven could instead have been solved in the same way as number 9 and number
10. They tell nothing new about the use of two unknowns, except that by now Antonio
had taken full possession of the technique.[338]

336 Those who doubt Antonio’s words should be aware that near-contemporary algebraic writings
might presume that √(a+√b ) = √a+√√b – thus the Libro di conti e mercatanzie [ed. [Gregori &
Grugnetti 1998: 116]. The somewhat cavalier use of language came at a cost for those who did
not fully understand what was meant (from our point of view a cost – themselves they hardly had
any occasion to discover). Cf. also below, note 415, on a fallacious solution to the problem which
Antonio for good reasons did not like.

337 This alternative solution indeed leads indeed to a complex and thus impossible values for q, and
hence also for A and B, which Antonio may have seen (not in our terms, of course). We should
remember that abbacus algebra regarded the two solutions to the fifth case (when solutions exist)
as possibilities of which at least one will be valid, cf. above, note 267.

338 Only one detail is noteworthy. Number 20 (p. 44), begins

Find two numbers so that their roots joined together make 6 and their squares be 60, that
is, the joining of the squares be 60. Posit the first number to be a thing less the root of
some quantity, that is, less some quantity; the other posit to be a thing plus the said
quantity. [...].

Once more we see that Antonio as copied by Benedetto presents us with a work in progress: if
the Fioretti had been polished, there would have been no reason to leave a formulation “root of
some quantity” then to be corrected. Antonio must at first have had in mind the method of problems
9 and 10; it is a plausible guess that he used an earlier solution of the problem – probably his own.
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Also noteworthy is the presence of no less than 11 problems dealing with numbers
in continued proportion,[339] accompanied by two (numbers 14 and 15) about compound
interest making use of Antonio’s theoretical insight in the topic, solving a problem which
had been considered impossible: to find the yearly interest equivalent to an interest of
20 percent made up every 9 months (#14); and to find the interest over 8 months that
is equivalent to a yearly interest of 4 δ per £ and month (#15). These question are
obviously related to Antonio’s interest in tables of compound interest, mostly with terms
of unspecified duration; in mathematical future perfect they are a step towards Jost Bürgi’s
way to introduce logarithms – cf. [Clark 2015].

Related to the tables of compound interest is #16, to find the yearly interest of a loan
which in five years grows from 1000 fiorini to 2500 fiorini, “which many ignorants have
said cannot be resolved”, but which Antonio solves via the extraction of a radice relata,
a fifth root.[340]

These three problems have little if anything to do with practical commercial life. The
problems about barter (#11, #13), partnership (#12) and exchange (#43, #44a, #44b) have
even less – note 92, above, mentioned how Antonio manages to make the givens so
abstruse that second-degree equations result. All of these, like the refined pure-number
problems, are really fioretti, flowers picked on the field of abbacus mathematics, not
matters to be taught to merchants in spe for use in their trade. These hopefuls were
certainly also taught in Antonio’s school, but not from this book.

339 Numbers 1, 2, 3, 4, 5, 8, 23, 24, 25, 26 and 33.

340 This gives Benedetto the occasion for a cross-reference to the last chapter of his book 12. Before
wondering that Antonio’s problem could be deemed impossible we should be aware of what
Regiomontanus says about the analogous problem where 100 ducats grow to 900 over six years
in a letter to Giovanni Bianchini [ed. Curtze 1902: 256]: namely that it “sent him onto a major
rock” – namely because at first he had taken the yearly interest as his thing (cf. above, pp. 186
and 218). The solution he then gives shows him to have discovered Antonio’s easier way (which,
with fewer years, is also that of Fibonacci and Biagio).

The introduction of the radice relata solves the problem that made Dardi stumble: how to
express roots that cannot be composed of square and cube roots (cf. above, p. 217).

The manuscript Florence, BNC, Palatino 573, fol. 258r [ed. Arrighi 2004/1967: 191] quotes
Antonio for this explanation of the powers:

Thing is here a hidden quantity; censo is the square of the said thing; cube is the
multiplication of the thing in the censo; censo of censo is the square of the censo [quadrato
del censo ], or the multiplication of the thing in the cube. And observe that the terms of
algebra are all in continued proportion; such as: thing, censo, cube, censo of censo, cubo
relato, cube of cube, etc.

Since the sixth power is produced by multiplication, the fifth power could have been too, as censo
of cube or cube of censo. It looks as if the new name for the fifth root has called forth a
corresponding naming of the fifth power, at the moment without general consequences being drawn
(the name for the sixth power is still multiplicative).

-
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The Florentine Tratato sopra l’arte della arismetricha

Final facets of the development of abbacus algebra in the 14th century are visible
in the manuscript Florence, BNC, fondo princ. II.V.152 (above, note 151), Tratato sopra
l’arte della arismetricha.

Internal evidence (model loan contracts etc., and the contents of problems) tells us
that the treatise was produced in Florence in the early 1390s, which fits watermarks dated
to the years 1390–1399 [Van Egmond 1980: 138]. With this dating, the author almost
certainly knew about Antonio as a recent colleague. As we shall see, however, he appears
not to have known his mathematics too well; his innovations are his own, or in any case
not borrowed from Antonio’s lost writings.

The Tratato is written in a single hand. Its extensive algebra was edited by Franci
and Marisa Pancanti [1988]; page references in the following will point to this
edition.[341]

The algebra occupies fol. 145r–180v. As we have seen in other cases, it begins with
generalities – in the present case by explaining the sequence of algebraic powers, where
explicit insight in the nature of this sequence as a continued proportion is combined with
an astonishing terminological innovation.

The thing (cosa ) is explained (p. 3) as

nothing but a position that is made in many questions, and when it happens this position
that has been made may stand for [portare, literally “carry”] the quantity of a number
at some occasion, or a quantity of time at another occasion, or a quantity of cubits [...].

Further,

Having seen what a thing means, having shown that it is a position, we come to its
multiplication: we should know that a thing multiplied in itself makes a root which is
called a censo, so that it is the same to say a censo as to say a quantity which has a root,
engendered from a number multiplied by itself.

This turns out to be the beginning of a system. A thing multiplied against a censo gives

a cube, that is a cube root, so that if you should say that if the thing should produce 6,
then the censo will produce 36, that is, the square of the thing, the cube will produce 216
[...]. So it is the same to say a cube as to say a cube root of a given number.

Next (p. 4), thing times cube produces a censo of censo, “which is to say root of the
root of a given quantity”; that of a thing and a censo of censo will make

cubo di censi, which will be as much as saying a root which is engendered by a squared
quantity multiplied against a cubed quantity; as it would be to say, if the thing were worth

341 Insofar as possible I have controlled critical points in a barely readable scan of a low-quality
secondary microfilm.
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6, the censo is worth 36, and the cube will be worth 216, and the multiplication that is
engendered by the 36 against the 216 will be 7776, you will thus say that if the thing
were worth 6, then the cube of the censo will be worth 7776, and there are some that call
this root the radice relata. So it is the same to say cubo of censo as to say radice relata
of a quantity.

This passage shows us, firstly, that our anonyme can hardly have been too close to
Antonio; either he has misunderstood his use of radice relata (namely that it refers to
a proper fifth root and not to a fifth power), or he refers to an already current usage (by
“some”) without taking Antonio into account. Secondly we see that while Giovanni di
Davizzo’s impossible “multiplicative” composition of roots has no influence, multiplicative
composition of powers was still in use, in spite of the unusual phrase cubo of the censo
(chubo del censo , that is, including the definite article), even used about numbers where
the grammatically proper reading should be “cube of 36” (the censo having just been said
to be 36), that is, 46656.

If it had not been for what follows immediately, this might look as a pedantic
imposition of modern thought; but the next step shows that we are in the midst of a “phase
transition” of algebraic thought:

If you want to multiply a thing against a cube of censo, it will be a censo of cube [censo
di chubo ], which means as much as to say, taken the root of some quantity, and of this
quantity taken its cube root, as it would be if the thing were worth 3, the censo will be
worth 9, the cube will be worth 27, the censo of the censo will be worth 81, the cube
of the censo will be worth 243, the censo of the cube will be worth 729, because, taken
the root of 729 it will be 27, whose cube root is 3, and that equals the value of the thing.

This is the preliminary concluding step of the explanation of powers. Whereas the fifth
power, in the notation which is used so far, is KC, where the juxtaposition means
multiplication (and K as well as C are thus understood as entities ), the designation of
the sixth power has to be expressed as C(K ), where C, in modern terms, is a function.
We may assume that the transition, partial as it is, has been called forth by interaction
with the taking of roots; to which extent it is also, at a different level, an outcome of
challenges between abbacus masters is undecidable as long as we have not texts hinting
at that.[342]

342 A speculation is possible: a change due to explicit challenges would likely lead to explicit
understanding and thus to a full transition involving cube as well as censo. My guess, which can
be no more (beyond being based on psychological experiments which I performed half a century
ago, never published), is that the full transition which occurs over the following century may well
be the outcome of social interaction – discussion, challenge or both – but the present beginnings
a result of private thought.

We may remember how Antonio’s naming of the fifth root affected his naming of the fifth
power (above, note 340). The present Tratato seems to have improvised like Antonio but not to
have borrowed from him.
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Some further rules for multiplying powers follow on pp. 4f, pointing out that the
powers are in continued proportion. Here, the sixth power – whether produced as cube
times cube or as thing times censo of cube is named cube of cube (chubo di chubo ). If
these inconsistencies were produced by a bungler, they would tell us nothing of general
importance; but as we shall see, the author was an eminent algebraist, and they are
therefore evidence of a difficult birth.

The Tratato goes on with the multiplication of algebraic binomials and polynomials
shown in schemes – for the binomials similar to what we find in the Alcibra amuchabile
and in Dardi – for instance, for (6t–3) (5t+4)

When dealing with tri- or higher polynomials, the scheme is (by necessity) different. So,
(6t+8+√9) (6t+8+√9) is shown (p. 11) as

where advantage has been taken of the fact that √9 is rational. Such schemes would still
be in full use in the printed algebras of the 16th century. Here it is (correctly) explained
to emulate the multiplication of three-digit numbers a casella (not quite our algorithm,
but based on the same principles).

As we have seen it before, this introduction about powers and polynomial arithmetic
is followed from p. 44 to p. 97 by an enunciation of what in the closing words is called
“the 22 rules”. These are the same as those of Jacopo, supplemented by the two failing
biquadratics. We may observe that there is no trace of Dardi’s explicit notion of
coefficients – to use the first rule as example, the initial normalization is spoken of as
“division of the number by the things”.

All rules are provided with examples – 51 in total, since most are provided with at
least two. In several cases (#10, #11, #12, #17[343]) it is also pointed out that they can
be reduced to one of the basic 6 cases through division; in number 17 it is moreover
claimed that all cases after the first six can be reduced to these, which is evidently only
true if the root extraction of #2 is generalized to the extraction of any root. 15 of the
examples are of the simple “such part” type, which leads directly to the corresponding
equation type. Of the remaining six pure-number problems, two are of interest. The first
example for rule 5 is

343 The cases are not numbered in the edition, but in the manuscript they are.
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10 = a+b, a2+b2 = 82 .

Taking a to be a thing, the problem is reduced to 2C+18 = 20t, indeed the fifth case. The
third example for rule 6 is strictly parallel,

10 = a+b, a2+b2 = 60 .

Taking again a to be a thing, we would get 2C+40 = 20t, again the fifth case. But instead
the author chooses a to be a thing+4, whence b is 6–thing. This results in the equation
2C = 4t+8. the sixth case. It appears that the author is full aware of the effects of a linear
change of variable, which we shall see confirmed below.

The remaining 30 problems are in commercial or recreational dress, but as we have
seen it in other algebras they deal with situations that could never present themselves in
proper commerce. Often, traditional linear types like the give-and-take are twisted so as
to become non-linear – for instance (p. 82) in the first example for rule 16 (αCC =
βK ),

Three men have denari, the first says to the second, if I multiplied my denari by
themselves I shall have 2 times as much as you, the second says to the third, if I multiplied
my denari by themselves I shall have three times as much as you; and the third says, and
I have 4 times as many denari as when the denari which the first has are multiplied by
those of the second, it is asked how many has each on his own.

Nothing absolutely new, of course, already Jacopo had a give-and-take problem involving
a square root, though only with two participants (above, p. 185).

Seemingly commercial problems like barter (also by nature linear) are dealt with in
similar ways, by augmenting the value of goods not by a fraction but, for instance, by
its square root. As a result, the transformation of these warped problems into an equation
is quite intricate – and solution without the use of algebra hard to imagine.

Two problems are worth mentioning not because they tell us something new about
mathematical thought but as traces of connections over time.

One is the second example for rule 15 (αCC = βC ), which is simply Jacopo’s fourth
fondaco problem, with numbers doubled (first and third year together 40 fiorini, second
and fourth year together 60 fiorini ). In the present Tratato, the properties of continued
proportions are discussed explicitly. The solution makes use of algebra, but – without
saying so – first of the factor of proportionality which is also behind Jacopo’s solution –
namely by positing the salary of the first year to be 2 censi, and that of the second year
3 censi. The following algebraic calculation is much more complicated than it needed
be. In particular, of course, the choice of the basic unknown as a censo seems strange.
Admittedly, it serves to make a second-degree problem emerge as a biquadratic, but the
author seems not to be have thought of that – once he has found the censo he feels obliged
to find the thing, and then to return to the censo by squaring. It seems likely that he builds
on a source where, in the original Arabic way, the censo stands for an amount of money.

More than likelihood is involved in the second problem. The fourth example for rule
13 starts like this (p. 76):
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Somebody lends to another one 1000 £ to make up at the end of year, and when he came
to the end of the 4 years he gave him back in capital and interest £ 14641, it is asked
at what were his denari per hundred. [...]

As can be guessed from the value after 4 years and as confirmed by the subsequent
calculation, “1000 £” is a mistake for “10000”. Exactly the same formulation, including
the mistaken 1000, is found in Biagio’s Praticha as copied by Benedetto. The rest of the
calculation is also explained in almost the same words. It seems next to certain that the
anonyme copied from – and thus, as later Benedetto, had access to – Biagio’s work.

What follows on p. 98 after the 22 rules with examples builds on the tools that led
to the discovery of Dardi’s irregular rules, and were pointed out above (p. 219) to be
possibly borrowed from Biagio. Here, they are used for a mathematically impeccable
purpose – a mathematically valid approach to irregular equations:

We have so far explained the 22 rules of algebra with examples, here we shall show how
other rules can be made, by which are solved several questions which would not be solved
by the 22 rules. And when we want to deal with this it is at first necessary to make clear
that there are other roots than those of which one commonly speaks, that is, that there
are other roots than square and cube roots, and among these there is one called cube root
with a joined number [radice chubica con l’aguagliamento d’alchuno numero[344] ],
and about that one I want to show certain things.

On p. 209 we encountered the “pronic” root, which is connected to the equation CC+t =
N. The cube root with addition α instead procures the solution to equations of the type
K = αt+N. So, as explained, the cube root of 44 with 5 added is 4 because 43 = 44+5 4.
Similarly (still the text), the cube root of 65 with addition 12 is 5 because 53 = 65+12 5.

We might find this rather uninteresting, nothing but a synonym for “the solution to
the equation K = αt+N ”. Firstly, however, we should remember that as long as we make
no approximations (and abbacus algebra never does), then the same can be said about
the square and cube roots, similarly synonyms for “the solution to the equation C = N”
respectively “to the equation K = N ”.

Secondly, the author uses this particular root not to postulate solutions but to explore
possibilities and connections. He shows that it is sometimes but not always possible for
a given t and K to find a fitting (integer) value of α. For instance, for N = 36 we may
choose K = 64 (whence t = 4), and then find α = (64–36)÷4 = 7. The cube root of 15
with added 2 cannot be found in this way, it is pointed out, whereas that with added 4
can.

After this explanation the author turns to such rules where this can be used – and

344 As the further text shows, aguagliamento (meaning “equation”) is a mistake for agiugnimento,
which gives my translation. As we shall see (below, p. 276), a contemporary source speaking about
the same type of root also speaks about “joining”.
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these turn out to concern cases that can be transformed so as to have the shape K =
αt+N . One of them is αK+βC = N (p. 99). At first it is normalized, with an outcome
that it is easier for us to deal with if we write it as

t3+3at2 = m .

Completion gives

t3+3at2+3a2t+a3 = m+a3+3a2t ,

that is,

(t+a )3 = m+a3+3a2(t+a )–3a2 a ,

which is exactly what the rule of the text says, in this order and without reduction of the
expression to the right. There can be no doubt that the transformation was derived in a
way that corresponds closely to our use of polynomial algebra.

In this way it is shown that the notion of a cube root with added number can also
solve problems of the type αK+βC = N. After application to three examples it is shown
on p. 102 and 104 to apply to the cases αK = βC+N and βC = αK+N. The problem on
p. 102 even shows that the new root can be taken of negative numbers: the cube root
of “debt 80” with addition of 108 is indeed 10, since 103 = –80+10 108.

At the end come 41 problems – some of them as difficult as those contained in
Antonio’s Fioretti, though not the same. Formal fractions are made use of when adequate,
with the powers written in full words, without abbreviation.

Absent, however, are second-degree problems solved by means of two algebraic
unknowns. The last four problems, on the other hand, throw oblique light on the gradual
acceptance of a second unknown. They are all of the first degree, two of the type “purchase
of a horse”, while two deal with the “finding of a purse”. All four are similar in their
principles; we may take a closer look at the first of them (p. 145). Beyond the description
of the procedure, there are some metamathematical commentaries – here in spaced writing:

Three have denari and they want to buy a goose, and none of them has so many denari
that he is able to buy it on his own. Now the first says to the other two, if each of you
would give me 1/3 of his denari, I shall buy the goose. The second says to the other two,
if you give me 1/4 plus 4 of your denari I shall buy the goose. The third says to the other
two, if you give me 1/4 less 5 of your denari I shall buy the goose. Then they joined
together the denari all three had together and put on top the worth of the goose, and the
sum will make 176, it is asked how much each one had for himself, and how much the
goose was worth. A c t u a l l y I b e l i e v e t o h a v e s t a t e d s i m i l a r q u e s t i o n s
a b o u t m e n i n t h e t r e a t i s e , [ 3 4 5 ] b u t w a n t i n g t o s o l v e c e r t a i n
q u e s t i o n s i n a n e w w a y I h a v e f o u n d n e w c a s e s w h i c h I d o n o t b e l i e v e
t o h a v e [ a l r e a d y ] t r e a t e d . [ . . . ] . T h e r e f o r e I h a v e m a d e i t i n s u c h w a y
t h a t i n t h i s o n e a n d t h o s e t h a t f o l l o w i t w i l l h a v e t o b e s h o w n t h a t

345 Namely, in the sense that fol. 97v–110r (coming before the algebra) contain a large number of
“give and take”, “purchase of a horse” and “finding a purse” problems.
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t h e q u e s t i o n e x a m i n e d b y t h e t h i n g w i l l l e a d t o n e w q u e s t i o n s t h a t
c a n n o t b e d e c i d e d w i t h o u t f a l s e p o s i t i o n . [ . . . ] . I shall make this beginning,
let us make the position that the first man alone had a thing, whence, made the position,
you shall say thus, if the first who has a thing asks the other two so many of their denari
that he says to be able to buy the goose, these two must give to the first that which a goose
is worth less what a thing is worth, which the first has on his own. So that the first can
say to ask from the other two a goose less a thing, and you know that the first when he
asks for the help of the others asks for 1/3 of their denari. So the two without the first
must have so much that 1/3 of their denari be a goose less a thing, and in this way you
see clearly that the second and the third together have 3 geese less 3 things. Now it is
to be seen what all the three have, and it is clear that the first by himself has a thing and
the other two have 3 geese less 3 things, so that all three have 3 geese less 2 things. Now
we must come to the second, who asks from the other two 1/4 plus 4 of their denari and
says to buy a goose. I say that when the second has had as help of the other two the part
asked for, he shall find to have a goose[346] ).

Further protracted arguments show that B is 1/3 goose plus 2/3 things less 5 1/3 in number
(A, B and C being the three original possessions). Since B + C has been seen to be 3 geese
less 3 things, C is 2 2/3 geese and 5 1/3 in number less 3 1/2 things. Using then that
C+ 1/4 (A+B )–5 is a goose, it is found (I skip the intermediate steps) that 1 3/4 geese equals
3 1/4 things and 1 in number or, multiplying “in order to eliminate fractions”,

7geese = 13things + 4 .

Moreover, since A + B + C was seen to equal 3 geese less 2 things, and these together with
the goose equalled 176, we have

4geese – 2things = 176 .

Now, for instance, the thing might have been found from the latter equation (namely,
to be 2 geese less 88) and inserted in the former, which would immediately lead to the
goal. Instead the author goes on,

So, you have two equations [aguagliamenti ], which are solved one by means of the other
in this way: You have on one side that 7 geese must be worth as much as 13 things and
4 in number, on the other side you will have that 4 geese must be worth as much as two
things and 176 in number, put the sides [parti[347] ] together, now I shall make the
position that the goose is worth 40, and take the first side, that is that 7 geese are worth
as much as 13 things and 4, if the goose is worth 40, the 7 will be worth 280, thus 13
things and 4 are worth 280, dividing the 276 by 13, the thing will be worth 21 3/13 . With
this go to the other side, and you will say, if the goose is worth 40 and the thing is worth
21 3/13 we shall see that 4 geese are worth as much as 2 things and 176, where we know
that so much should be worth one as the other, from where it is manifest that the 4 geese

346 Thus the manuscript; the edition has a mistaken thing.

347 Here, the parti do not (as elsewhere, also in the present treatise) refer to the sides of an equation
but to the two equations. Once more we see that the terminology was in a state of flux.
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are worth 160, and this is on one side, on the other side the 2 things and 176 in numbers
will be worth 218 6/13 , and we indeed said that they should be worth 160, there comes
58 6/13 more for us [than there should]. Thus save in this first position for 40 that you
posited the goose to be worth there comes 58 6/13 more for us. Now make the other position
and posit that the goose is worth 80 [...], so you shall say in the second position for 80
that you posited the goose to be worth, 58 6/13 are missing for me. No take the two positions
that were made and follow the way to be made for positions that become plus and less,
and you shall find that the price of the goose was 60. When the price of the goose is
known you shall say, if the goose is worth 60, then 7 geese[348] are worth 420, and 13
things and 4 in number are worth 420, the thing is thus worth 32 [...].

This is far removed from the use of two algebraic unknowns as we have encountered
it in the Liber abbaci or in the Fioretti – the author can hardly have been familiar with
either. He seems to have been distantly acquainted with the use of a second unknown
in regula recta computations but not to have known it well enough to apply the method;
instead, drawing on the familiar technique of a double false position in a beauteous piece
of bricolage, he invents a method of his own – a method which apparently was destined
to remain his own, I do not remember having seen anything similar in later (or, for that
matter, earlier) sources. One comes to think of Jean Paul’s “little schoolmaster Maria
Wutz” who, when informed about an interesting book which he evidently cannot afford,
writes it himself [ed. Hecht 1987: I, 119].

Even the ingenious transformation of third-degree equation types seems to have been
forgotten. Such transformations were to become a key element in Girolamo Cardano’s
general solution of third-degree equations, but Cardano appears to have had to reinvent.

So, all in all, abbacus algebra unfolded impressively during its first brief century,
if we compare Jacopo’s beginning with Dardi, Antonio and the anonymous Florentine.
But we cannot discern cumulative progress, apart from the evidence we have that ideas
shining through in Biagio’s Praticha had matured and influenced both Antonio and our
present anonyme. Algebra, as a sophisticated outgrowth on the practically oriented teaching
of the abbacus school, had insufficient social density to constitute a discipline – and also
to wipe out the fake rules, which were far more likely to impress the mathematically
incompetent judges in competitions for positions than the mathematically sound polynomial
transformations of the Tratato.

348 Thus the manuscript; the transcription by error has 3geese.



The abbacus encyclopedias

The great innovation in 15th-century abbacus mathematics is the appearance of
ambitious “abbacus encyclopedias” – three from around 1450–1465, and from 1494
Pacioli’s Summa, to which we shall return in the next chapter. Here, we shall look at the
three Florentine specimens, all of which carry the descriptive title Praticha d’arismetricha.
As it turns out, here we see for the first time substantial borrowings from Fibonacci though
only dominant in sections explicitly borrowed from him.

One of them we have drawn upon extensively, since it was our source for Biagio
and Antonio: Benedetto da Firenze’s Praticha (see above, note 288). The second,
anonymous and contained in the manuscript Florence, BNC, Palatino 573 (henceforth
the “Palatino Praticha”), was mentioned first in note 25; it is also our primary source
for Antonio’s tables of compound interest (above, p. 226) and for his explanation and
naming of the algebraic powers (above, note 340). The third, equally anonymous, is in
the manuscript Vatican, Ottobon. lat. 3307 (henceforth the “Ottoboniano Praticha ”).
Descriptions and extracts from all three were published by Arrighi in the 1960s, reprinted
as [Arrighi 2004/1965], [Arrighi 2004/1967] and [Arrighi 2004/1968].

As said above (note 288), the principal manuscript of Benedetto’s Praticha can be
seen from marginal computations to be the author’s working copy; these were indeed
repeatedly made before the main text was formulated. The two other encyclopedias (each
of which exists in a single copy only) can be seen in the same way to be authors’
autographs.[349]

All three are in the Florentine tradition going back to Antonio de’ Mazzinghi, Paolo
dell’Abbacho and Biagio. The two anonymous writers both declare themselves to be
students of Domenico d’Agostino Cegia, apparently a mathematical dilettante of standing
and no abbacus teacher and known as il Vaiaio – “the fur dealer”, which had been the
profession of the family before protection by Lorenzo il Magnifico allowed it to improve
its already considerable material conditions and social standing [Ristori 1979; Ulivi 2002a:
48f ]. All three encyclopedias quote material from named earlier members of the tradition
extensively; we have seen the lengthy extracts from Antonio in Benedetto’s as well as
the two anonymous Pratiche, and also Benedetto’s extract from Biagio, but there are more.

The Palatino Praticha was prepared (as a gift) for a member of the distinguished
Florentine Rucellai family, whom the author wants to “serve as a friend” [ed. Arrighi
2004/1967: 168]; the coat of arms of the Rucellai is depicted on the first page.[350]

Girolamo di Piero di Cardinale Rucellai took possession of the manuscript on 22 April

349 See for instance Palat. 573, fol. 64v and 69r, and Ottobon. lat. 3307 fol. 48v, 51r–52r and 53v–54r.

350 According to the same introduction, the treatise was a new version, with additions and deletions,
of an earlier one, of which we have no trace. Fictional loan documents on fol. 288–291 refer to
repayments to be made between 1450 and 1454; that might determine the date of the lost version.
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1460;[351] we may safely assume that he

Palazzo Rucellai, built around 1450–60

[Lübke & Semrau 1905:11].

Palazzo

Rucellai.jpg

was the intended recipient, and that the writing
was not much earlier than this date. Benedetto
says in the very beginning that his treatise was
written for a “dear friend” in 1463, but since
the same page carries a depiction of the coat
of arms of the equally distinguished
Marsuppini family [Arrighi 2004/1965: 130],
we should probably think of a patron-friend –
although abbacus masters could be counted
as fairly wealthy when compared to master
artisans, they were far below the immensely
rich Rucellai and Marsuppini. The Ottobon-
iano Praticha carries no coat of arms, but the
introduction ends [ed. Arrighi 2004/1967: 211]
by asking “you, or whoever might get this
work into his hand” to correct the errors that
might be found. Exactly the same phrase concludes the introduction to the Palatino
Praticha; even the Ottoboniano Praticha was thus meant as a gift to a particular person,
most likely another patron-friend.[352]

Van Egmond [1980: 213] argues from watermarks that the Ottoboniano Praticha was
written around 1465. However, the author writes on fol. 315r about a certain problem that
it was sent to Florence by a master from L’Aquila “already around 12 years ago”.
According to Benedetto [ed. Pieraccini 1983: 118f ] this happened in 1445. Only one of
the watermarks referred to by Van Egmond has not been identified in manuscripts dated
before 1461, which after all is no strict criterion. The best dating thus seems to be
1457–59.

This writing for patron-friends, at least two of whom belonged to the absolute upper
crust of Lorenzo (“il Magnifico”) de’ Medici’s Florence, already puts the three Pratiche
into a particular class of abbacus books. So does their size (all three between 700 and

351 [Arrighi 2004/1967: 1161]. In [Høyrup 2010: 39], repeated in [Høyrup 2019a: 858], an oversight
and a misreading made me argue for a date around 1470.

352 Both also open the explanation of the addition of fractions (Ottoboniano fol. 9r, Palatino fol.
12v ) addressing the recipient with a promise to be concise, being “convinced that you know these
matters” – intendo dire brievemente queste chose le quali certo sono che sai, with the only difference
that the Palatino manuscript inverts, sono certo. The two obviously shared more than a teacher.
However, when arriving at the multiplication of fractions the Palatino Praticha repeats the promise
(fol. 13r ), the Ottoboniano (fol. 9v ) not.

As we shall see in the following, the two treatises are largely drawn from the same archetype,
though not throughout.
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more than 1000 rather densely written folio pages) – and in particular their contents, which
illustrates the development of abbacus mathematics at its mathematical best and its highest
intellectual ambitions until the mid-15th-century.

The Ottoboniano and Palatino Pratiche

I shall first look at the Ottoboniano Praticha, to which least attention has been paid
by earlier workers,[353] regularly confronting it with parallel passages in the Palatino
Praticha and in the Liber abbaci. The reader who does not like to eat pedantic dust may
skip the details.

The Ottoboniano Praticha is divided into 11 parts, subdivided into chapters. The
Palatino Praticha is very similar in structure, with the same parts and grossly the same
chapters; as we shall see, there is no doubt that this structure, and most of the material
is taken over from a shared model. The following analysis of the former with identification
of the ways the two differ should thus give an adequate picture of both.

The Ottoboniano Praticha presents itself as a Libro di praticha d’arismetricha, “that
is, fioretti drawn from several books of Leonardo Pisano”. This has to be taken with a
grain of salt, Fibonacci may well be the most important single identifiable source, but
the general abbacus tradition overweighs him, and long stretches are also borrowed from
other named predecessors. There is little doubt, however, that the author (better, compiler,
according to his own words as well as internal evidence, as we shall see) had access to
a copy of the Liber abbaci, plausibly a vernacular translation. This is quite possible –
as we remember from note 321, possession of Fibonacci’s work had not been uncommon
in Antonio’s time, and those citizens for whom it was a prestige object were not necessarily
well trained in Latin (admittedly, the Latin originals might still serve them as prestige
objects).

Part 1 (fol. 1r–8r ) presents the shapes of the numerals and the place-value system,
together with addition, subtraction, multiplication and the beginnings of division. The
division of 574930 by the prime divisor 563 gives rise to the introduction of fractions.
The last chapter deals with the factorization of non-prime numbers of more than 2 digits.
Most, not all examples are drawn from the Liber abbaci. The term used for the
factorization is ripiegho, “folding back” (current at the time, and also used by Benedetto),
even though Fibonacci’s regula occurs; at times it designates the single factor (thus fol.
24r ). Whereas Fibonacci gives the factorization of a number n as the sequence “under
the stroke” in 1/n written as an ascending fraction for 1/n (that for 951, for instance [B39;
G65] as ), the present Trattato (fol. 6v ) simply writes the sequence of factors, in

1 0

3 317

the present case as “3 and 317” or, sometimes, just separated by dots, as “4 10 389”

353 [Arrighi 2004/1968] transcribes the introduction; the final considerations listing predecessors
from Euclid until the Vaiaio; the part- and chapter-headings; and a single long problem (fol. 174r–175r)
explaining and making use of formal fraction involving a quantità. [Simi 1999] transcribes the
section containing a vernacular version of Fibonacci’s Pratica geometrie.
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for the ripiegho of 15560 (fol. 7v ).[354] In spite of the convenient borrowing of examples
already worked out by Fibonacci and the nod to his terminology, the whole part 1 must
be said to correspond to familiar abbacus ways.

The same can be said about part 2 (fol. 8r–19v), with similar exceptions. It deals with
the arithmetic of fractions. Noteworthy in chapter 7 – dealing with “extraordinary
fractions”, that is, fractions taken of numbers – is the observation (fol. 13r ) that “to take
3/4 of 59” is “vernacular for multiplying 3/4 times 59” – similar to what Fibonacci does
(above, p. 61). This is the first time the author stakes his claim in the world of
“magisterial” learning – so far modestly.

Not quite as modest, though this time implicit, is the beginning of chapter 8, which
with a generic reference to Euclid, Boethius and Jordanus explains (fol. 14r ) “the way
to bring to a known part the proportion which one quantity has to another one of the same
kind”. Firstly, the ratio concept (proportione ) is peripheral in abbacus culture; secondly,
when applied, the observation that ratios only exist between quantities of the same kind
is rarely made (if ever). Here the author shows that he knows the scholarly way, and
provides a bridge to abbacus habits. This, however, is little more than an aside. After two
paragraphs, the second of which is closed by the observation that “it is not our habit to
denominate proportions if not according to parts, like 1/2 or 1/3 or 2/5 or 7/8 ”, the chapter
goes on with the expression of amounts of denari as parts of a soldo, of numbers of soldi
as parts of a lira, numbers of months as part of a year, etc. – all questions that were close
to the interests and tradition of the abbacus school.[355]

Part 3 (fol. 21r–33v ) promises to “demonstrate some rules about proportions and the
nature of numbers”, specified afterwards to concern “the rule of 4 proportional quantities,
in the vernacular called the rule of three things”, which also intimates a “magisterial”
orientation.

Its first chapter presents the fundamentals of proportion theory, starting with the
explanation of continued and non-continued proportionality and repeating the need that
the “first two” quantities in a proportion should be of the same kind, as also the last two.
This is evidently different from the usual abbacus introduction of the rule of three, but
also from Fibonacci’s introduction of the topic (above, p. 70). It is clearly a new
“magisterial” rationalization of the rule of three – hardly invented by the present writer
but perhaps introduced by the Vaiaio, since something rather similar though more elaborate

354 These should not be taken as an early instance of the dot meaning multiplication; they correspond
to the dots used to set out numbers in the text from surrounding words, as in the corresponding
formulation se’lla reghola di 15560 vuoi trovare, “if you want to find the rule for 15560 ”.

355 The Palatino Pratica (fol. 17v ) has more precise initial references to Boethius and Jordanus,
offering correct quotations of their respective definitions of a proportion (with equally correct
references to book and chapter). It also gives more examples of how to denominate proportions.
It closes the magisterial aside with the formulation, “we in the schools do not use such words”
(noi alle schuole non usiamo tali vocabuli ).
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is found on fol. 24r of the Palatino Praticha [ed. Arrighi 2004/1967: 177].
The second chapter first repeats the request of similarity of kinds and then gives

examples of how to apply the rule that are not borrowed from Fibonacci. Chapter 3 turns
to the “nature and properties of numbers”, explaining the categories known from Boethius
but opening with a reference to Maestro Antonio: the division into even and odd and the
arithmetic of these classes; the division into abundant, deficient and perfect numbers; and
figurate numbers (numeri geometrici ), that is, linear, triangular, square, oblong ( parte
altera longiore, thus named in Latin), pentagonal, hexagonal and pyramidal, together with
the rules for generating these from sums.[356]

The chapter includes two schemes. The first illustrates the Euclidean rule for producing
even perfect numbers (2n–1 [2n–1], provided that the second factor is prime), and after
the appurtenant calculations states the first six perfect numbers to be 6, 28, 496, 8128,
3550336 and 8589869056.[357] The interest and the idea for the scheme (and even the
structure of the whole chapter) is also found in the Palatino Praticha (fol. 28r ) as well
as that of Benedetto (fol. 24v ), both of which however stop at 3550336 (Benedetto
performing a control for this number). While the idea and the extension until five numbers
is thus likely to be derived from preceding tradition or from an earlier writing, the
calculation of the sixth number can with some plausibility be ascribed to the author of
the Ottoboniano Praticha.[358]

The second scheme shows the generation of the various polygonal numbers as sums.

356 Triangular numbers as Σn, square numbers as Σ(2n–1), oblong numbers as Σ(2n ), cube numbers
as 1, 3+5, 7+9+11, 13+15+17+19, ...., etc.

357 496 has been skipped in the scheme, but it is found in the text.

358 As we shall see, at least in 1464 Regiomontanus knew some of the material on which the
Ottoboniano Praticha was mainly based (below, p. 351). One might therefore try to elucidate the
question by looking at Regiomontanus’s list of perfect numbers in his Rechenbuch (Wien,
Österreichisches Nationalbibliothek, cod. vindobon. 5203, fol. 167r ), which also offers a stepwise
computation and control but gives up before having certified that 131071 is a prime number, and
therefore only gives the first five. However, according to the shapes of the numerals 4 and 7, this
list may have been written some years before 1464. Moreover, Regiomontanus’s layout is quite
different from what we find in the Ottoboniano and Benedetto Pratiche but on the other hand almost
the same as that found in the manuscript Venice, Biblioteca Nazionale Marciana, fondo antico 332,
fol. 36v – a Latin 13th-century manuscript owned by Bessarion at the time Regiomontanus met
him. The only difference is that the Marciana manuscript has the higher numbers on top, while
Regiomontanus starts with the lowest ones. Both show that 4096×8191 = 33550336 is perfect, while
8192×16383 is composite; Regiomontanus takes three steps more but fails to control whether 131071
is prime (which it is) and therefore does not discover that 8589869056 is perfect. In the parts they
share the two texts are identical word for word.

We may conclude that Regiomontanus did not draw for this on contemporary Florentine
material, but also (since their layout is quite different) that the Florentine encyclopedias do not
draw on this Latin manuscript or any close kin.
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Even this is shared with the two other encyclopedias (though split up in that of Benedetto,
corresponding to a much more detailed exposition).

The fourth chapter of part 3 is stated to deal with “cases solved by the principle of
elchatain” (fol. 25v ). The same term is used in the Palatino Praticha (fol. 29v ) with the
same meaning, and the new meaning given to it here can therefore not be an idiosyncrasy
of either compiler. In the Liber abbaci (as in Arabic), it stands for the double false position
(above, p. 106). The present chapter applies simpler methods to a sequence of first-degree
number problems.

The first (fol. 25v ) asks for a number whose 2/7 is 20, and finds it by simple division,
as 20÷ 2/7 = 70. A variant changes the formulation “of a number, seven parts are made,
2 of which amount to 20”, and solves by the variant that the remaining 5 parts amount
to 2 1/2 20 = 50, which added to the 20 gives the same 70.

A slight complication follows: 2/7 of the number with 8 added amounts to 28, which
is easily reduced to the first case. After several analogues of this follow divided-number
problems – a small selection will suffice:

(fol. 26v ) 30 = a+b , a = 2b–6
(fol. 27r ) 10 = a+b , a : b = 4 : 3
(fol. 27v ) 10 = a+b+c+d , a : b = 1 : 2 , b : c = 3:4 , c : d = 5 : 6
(fol. 28r ) 10 = a+b+c , a : b = 1 : 2 , a : c = 3 : 4
(fol. 28v ) 10 = a+b+c , a = 2/3 b , a = 2/5 c

Starting with the last of these, the direct arithmetical and proportion-based methods are
replaced by use of the regula recta with unknown quantità, abbreviated q in marginal
calculations. Since the corresponding single position (of something to be a quantity ) is
said on fol. 28r to be “one of the simple modes of elchatain”, the students of the Vaiaio
(and probably their teacher) seem to have taken the word to refer to any kind of false
or regula-recta positing (I have not noticed the usage in question elsewhere before Pacioli,
see below, p. 337).

Before applying the regula recta for the first time, the author explains on fol. 28v

that the modo recto (as he calls it) is used by “Leonardo [Fibonacci] and all the others
who understand”. Obviously, the writer knows it from the Liber abbaci, and also takes
over Fibonacci’s statement that the method comes from the Arabs. But the reference to
“all the others who understand” (tucti gl’altri intendenti ) shows that he also knows if
from a general abbacus tradition, within which, as he says, “some say it is one of the
exemplary modes of algebra” (alchuno lo dice uno d’esemplari modi dell’algebra ), which
is nowhere found in Fibonacci’s writings. The use of quantità as unknown and the naming
differing from that of Fibonacci leaves no doubt that the main reference of our writer
is the living abbacus tradition, not Fibonacci.

More problems solved by means of the modo recto follow, in some of which it is
much more needed than in the first one. In one (fol. 321r ) the author refers to “my
Leonardo P.”, just as Ficino would speak of “our Plato” (il nostro Platone ) 29 years later
[ed. Figliucci 1563: II, 188r] – the (somewhat preposterous) way to speak of honoured
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friends.
As we see, the problems solved in this last chapter of part 3 are not very different

in kind from what we know from other abbacus books, though not linked in any way
(whether straight or distorted) to commercial activity. Part 4 (fol. 33v–116r ), instead,
addresses commercial matters – often fitted to Florentine usage. Chapter 1 is dedicated
to monetary questions, chapter 2 to selling (cloth) according to length (Florence owed
its position as one of the five most populous European cities to its textile production and
trade [Brucker 1969: 51f, 53f ]). Chapters 3 and 4 teach alloying and connected topics,
chapter 5 is dedicated to barter, chapter 6 to mixed cash- and barter trading and to delayed
barter payment, chapter 7 to Florentine and comparative metrology (but also questions
like “4 pears are worth 5 apples, 3 apples are worth 10 nuts, 8 nuts are worth 5 figs ...”
(fol. 98v ), training the composite rule of three. Last, chapter 8 deals with partnerships.

Part 5 (fol. 116v–221r ) contains recreational riddles, announced in the preamble (fol.
1r ) as “cases called rambling,[359] or we shall say gentle and pleasant” (chasi detti
erratici o vogliamo dire gentili e dilettevoli ). Much is drawn from the Liber abbaci.

The first chapter (fol. 116v–118v ) deals with “cases of horses eating barley, which
are written in the ninth chapter of Leonardo F”. As we remember from p. 73, these are
barter problems in a recreational dress but used as the basis for a theoretical inquiry. The
present text follows Fibonacci rather closely, but adds some extra problems.

Chapter 2 (fol. 119r–121v ) corresponds to part 12.1 of the Liber abbaci, “collections
of numbers” (above, p. 77); here, it is announced as dealing with “cases solved by the
nature of numbers”. At first it teaches the summation of various arithmetical series with
upper limit 60; 1+2+..., 2+4+..., 3+6+..., 8+16+...+56 – then varied with other limits, after
which follow sums of squares and cubes. Like that of the corresponding part of the Liber
abbaci, the second half deals with pursuit problems where the speed of one man is
constant and that of the other increases arithmetically from day to day.

The beginning of chapter 3 (fol. 121v–139v ), “certain cases solved by means of
proportions and given rules”, corresponds to part 12.2 of the Liber abbaci (above, p. 77)
and is rather faithful to it – also in the explanation that the request for a fourth proportional
is expressed in “vernacular” usage by the counterfactual question, “if 3 were 5, what would
6 be”. The counterfactual calculation and the two ways in which it can be understood
is skipped, however, probably judged to be too pretentious and of little interest. Also
skipped is the request to divide 10 into four parts in proportion (cf. above, p. 78).

After the construction of a continued proportion with an arbitrary number of steps
chapter 3 jumps (fol. 122v ) to part 12.3 of the Liber abbaci, “questions of trees” (above,
p. 79), thus skipping the rest of Fibonacci’s part 12.2. It starts with the tree of which
1/3 + 1/4 is underground, and presents the solution by means of a false position. The following
problems, formulated around amounts of money, do not depend on Fibonacci. More

359 Cf. above, pp. 77 and 90 about Fibonacci’s ambiguous (sometimes wider, sometimes more
restricted) use of the term. The present writer shares the wider interpretation.
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interesting is a sequence of problems of type “lion in the pit” (see note 46 and surrounding
text). Different than Jacopo and Fibonacci, the present author understands the prank. In
the first problem (fol. 123v ), somebody goes from Florence to Pisa. The distance in 40
miles, and by day he makes 8 miles, going backwards 6 miles by night. So, in the first
day he makes 8 miles. 32 miles remain, and in each night with following day he makes
2 miles more. The total duration of the trip is therefore 1+32÷2 = 17 days. After two more
questions with similar dress comes Fibonacci’s lion-problem (fol. 124r ); the writer avoids
censuring Fibonacci himself, mentioning solely that “some” solve it differently, after which
he follows his own method.[360] After this group more problems with varying dress
follow (purchase of cloth, pursuit with two constant velocities) – mostly numerical variants
of problems from the Liber abbaci. Other problems of increasing complexity but belonging
to usual abbacus types follow. On fol. 126v we find this:

The cubit of cloth is worth 2 1/2 fiorini. The cubit of velvet is worth 7 1/2 fiorini. The cubit
of cramoisy silk [chermisi ] is worth 10 fiorini. Somebody has 1000 fiorini and wants to
buy cloth, velvet and cramoisy silk. And he wants 2 times as much of velvet as of cloth
plus 4, and 2 times as much less 4 of cramoisy silk as of velvet.

Here (as already once before in a pursuit problem), the modo retto is appealed to, the
amount of cloth being posited to be a quantity. In the text the calculations are expressed
rhetorically, in the margin (with q standing for the quantity ) they appear as piecemeal
symbolic calculations that can be summarized in the equation

2 1/2 q+7 1/2 (2q+4)+10 (2 (2q+4)–4) = 1000
which yields q = 16 4/23 .

Other problems follow, some about the purchase of cloth, wool, wine, or eggs and
oranges, others about exchange of monies, about barter, or about wages; some of them
make appeal to the modo retto, others not, but all are accompanied by marginal
calculations. One (fol. 132r ) is of particular interest both for its mathematics and because
it illustrates how this kind of problems served as challenges among the abbacus masters
(and thereby also as a gauge for the level that was considered difficult – trivial matters
could never serve as challenges):[361]

5 eggs and 4 oranges and 10δ are worth 8 eggs and 2 oranges and 6 δ. And 7 eggs and
6 oranges less 3 δ are worth 5 eggs, 4 oranges and 7 δ. It is asked, what is an egg worth,
and what is an orange worth? This case has been given to me a few days ago to solve.

360 When solved in this way, the problem clearly does not really belong together with the tree
problems.

361 We may compare with the give-and-take problem that had been proposed to Fibonacci in
Constantinople some 250 years earlier (above, p. 82). The mathematical level was higher, but the
problem types remained the same.

A number of challenges exchanged between abbacus masters are discussed in [Ulivi 2015].
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The marginal calculations are indubitably algebraic, just with no symbols for the two
prices, which are replaced by positions in columns; already the question itself is obviously
thought of as a set of two rhetorical equations. We may present the marginal calculations
like this, providing the columns with the headings which the writer kept in his mind, and
which are present in his rhetorical version in the text; the long stroke serves for
confrontation, here as mostly the confrontation of the two sides of an equation (thus as
equation sign):

e o δ e o δ

5 4 10 8 2 5

5

5 4 5 8 2 –

4 5 3 2

2

2 5 3

In this way, the equation 5e+4o+10δ = 8e+2o+5δ has been reduced in steps to 2o+5δ =
3e – just without e and o being written. In the same way, 7e+6o–3δ = 5e+4o+7δ is reduced
to 2e+2o = 0o+10. Thus it is summed up that the question has been reduced to one kind
(namely, on each side of the equation 3 are worth 2 oranges and 5δ, while 2 eggs and
2 oranges are worth 10δ.

At this point, the modo retto is made use of, and the worth of the orange is posited
to be a quantity. Therefore 3 eggs are worth 2 quantities and 5δ; 1 egg hence 2/3 quantity
and 1 2/3δ; and 2 eggs and 2 oranges in consequence 3 1/3 quantity and 3 1/3δ, but also 10δ.
Therefore, 3 1/3 q are worth 6 2/3δ, and hence the quantity equals 2δ, which is thus the worth
of an orange, while the egg, being worth 2/3 quantity and 1 2/3δ, is worth 3δ.

Even though no explicit symbols but only loosely made columns are used for the
unknowns, we see that the techniques of handling two linear equations with two unknowns
could be implemented without being seen as a striking innovation.[362] Benedetto will
present us with explicit use of single-letter symbols, which make the column organization
redundant (below, p. 290).

A number of combined-work problems in familiar dresses follow from fol. 133v

onward: a lion, a leopard and a bear eating a sheep, two ants respectively two men
meeting, a ship hoisting up two sails, the emptying of a tun respectively a cask through

362 They are used again in a similar though somewhat simpler problem on fol. 133r–v, “5 eggs and
8δ are worth 13δ more than a pair [of eggs]”.
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several outlets[363] – in middle the equally familiar fish

Ottoboniano132rv

in three parts, and afterwards other traditional question
types, none of which tell us anything mathematically new
or remarkable. However, one (fol. 136r ) about an abbacus
school which turns out to have 1000 students, reminds us
that the parameters of mathematical problems (whether
in the 15th or any other century) may have little to tell
about real circumstances and should only be used as
evidence for social history with circumspection.

Chapter 4 (fol. 139v–172r ) deals with “men who have
denari”. At first comes the problem for which Fibonacci
(in part 12.3, about trees) gives a regula-recta solution as
an alternative (above, p. 80). The present writer gives only
this method (as does the Palatino Praticha, fol. 160r, with
which the whole chapter is shared with minor deviations –
details below). More problems from the Liber abbaci of
increasing complexity follow until fol. 146r, in order and
at times with very characteristic phrases that leave no
doubt that Fibonacci is a direct source,[364] though
sometimes with omissions and sometimes with somewhat
changed formulations. Last (fol. 145v, cf. [B202;G339])
comes this:

Five men have denari, and the first and the second and
the third ask the fourth and the fifth man for 7 δ, and
say to have 2 times as much as they. The second and
the third and the fourth ask the first and the fifth for
8 δ, and say to have 3 times as much as they. The third
and the fourth and the fifth ask the second and the first
for 9 δ, and say to have 4 times as much as they. The
fourth and the fifth and the first say to the second and

363 The reasons behind the calculations are better explained than often. In the first question, where
the lion is said to eat the sheep in 4 hours, the leopard in 5 and the bear in 6 hours, 60 hours is
chosen as a common multiple, and in 60 hours the lion is seen to be able to eat 16 sheep, the leopard
12 and the bear 10, together thus 37 sheep – etc.

364 The second problem in the sequence (fol. 140v ) starts “Two have denari. And the first having
had from the second 7 δ ...” (Due ànno denari. E’l primo avuto dal secondo 7 δ ... ), corresponding
to Fibonacci’s [B192;G326] primus, habitis 7 ex denariis secundi.... The Palatino manuscript (fol.
160r ) has the habitual “Two have denari. The first says to the second, , if you give me 7 δ of yours
...”. There is probably no way to decide whether the shared source (probably the Vaiaio ) was faithful
to Fibonacci and the Palatino writer normalized the formulation, or instead the Ottoboniano writer
controlled his vernacular source against Fibonacci’s text.
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the third, if you give 10 δ, we shall have 5 times as
much as you. The fifth and the first and the second say
to the third and fourth, if you give 11 of your δ, we
shall have seven times as much as you. It is asked what
each one had. Because the first, second and third with
7 of the δ of the fourth and fifth have two times as
much as they, it is necessary that the first and the
second and the third had 2/3 of the sum less the said
δ. So the fourth and the fifth have the third of the said
sum and 7 δ more. [...].

As we see, the arguments, though by necessity much more longwinded, are of the same
type as those used in Fibonacci’s first solution [B190;G324] to the problem copied by
the present writer in the beginning of the chapter, not the second solution by regula recta
which he copies for his own treatise. Actually, Fibonacci does not use the regula recta
any more in this groups after having introduced it (in the 1228 version, as we remember),
and after his own use of it in the first problem the Ottoboniano writer follows him
faithfully.

The problems from fol. 146v to fol. 155v are independent of the Liber abbaci but
present in the Palatino Praticha (fol. 167v–178r ) almost verbatim (and thus probably
borrowed by both from the Vaiaio ). They are of the same give-and-take type, with
variations like this (fol. 152v ):

Three have denari. The first has the half of the other 2 plus 10 δ; and the δ of the second
are 3/5 of the δ of the other two plus 24 δ. The third says to the others, if you gave me
1/2 of your δ plus 20 δ, I should have twice as much as you plus 10 δ. [...]

– a few times with the further complication that what the participants have are quantities
of silver, where the fineness of the metal also has to be taken into account. In all of these,
the regula recta is used systematically,[365] illustrating how a convenient choice for
the quantity can be made. At one point (fol. 153r ) it is pointed out that “this type of
questions is very fallible, that is, some cannot be solved”.

We have already encountered non-linear give-and-take problems in Jacopo’s algebra
(above, p. 185) as well as in the Florentine Tratato sopra l’arte della arismetricha (above,
p. 239). The problem collection which Benedetto takes over from Giovanni di Bartolo
(a student of Antonio, and thus in the tradition between Antonio and the three encyclopedic
Pratiche – cf. also below, note 453), also contains an appreciable number of non-linear

365 Never mentioned by name, the writer may expect the reader to recognize it by now after earlier
references – or he copies from a source which uses the rule without identifying it by name. The
later possibility would correspond to the virtual absence of marginal calculations in this section;
in contrast, the preceding section, copied from Fibonacci, has its margins rather full of calculations,
though apparently written after the main text, thus as control or clarification.
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give-and-take and other “men have denari” problems;[366] in the Tratato they served
to illustrate algebraic cases, and Giovanni di Bartolo invariably solves them by means
of thing–censo algebra. In the Ottoboniano Praticha, where they come long before the
introduction of this technique, they are solved in other ways (being so mathematically
simple that this is possible). Other abbacus treatises find it quite acceptable to use algebra
before it is explained, but the present writer avoids it – a testimony of a not too common
sense of mathematical order. In the Palatino Praticha the group is found in identical form
(fol. 177v–178r ), so this testimony probably regards the Vaiaio, and not necessarily his
students.

The first of these non-linear problems (fol. 156r ) runs:

Two have denari, and the denari of the first are more than the denari of the second, and
the denari of the first multiplied by those of the second make as much as joined together.
I ask what each one had. In this and similar ones you may posit that the first had as much
as you please, taking an integer number, and the second will have one in number and
a fraction which is denominated by a number that is one less than that which the first
one has.

Expressed in familiar ways, the problem ab = a+b can be transformed into b (a–1) = a =
(a–1)+1, whence b = 1+ 1/a–1 , which agrees with the solution that is offered, a = n, b =
1+ 1/n–1 . The text adds that if the first has 6 δ, then the second had 1 1/5 δ, if he has 5 δ,
then the second has 1 1/4 δ; and if the first has 8, then the second has 1 1/7 δ, since 8 times
1 1/7 is as much as 8 and 1 1/7 (claimed – not verified but rather obvious).

The next problem adds the condition that 1/5 a = 1/7 b, and solves it by means of a tacit
false position. The extra condition is evidently fulfilled if a = 5, b = 7, but then a+b =
12, ab = 35. Therefore, a = 5 12/35 = 1 5/7 , b = 7 12/35 = 2 2/5 . No explanatory arguments
are given for the decisive step, but the solution is shown to be valid. Two further problems
increase the complexity by means of coefficients without adding any new principles.

On fol. 156v starts a group with a counterpart in the Liber abbaci (above, p. 94). First,
however, comes a simple all-less-each problem which is not found in the Liber abbaci
but which is present also in the Palatino Praticha (fol. 178r ):

Three man have denari. The first and the second have 18 fiorini. And the second and the
third have 20 fiorini, and the third and the first have 22 fiorini. [...]

As in the similar problems in the Liber abbaci, the trick is to add the three numbers, which
must be twice the total possession of the three men. From the half (30), the total
possession, 18 (the possession of the first and the second) is subtracted, whence the third
man has 12 fiorini. Etc.

366 Ed. [Pancanti 1982: 18, 21, 28, 30, 31, 32, 36, 38, 40, 42, 44, 48, 51, 54, 57, 60, 63, 66, 99,
101, 105] – no less than 21 out of a total of 57 problems. The collection further contains a number
of warped barter problems involving square roots, like those of the Florence Tratato (above, p.
239).
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The next problem is a translation of Fibonacci’s first problem (above, p. 94), about
four numbers.

For the case where a+b, b+c, c+d and d+a are given, the example of an impossible
question is taken over from Fibonacci, whereas the solvable example is independent.[367]

Two similar questions about five men (fol. 157v–158r ) are borrowed from Fibonacci.
The next problem (fol. 158r ) is not. It deals with three men having denari, and the

structure is a+b = 20, c+b = 22, c+a = 24+ 1/4 b. The same question is found in the
corresponding place in the Palatino Praticha (fol. 179v ), but the two manuscripts solve
it in different ways. The present text states explicitly that the solution will be according
to the modo retto, and posits the first possession to be a quantity. The Palatino text does
not mention the regula recta but posits the second possession to be the quantity. Moreover,
it goes via the usual trick of adding all three sums, and then applies the partnership rule;
the Ottoboniano text does neither. It seems most likely that the Palatino way, continuing
the approach of the preceding problems, represents the shared source for the question,
and that the Ottoboniano writer is the one who innovates here.

Fol. 158v returns to the Liber abbaci, but whereas Fibonacci [B286;G456] has a
question about the contents of three vessels, the present text (agreeing with the Palatino
Praticha ) normalizes the dress, and speak of the denari possessed by three men. The
structure is a = 1/18 b+ 1/3 c, b = c– 1/3 a, c = b+ 1/5 a. Both follow Fibonacci’s procedure,
making no appeal to the regula recta.

The rest of the chapter goes on with problems that are mostly taken over (together
with metamathematical observations) from the Liber abbaci. A few are only loosely
inspired, or independent. On fol. 164r an alternative way to solve an independent problem
is ascribed to “Maestro Gratia”.[368] Towards the end (fol. 165v–170r ) come three- or
four-participant versions of the grasping problem (above, p. 95), with the sterlings changed
into fiorini.

Chapter 5 (fol. 172r–176r ) is announced to be held short because the preceding one
is so long, and to be “composed on the basis of cases about men making works extracted
from the book of Master Gratia, perfect theologian” (see note 368).[369] The beginning
(fol. 172v ) is simple:

Two masters make a work. One would do it in 6 days, the other would do it in 8 days.

367 Found identical, however, in the Palatino Praticha (fol. 178v ).

368 Gratia de’ Castellani, a contemporary of Giovanni di Bartolo – an Augustinian friar and teacher
of theology at the university and within his order; according to Benedetto (Praticha, fol. 408v )
he was no abbacus teacher but a high-level amateur writer on the topic, from whom Benedetto
also received some guidance for subtle questions.

369 The Palatino Praticha (fol. 195v ) promises conciseness in the same words and for the same reason
but says nothing about Gratia de’ Castellani. In the beginning the problems are the same, but not
throughout.
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I want to know, in how many days will they do it, that is, working together. [...]

which is explained in the same way as the common meal of the lion, the leopard and the
bear (above, note 363).

Gradually matters become intricate, however – for example (fol. 173v ):

There are two masters who undertake to make a house. The first says to the second, if
you would help me for 10 days, I shall make the house in 12 days. The second says to
the first, if you would help me for 6 days, I shall make the house in 15 days. I ask, in
how many days each one would do it making alone. In this one should understand that
10 days of the second and 12 days of the first is one work. And thus 6 days of the first
and 15 days of the second are one work. Then you collect the parts, taking away on each
side 10 days of the second and 6 days of the first, and we shall have that 5 days of the
second are for 6 days of the first. Thus in order to know in how many days the first would
make the work you shall bring the 10 days which the second helped the first to days of
the first, and you shall say that 5 days of the second are for 6 days of the first, and 10
days of the second, how many days they are of the first. You shall multiply 10 times in
6 days of the first, and divide in 5, 12 days of the first result from it. And you shall say
that 10 days of the second are 12 days of the first, and thus the first would make the work,
that is the house, in 24 days [...].

“Collecting the parts” by “taking away on each side” is clearly an algebraic operation
on an equation. If we regard “day of the first” and “day of the second” (properly, the
outcome of the working day of each) as algebraic unknowns, we thus encounter here
another instance of the use of two unknowns in a rhetorical algebraic problem
solution.[370] As in earlier instances, it is not understood by the present writer as
something noteworthy. The method almost certainly goes back to Gratia de’ Castellani –
not least because the same problem, with the same solution down to the details, is found
in the Palatino Praticha (fol. 200r ). Here, it is followed by 5 more problems of the same
kind, with two, three or four participants (sometimes each receiving the help of several
of the others). In all cases, the basic method is the same, thus solution of simultaneous
linear equations with up to four unknowns. This closes the chapter on works in the Palatino
Praticha.

In the Ottoboniano Praticha, instead, the next problem (fol. 173v ) – the one which
closes the chapter – makes use of the regula recta, with a single unknown:

Three make a house in this way, that the first and the second, working together for 8 days,
would make the work; and the second and the third, working together 14 2/5 days, would
make the work, that is, the house; and the third and the first would make the work, that
is, the house, in 9 days. I ask in how many days each one of them would make the work
on his own, that is, alone. You will take this way, that you make position that the first
would make the work in a quantity of days. Where, in order to find in how many days

370 We may even claim that the expression “one work” (uno lavorio ) means that the texts works
with three unknowns, of which one (the work ) is eliminated straight away.
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the second (would make the work), you shall take this way: that you know, 8 days, which
the first works with the second, which part are they of a quantity? Which is .

8

1 quantity th

As we see, the writer here makes use of a formal fraction; beyond the fraction line,
however, he also uses the ordinal suffix (esimi in the original), supplementing the indication
of the division by means of a fraction line with the way to speak of it rhetorically, similar
to 8 qths. Since this problem has been transcribed by Arrighi [2004/1968: 216–221], there
is no urgent need to complete the translation, but note should be taken that the method
leads to a second-degree equation (albeit with no degree-zero term, and thus reducible),
where the square on the quantity is spoken of as “quantity of quantity” (quantità di
quantità ).

Chapter 6 (fol. 176r–189v ) deals with “men who find purses”, corresponding to part
12.4 of the Liber abbaci, and following it rather closely. All problems are taken over from
Fibonacci. Often the precise formulation deviates, but only three instances go beyond
changes of words and details of pedagogical style.

First, on fol. 179v, in a standard problem about three men finding a purse, the writer
introduces the position that the first has a quantity (thus tacitly appealing to the regula
recta ); afterwards, Fibonacci’s way [B216;G361] is given as an alternative (and
Fibonacci’s ensuing alternative discarded). In the regula-recta solution, the purse
(borsa ) is treated as a second algebraic unknown, and in the rudimentary marginal notes
the two appear as single-letter abbreviations, q and b.[371]

Second, on fol. 181v, in a problem about four men finding 4 purses the text observes
that “you could solve it in the given way” (probably referring to that of the Liber abbaci
[B220;G365]), but I will make it by the modo retto – and once again this leads to an
argument where the purse becomes a second algebraic unknown (thus confirming that
the regula recta was not restricted to a single unknown), supported by marginal
calculations where q and b represent the two unknowns.[372]

Finally, on fol. 182r, the text makes use of a position (and thus of an unidentified
regula recta and not of Fibonacci’s method [B222;G367].[373] This time, no second
unknown is made use of.

At the end (fol. 188r ), after the observation that many other problems of the same
kind can be made, the text adds a single example about three men having money, which
is solved be means of the convenient position that the third man had 2 quantities. In the
text the purse appears as a second unknown, and in the margin quantity and purse appear

371 In the corresponding problem in the Palatino Praticha (fol. 208r ), the main text is the same
(including the inclusion of Fibonacci’s way as an alternative), but there are no marginal notes.

372 The Palatino Praticha, fol. 210v, has exactly the same words though not the marginal calculations.
The “I” who wants to solve the problem by means of the regula recta is thus earlier that the two
writers in question – maybe the Vaiaio, since neither refers to named predecessors for this chapter.

373 The Palatino Praticha is identical (fol. 211r ).
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as q and b. The Palatino Praticha (fol. 217v ) is similar, but as usual has no marginal
calculations.

Chapter 7 (fol. 189v–206r ) deals with “men buying horses”, as does chapter 12.5 of
the Liber abbaci, which the writer says to draw on.[374] It begins indeed not only with
the same two-participant purchase (cf. above, p. 86) but also first finds the solution
according to an opaque rule, only to explain its origin afterwards by means of what in
agreement with Fibonacci is called “the rule of proportions” (that is, “the finding of
proportion of the bezants of the one to the bezants of the other” – above, p. 86). As in
the Liber abbaci, a solution by means of the regula recta follows (here called modo retto,
Fibonacci’s alternative name per modum arabum has disappeared).

On fol. 190v–196v follow a number of problems, some borrowed from Fibonacci, others
not, but all making use of the modo retto based on two algebraic unknowns quantity and
horse (quantità and chavallo ), abbreviated in the rudimentary marginal calculations q
and cha (the latter kept together with an arch over the letters). Some of the questions are
outside the beaten path, like this one (fol. 194r ), where the possibility to apply coefficients
to the unknown horse seems to have influenced the question:

Three men want to buy with their denari a horse. The first says to the second, if you give
me 1/2 of your denari, I shall buy one horse. The second says to the third, if you give
me 1/3 of your denari, I shall buy 2 horses. The third man says to the first, if you give
me 1/4 of your money, I shall buy 3 horses. I ask, how many denari each one had, and
how many denary the horse had or rather was worth. Again by the modo retto you shall
say, I make position that the first man had a quantity. [...].

Also unusual is what follows on fol. 194v,

Three have denari and want to buy a horse. The first says to the second, if I had 1/2 of
your denari, I should buy the horse, and 6 fiorini would be left over. The second says
to the third man, if you gave me 1/3 of your denari, together with mine I should buy the
horse, and 8 fiorini would be left over. The third man says to the first, if you gave me
1/4 of your denari, together with mine I should buy the horse, and 10 fiorini would be
left over. [...].

Once again, one may suspect an inspirational offset from the solution technique (whether
by the “rule of proportions” or the regula recta ) to the question that is asked.

After another similar problem but now with deficits comes this warning (fol. 195v):

And observe that in these proposals one must keep the eye of the intellect open, because
to every great calculator [ragioniere ] they give shame when he believes to have an easy
case, so, as said, take care![375]

374 In my scan from the Palatino Praticha, part of the corresponding chapter is illegible. What can
be read makes it clear that the substance is very similar, but some formulations different.

375 All three anomalous questions as well as this warning are also present in the Palatino manuscript
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From fol. 197r onward comes a sequence of problems from the Liber abbaci, explicitly
stated in the beginning of the sequence to be solved by Fibonacci’s method. Three
problems (199r, 203r, 205v ) do not come from this source, but still use Fibonacci’s method
(the first one saying it explicitly).

Fol. 202r repeats Fibonacci’s observation [B251;G408] that problems with an even
number of participants in which more than two together make the requests sometimes
possess solutions and sometimes not; also repeated are the two subsequent illustrating
problems, one impossible and one possessing a solution (actually many, since the problem
is indeterminate).[376]

While Fibonacci characterizes the whole collection of recreational problems as well
as a particular subsection as “rambling problems” (above, pp. 77 and 90), part 5 chapter
8 of the present treatise (fol. 206v–211r ) is told to contain “the rest of the rambling cases,
and almost the end of the pleasing cases” (el rimanente de’ chasi erratici e quasi fine
a’ chasi da dare diletto ).[377]

Skipping Fibonacci’s first problems, the chapter initially follows the Liber abbaci
faithfully in its presentation of the simple as well as the sophisticated versions of the
“unknown heritage” (above, p. 90) – only deviating by speaking of “sons” even when
this leads to fractional sons.[378] Then (fol. 208r ) follows the “Chinese remainder
theorem”, also faithfully repeated, only with the difference that in one of the problems
(fol. 2098v ) the number to be divided by successive divisors is replaced by eggs in a basket
to be counted in twos, in threes, etc.[379] In agreement with the Liber abbaci then comes
(fol. 209r ) the problem about a fallacious application of the partnership rule:[380]

Two men have loaves, of whom the first has 3 loaves and the second has 2 loaves. And

(fol. 224v–225v ). They are thus taken from the shared source – probably, since no name is given,
the Vaiaio.

376 Both the observation and the examples are also in the Palatino Praticha, fol. 233r–234r.

377 The problems about composite travels, which in the Liber abbaci follow the horse trade, have
indeed been moved from the recreational part 5 to the end of part 6.

378 With minor changes of the words, the Palatino Praticha agrees with the present text in most
of the chapter. So, even here, both draw on a shared source, presumably the Vaiaio.

379 The eggs are broken by accident, and the owner does not know how many there were, only that
when counting them by two’s, three’s, etc. until six’s the remainder was always one below the
measure, while 7 divided.

The same story, though with remainder 1 (thus the basic example of the Remainder Theorem)
is told in similar words in a slightly earlier or roughly contemporary Byzantine problem collection
[ed., trans. Hunger & Vogel 1963: 72f ].

380 Also in the Palatino Praticha, fol. 241r; the following more complex additions to the single
problem in the Liber abbaci are also there.
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walking their way to a fountain they settle down to eat, and a friend of theirs passing by
eats with them, and they eat equally. Their friend left, or should we say gave to them
5 ß for the bread he had eaten. I ask what each one should have. Even though some say
that the first should have 3 ß and the second 2 ß, they do not speak the truth. Because
it is a rather obvious matter that when the friend gave them 5 ß, all three eat as much
as was worth 3 times 5 ß, that is, they eat as much as was worth 15 ß. And these 15 ß
are the worth of 5 loaves. Therefore posit that 5 loaves are worth 15 ß, where one loaf
is worth 3 ß. For which reason the first who had 3 loaves, which were worth 9 ß, but he
eat for 5 ß. Therefore he should have 4 ß. And the one who had 2 loaves had 6 ß, and
he eat for 5 ß, and he should therefore have 1 ß. And therefore the first ought to have
4 ß and the second ought to have 1 ß.

Three things have happened here to Fibonacci’s text. His “soldier” has become a “friend”;
the 5 gold bezants have become soldi (a slightly more realistic though still exorbitant
price). And the argument is different – Fibonacci calculates that each participant consumes
1 2/3 loaf, whence the guest gets 1 1/3 loaf from the first and 1/3 loaf from the second.

Fibonacci has no more problems of this type, but the present writer adds three tangled
variants. Then follows (fol. 210r ) a mathematical riddle:[381]

A father gives eggs to each of his three sons, and to the oldest he gives 50, to the second
he gives 30, and to the youngest he gives 10. An he tells them to go sell them, and to
sell them in the same way per denaro. And they go

– and when they come back it turns out they all have sold for the same amount. No
calculation is given, but it is explained that they have sold at two markets, in the first
7 eggs per denaro, in the second 3 denari each. In the first market, the first sold 49 eggs,
the second 28 eggs, the third 7 eggs; the rest they sell in the second market, and thus
each gets 10 δ. So, this is no mathematical problem proper but a riddle, and has to be
answered as such.[382] In Benedetto’s Praticha (fol. 293r ), the problem (formulated
about “somebody” giving the eggs to three men) turns up in the vicinity of proper riddles –
for instance, the classic about a wolf, a goat and a head of cabbage that are to be ferried
over a river. Benedetto says about the problem that its kind is called ragioni apostate,
“improper problems”. Nothing similar is said neither here nor in the Palatino Praticha,
where the problem is found on fol. 242r. As we shall see below (p. 301), there are fair
though not compelling reasons to believe that the term was introduced by Benedetto.

Last in the chapter comes the twin problem (above, p. 23), differing from Jacopo’s

381 Also in the Palatino Praticha, fol. 242r.

382 The Liber abbaci (above, p. 99) contains a similar problem about two men selling apples (and
many variations). This problem is strongly underdetermined (even more because the gain of each
is not given); Fibonacci offers a way to find one of many possible solutions.

The present story is found in a 15th-century problem collection (Istratti di ragioni ) claiming
to go back to Paolo dell’Abbacho [ed. Arrighi 1964: 85]. Paolo (?) comments that “this problem
is without rule and of rather little utility”, and then states the same solution as here.
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version only by stating in the beginning that the bequest is 3000 fiorini.[383]

Chapter 9 (fol. 211r–217r ), chasi d’indivinare, follows Fibonacci’s part 12.8 about
divinations (above, p. 100), adding extra examples for the rules given and replacing
others.[384] At the end is added the problem (the “Joseph game”), how to order two
groups of 15 persons each in a circle in such a way that, by counting off by nines, one
of the groups is separated out – here Christians and pagans.[385]

Most of chapter 10, “The doubling of the chess-board” (fol. 217r–221r ), follows Liber
abbaci part 12.9 (above, p. 100). It even copies Fibonacci’s blunder (above, p. 101) but
changes the following calculation from Pisan to Florentine metrology; it also takes over
the alternative interpretation of the doubling as well as the rest of Fibonacci’s problems
(described above, p. 104), only changing the bezants in the problem [B313;G491] into
apples. At the end, as mentioned in note 383, the two problems are inserted which the
Palatino Praticha brings before the twin problem in the chapter on “rambling”
problems.[386] That closes part 5.

Part 6 (fol. 221v–252r ) returns to the commercial domain, more precisely to questions
involving interest. The appearance of tables of compound interest derived from those of
Antonio on fol. 225r–233r was mentioned in note 320, but first comes an collection of
problems borrowed from Gratia de’ Castellani (fol. 221v–224v ), dealing with matters like
those we have already encountered in Jacopo’s Tractatus (above, p. 20). After the tables
come more of the same kind, together with simple discounting (fol. 234r–236r ) – for
example (fol. 235v ), what is the interest rate if 140 £ to be paid in 18 months from now
is reduced to a payment of 125 £ now, which obviously reduces to a question about the
interest rate which makes 125 £ grow to 140 £ in 18 months?

Somewhat more interesting from a mathematical point of view and more demanding

383 Before the twin problem, the Palatino Praticha brings two other “rambling” problems which
in the Ottoboniano manuscript are moved to chapter 10; one is borrowed from Fibonacci, the other
not. First comes the “weight problem” (fol. 242v, cf. above, p. 97), then (fol. 242v ) a problem about
decanting between bottles containing 8, 5 and 3 ounces in such a way that the contents of the larger
(which starts full) is distributed equally between the two larger bottles. This problem is known from
the Columbia algorism (CA, #123, p. 131) but also presented in the problem collection purportedly
going back to Paolo dell’Abbacho [ed. Arrighi 1964: 62] (where even this is characterized as being
not very useful, “and made solely for orientation”). After the twin problem follow a pure-number
problem and several give-and-take problems, none of which correspond well to the “rambling”
category.

384 The Palatino Praticha (fol. 246v–253v ) is very similar.

385 A short account of the history of this problem (referred to as ludus Joseph in [Cardano 1539:
T iiiv]), with further references, can be found in [Tropfke/Vogel et al 1980: 652–655] – cf. also
[Smith 1923: II, 541–544]. It appears to have been adopted by the abbacus tradition in the 15th
century.

386 The Palatino Praticha does not repeat these, but apart from that it is similar.
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when it comes to the handling of numbers is the following chapter 3 (fol. 236r–240v ),
concerning compound interest and corresponding discounting not necessarily linked to
the year (cf. above, p. 226). At first the principle is explained – adding the interest (here
of the year) to the capital, and taking this new value of the capital as basis for the interest
to be paid the following year – and next what to do if the last term is only a fraction of
a year. One of the examples (fol. 237v ) asks for the value of 125 £ 12 ß 6 δ after two
years, 8 months and 10 days if the interest rate is 12 % per year. At the end come other
terms than the year – for instance (fol. 238r ), to find the value of 100 £ after a year and
10 months at an interest rate of 4 δ per £ if accounts are made up every 6 months.

Even more computationally demanding though not involving new principles are chapter
4 (fol. 240v–242v ), about the reduction to a single date of payments to be made at different
moments; chapter 5 (fol. 243r–245v ) about payments made in several tranches; and chapter
6 (fol. 245v–248r ) about making up debts due at different moments at a single date.[387]

Chapter 7 (fol. 248r–252r ) contains supplementary problems within the same area, at first
five amortization problems about loans whose interest is repaid by the rent of a house,
similar to what we have encountered in the Liber abbaci (above, p. 90), then others of
recreational type – for example (fol. 249v )

Somebody lends to another one I do not know how much nor at how much the lira a
month. And at the end of the year wanted to give him back 100 £ for interest and capital.
And he says to him, keep them for another year at this same rate, and at the end of the
second year he gave him back 120 £ for interest and capital. [...]

No difficult problem, evidently. The interest rate is seen directly to be 20%, that is, 4 ß
per year per £ or 4 δ per month per £; discounting 1/6 from 100 £ shows that the original
loan was 83 £ 6 ß 8 3/4 δ.

The Liber abbaci, we remember, added problems about amortization by rent due after
those about repeated travels with gain and expenses in part 12.6, pointing out that the
mathematical structure is the same. Here, the order is inverted, and chapter 8 of part 6
(fol. 252r–260r ) shows how to solve questions about “men making travels because these
are linked with those on earning interest”.

In general, the present text follows Fibonacci quite closely, with few deviations. In
the first problem, the starting point for the first travel is Florence, not Pisa (cf. above,
p. 88). Quite often, when Fibonacci introduces a variant, he merely states the parameter
that is changed. Here, these variants are treated as independent problems, and the complete
information given. Even the problems where Fibonacci makes use of two algebraic
unknowns are taken over (regula recta as well as regula versa ), the unknowns being
designated somma and quantità.

387 The technical terms are del meritare e schontare a fare chapi d’alchuno termine (chapter 3);
il modo di rechare a termine denari dati in più partite et in diversi tenpi (chapter 4); del modo
di fare resti e simili (chapter 5); and del modo del saldare (chapter 6).
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At the end (fol. 260r ) of the chapter comes an apple-picking problem which in the
Liber abbaci follows after the amortization problems [B278;G445]; in this case, Fibonacci
offers an alternative solution by means of the regula recta. The present writer says that
it can be done but “it is not to be explained” (non est dicendum, a Latin stock phrase
showing that the writer had some basic Latin training[388]).

Part 7 (fol. 260v–267r ) deals with the “rule of chatain”, this time to be understood
as double false position. By far the larger part is drawn from the Liber abbaci.

As the Liber abbaci, the writer starts by stating that the name is Arabic, and gives
the colourful interpretation as due positioni bugiarde, “two liar positions”. After this
beginning he follows Fibonacci’s exposition and line-based proof of the rule (above, p.
106) over 7 folio pages (fol. 260v–263v ). From Fibonacci’s part 13.1, containing problems
already dealt with earlier in the Liber abbaci (above, p. 111), it takes over only two
problems, and then adds four problems that are not to be found in the Liber abbaci –
the first of which, however, is simply the determinate version of the grasping problem
(the indeterminate form borrowed from Fibonacci’s earlier treatment is on fol. 165v ). None
of them make use of Fibonacci’s nested structures, that is, of Fibonacci’s most advanced
procedures (above, p. 113).[389]

Part 8 (fol. 267v–298v ) is dedicated to roots. An initial half-page describing the
contents of the chapter is independent of Fibonacci while partially duplicated in the
Palatino Praticha (fol. 317r ).[390] After that, the text follows the Liber abbaci, beginning
with the explanation of “certain necessary matters” from Elements II but here
“demonstrated by means of numbers” (cf. above, p. 115), leaving out only the term “keys”,
which however is conserved in the Palatino text (fol. 317r ). The exposition is accompanied
by lettered diagrams as well as numerical calculations in the margin; these are absent from
Fibonacci’s margins as well as his text, and (with a single exception) from the Palatino
Praticha. The diagrams in the Latin translations of the Elements are two-dimensional and
quite similar to those of the Greek text, so the inspiration cannot have come from
comparison with any of those. The single line diagram in the Palatino manuscript can
make us confident that all of them were in the shared model – whether introduced by
the Vaiaio or earlier in the tradition between him and Fibonacci is hardly to be
known.[391]

388 In general, the travel chapter of the Palatino Praticha agrees with what we find here, but this
point is made in Tuscan (fol. 310r ). The Latin may or may not go back to the shared model, but
in any case the Ottoboniano writer chose it.

389 The Palatino Praticha skips the demonstrations and gives the same problems as the Ottoboniano.

390 The Palatino version ends by referring to “what Euclid writes in the 10th book and some of the
others”. This observation is absent from the Ottoboniano text; it seems most likely that the latter
has left it out from what is copied from the shared model.

391 As we remember, the Palatino Praticha also drops the demonstrations in the chatain chapter,
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Another innovation follows in the succeeding parallel to part 14.1 of the Liber abbaci,
“extraction of square roots”. At first the writer, so to speak, renders allegiance to Fibonacci,
ascribing to him (fol. 269v ) the definition of a (square) root of a number that could be
found everywhere, “a number which multiplied by itself gives the number”. Then he
rearranges the material and describes the habitual approximation √(n 2+a ) ≈ n+ a/2n in
abstract terms. In the first example (the root of 10), the procedure is iterated. Fibonacci
[B353;G548] stops at 3 1/6 – 1/228 , while the present text completes the calculation, finding
3 37/228 . Strikingly, this second approximation is called “the closest root”,[392] a term
which in the broad abbacus tradition is used about the first approximation. Another
noteworthy deviation from the tradition is that the possibility of approximation from above
as well as below is pointed out in the preceding general formulation of the algorithm
(which is thus branched, yet another rarity in the abbacus tradition except in the algorithms
for arithmetical operations on numbers[393]).

Approximations to the roots of fractions or mixed numbers follow – a theme not dealt
with by Fibonacci in this way. The first example is √ 2/3 , where 9/16 is chosen as a fraction
close to 2/3 with square numerator and denominator. Since, more precisely, 2/3 =
9/16 + 5/48 , the next approximation is
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which is then considered the “closest root” of 2/3 .
The next example is √13 1/2 , where the square number 16 is chosen as the starting

point, which means that this time the approximation is from above. Even this time, the
resulting first approximation is considered “the closest”, but the first steps of the
determination of the second approximation are offered.

An alternative method is then suggested – dealt with later by Fibonacci ([B355;G552],
above, p. 118), but what is done here is independent. At first an abstract description is

where similar line diagrams are used throughout in the Ottoboniano Praticha.

392 Using the expression la prossimana radice, where for instance Jacopo has la più pressa. Beyond
stylistic level, there is a slight semantic difference: prossimano, like the Latin superlative proximus
from which it derives, can also mean “very close” (Gherardi’s la più proximana, on the other hand,
indubitably means “the closest” – cf. above, p. 193).

393 The rule of three and the double false position could both be formulated as branched algorithms,
the former depending on whether fractions occur, the latter according to whether one guess leads
to an excess and the other to a deficit, or both are of the same kind. But normally the different
cases are explained as parallel branch-free algorithms.

Mostly, it must be emphasized, the problem solutions of the abbacus books are not meant as
algorithms, that is, as fixed step-by-step prescriptions (whether with or without DO...UNTIL...,
IF...ELSE and similar commands) but procedures that can be varied to the extent it is needed; cf.
[Høyrup 2018].
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given, then as example once again √10, which is transformed into √ 10 900/30 . The square
number closest to 9000 being 9025 = 952, √9000 is approximated as 95– 25/(2 95) =
94 33/38 , whence √10 can be approximated as 94 33/38 ÷30 = 3 37/228 – surprisingly the same
“closest root” of 10, which suggests that the factor 302 has been chosen with the purpose
of achieving this. Application of the procedure (still with factor 302 ) to √ 2/3 gives the
approximation 49/60 , much better than the preceding one.[394]

Before repeating Fibonacci’s circle-based geometric construction of a square root
(above, p. 118), the present Praticha (fol. 270v ) gives another one, closer to the spirit
of abbacus geometry – namely to find it as the hypotenuse of a right-angled triangle –
he examples used being a triangle with sides 1 and 3 containing the right angle.[395]

The rest of the chapter finds the roots of 743, 8754, 12345 and 927435, all taken from
the Liber abbaci. The last part of Fibonacci’s part 14.1, introducing the principle that
√n = √(p2 n )/n, is omitted – it has indeed been dealt with independently already.

Chapter 3, about “the multiplication of roots”, starts by rendering Fibonacci’s “part
14.2a”, “the multiplication of roots and binomials” (above, p. 119) quite faithfully (fol.
273r–274v ), supplementing with marginal diagrams illustrating the various kinds of
binomials. Next (fol. 274v-282r ) comes a partial counterpart of “part 14.2b”, about the
products of numbers, roots and roots of roots, at first following the Liber abbaci but soon
giving different examples, and continuing with products involving also binomials and
apotomes (above, pp. 121 and 123); this is the topic of Fibonacci’s parts 14.3, but little
of the present text is drawn from there (later, as we shall see imminently, the material
from part 14.3 is used). Obviously, we are now moving within an area which had been
explored in abbacus algebra, so here the writer draws on a different tradition,[396]

returning to the Liber abbaci only occasionally – also when taking up roots of roots on
fol. 276v.

As we have seen, the arithmetic of monomials and binomials always went together
with the sign rules (above, p. 202). So also here. Noteworthy (fol. 275v ) is a demonstration
borrowed from Fibonacci [B370;G571] of the rule for “less times less”, based on the
rectangle diagram on top of the next page, arguing first from the diagram-letters and then
from the numerical example (the letters are those of Fibonacci, the numerical example
independent). The argument runs like this: subtraction of the surfaces dg and hb from

394 The text (as also the Palatino Praticha ) finds how much ( 49/60 )2 and ( 59/72 )2 deviate from 2/3 ,
finding respectively 1/3600 and 25/5184 , saying in both cases that this is “nothing much”, not hinting
at any comparison.

395 The Palatino Praticha also has these constructions (fol. 320r ) but omits the diagrams.

396 Something, it is true, is taken over from the Liber abbaci – mostly matters drawing on Elements
X. Thus (fol. 281r, cf. [B368;G569]) about the sum of the roots of binomials and corresponding
apotomes, and fol. 276v, cf. [B360;G558], about finding two roots of roots whose product is a given
rational number.
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the surface ac leaves the surface ai less the surface ic, which therefore has to be added.
As we see, the argument is structurally similar to that of Dardi (above, p. 213), but here
the logic is impeccable.

Fol. 277r–278v offer a surprise, a section dealing with the roots of the various types
of binomials. It is clearly inspired by Fibonacci’s statement about the root of a fourth
binomial (above, p. 124), but it is independent, and supported by line diagrams similar
to those used by Fibonacci but not found in the Liber abbaci. At first comes a theorem
valid for all binomials – in paraphrase,

Let ag be a binomial composed of ab and bg, and let
ab be bisected at c. Let further the quantity of the
number d be the difference between the squares on the
two components,[397] and ef be √( 1/4 d ). Then the root of ag equals the sum of the roots
of af and of fb.

The proof, summarized and translated into symbols (replacing ab by 2p and bg by q,
whence af = p+1/4√d, fb = p–1/4√d, d = (2p )2–q2), goes

= =p 1
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2
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= .2p (2p )2 d 2p q

397 As we remember, this magnitude is fundamental for the definition of the different classes of
binomials. It is noteworthy that it is represented by a “number d” (numero d ), not by a segment
designated by the letter.



– 269 –

The illustration in numbers (fol. 277v) confirms that this further development of what
Fibonacci had done by means of his technique was produced within the tradition of abbacus
mathematics, even though we have no earlier traces: it considers the binomial 6+√9, that
is, as Dardi and Giovanni di Davizzo it deals with the rational root as if it were irrational,
and takes advantage of the control made possible by this computability.

On fol. 278r–281r follow calculations of products mostly involving roots of binomials
(no longer transformed as has just been taught). Even here, rational roots are often used –
for example, 8 (√9+13), √(6–√4) √√16, (√√343+√7) (√√343+√7) and
√(√9+13) √(√4+7) – also clearly made in continuation of the abbacus tradition.

Similarly, chapter 4 (fol. 282r–286r), about “how to divide by roots”, has more to
do with the abbacus tradition than with Fibonacci’s parts “14.4a” and “14.4b” (above, pp.
124 and 126) although it depends to some extent on the latter. Initially it gives the sign
rules for divisions among quantities of any kind (wholly alien to the Liber abbaci ),[398]

and then goes on with the subject-matter of “14.4a” proper, with explanations that do not
come from the Liber abbaci, though the substance is evidently often the same – for
example (fol. 282v ),

Divide root of 60 by 4. It is needed to divide the square of the root of 60, which is 60,
by the square of 4, which is 16, and of that which results take its root. And from dividing
60 by 16 results 3 3/4 , and the root of 3 3/4 is that which results from dividing root of 60
by 4.

Further (fol. 283r )

Divide 30 and root of 3000 less root of root of 20000 by the root of root of 5. First you
will divide 30 by the root of root of 5, where you multiply 30 two times in itself, and
we shall have 810000. And you shall divide the root of root of 810000 by the root of
root of 5, the root of root of 162000 results. And then you shall divide the root of 3000
by the root of root of 5, where you shall have to bring to or rather multiply 3000 by itself,
they make 9000000, and you will have to divide root of root of 9000000 by root of root
of 5. [...].

On fol. 283v begins the counterpart of Fibonacci’s part “14.4b”, about division by binomials
and trinomials. At first the text follows this model, adopting also a line-based
demonstration. Further, a number of examples are taken over. When coming to divisions
by binomials involving roots of roots, however, the texts soon diverge. When computing
10/2+√√3 , the Ottoboniano text still takes over Fibonacci’s line-based argument for the step
(2+√√3) (2–√√3) = 4–√3. However, when it comes to using this insight for the
transformation

398 The rules given here speak of “added” and “diminished”, not positive and negative numbers
(in whatever terminology we might imagine).

The rules in question are absent from the Palatino Praticha. The two texts also differ in the
following, even when the mathematical substance is the same.
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Fibonacci feels the need to justify the operations by means of proportions, while the present
writer, building on a century’s familiarity with operations on formal fractions, does more
or less as we do. After this, even the examples given differ from those offered by the
Liber abbaci, until the very last topic – an abstract formulation followed by an example
(fol. 285r ): the division of “some simple number or binomial or apotome”, which again
follows Fibonacci, adopting also his argument by means of a line diagram.

The short chapter 5 (fol. 286r–288v ), “about adding roots”, starts by jumping back
to the beginning of Fibonacci’s part 14.3 (above, p. 123). It borrows an argument supported
by a line diagram and a backward reference, that √7+4 is a binomial that cannot be
expressed in a better way, the ratio between (√7)2 and 42 not being like that “between
a square number and a square number” – it is indeed Fibonacci’s example of a first
binomial (above, p. 120), also expressible as √(23+√448).

So far this corresponds (with demonstration added) to what would also be done in
abbacus algebra. Then (fol. 286v ) comes a stylistic rupture, and the text begins to discuss
approximations, which in normal abbacus books only appear in solutions to geometric
problems – first finding that √448 ≈ 21 1/6 , whence √(23+√448) ≈ √44 1/6 ≈ 6 2/3 .[399]

More diagram-based considerations follow about the conditions for reduction being
possible, for example (fol. 287v ) √18+√32 = √98. Then (fol. 288r ), it is said concerning
4+√√20 that it is expressed “in a vernacular way” (sechondo un vulghare modo ) by means
of the “closest approximations”, opposing it to the transformation “according to the art”
(sechondo l’arte ); the example as well as the reference to the “vernacular way” is
borrowed from the Liber abbaci [B364;G563]. The same double approach is next given
to √12+√√10, for which Fibonacci only gives the exact solution. Except for the
approximations, all calculations make use of the principle a+b = √(a 2+b 2+2ab ), where
a and b can be numbers, irrational roots or roots of roots.

Chapter 6, “about the way to detract roots” (fol. 288v–290r ) also draws on part 14.3
of the Liber abbaci, beginning with a similar line-based demonstration and the example
4–√7 – borrowed from Fibonacci [B363;G561] but simplified.[400] The rest of the chapter
is independent – ending (fol. 290r ) with √√32–√√18 and √√8–√√2. The basic principle
is that a–b = √(a2+b2–2ab ), where again a and b can be numbers, irrational roots or roots
of roots.

399 The usual first approximation gives √44 ≈ 6 2/3 . The writer may have been satisfied with that.
More likely, however, is that he approximated √7+4 directly as 2 2/3 +4, a calculation which is
presented as a check (2 2/3 being miswritten as 6 2/3 ); the latter calculation is indeed offered as an
alternative and not as a control in the Palatino Praticha, fol. 359v.

400 Fibonacci speaks about “extracting a surd root from a rational number, or a number from an
irrational root, or a root from a root that are commensurate in power only”, the present text about
“extracting a root from a rational number”.
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Chapter 7 (fol. 290r–294v ), “containing the way to find cube roots”, corresponds to
the beginning of part 14.5 of the Liber abbaci [B376–384;G582–590]. Apart from two
alternative examples and an addition to a diagram (all on fol. 292r ), it follows the model,
and leaves out nothing. There is no reason to add anything to what was said about
Fibonacci’s text on p. 127.

Chapters 8 (fol. 294v–295v ) and 9 (fol. 295v–296v ), about “the way of multiplying
cube roots of numbers” and “dividing by them”, is parallel to the central section of part
14.5 of the Liber abbaci [B384–385;G590–591], yet with only interspersed borrowings.
The corresponding pages of my scan of the Palatino manuscript are strongly overexposed
and mostly illegible. The traces that remain show, however, that at least most is different
from the Ottoboniano manuscript, not only in the choice of examples but also by not
making use of rational roots. It also differs from the Liber abbaci. The explanation closest
at hand seems to be that the shared model was too rudimentary in this section and the
two compilers therefore decided to work independently.

At first in chapter 8 the rule for multiplying two cube roots is formulated in abstract
terms (namely, to multiply the two radicands and to take the cube root of the outcome),
illustrated by an example borrowed from Fibonacci (3√40 3√60), and then an equally
abstract rule for multiplying another “name” of root and a cube root (to bring both to
the same “name” of root[401]), illustrated by examples not adopted from Fibonacci:
4 3√27, √4 3√10, √√16 3√27. No advantage is taken of the possibility of control offered
by the picking of rational roots. Only then comes Fibonacci’s second example,
(2√20) (33√40), and his first way to find two cube roots whose product is a rational
number, with a different numerical illustration.

Chapter 9, about division, is wholly independent of Fibonacci, and makes extensive
use of rational roots without ever taking advantage of the possibility of control. The first
examples are 3√120÷2, 100÷3√20, and √16÷3√4096. Noteworthy is that the latter calculation
is not finished, the result is given as √3√4096÷√3√64 = √3√64. A final reduction to 2 is
evidently only possible because of the friendly parameters; the compiler restricts himself
to the steps that have general validity. Three more problems follow, of similar character
and dealt with similarly – two involving also roots of roots and one including coefficients.
We may observe that the solution of these problems makes more explicit the insights which
Dardi must have possessed but apparently had no language to express.

Chapter 10 and 11 (sic [402] ) (fol. 297v–298v ) translates the last part of part 14.5
of the Liber abbaci [B384–387;G591–594] (above, p. 127), deleting only an alternative

401 As could be expected, it is taken for granted that root-taking is commutative, 3√(√n ) =
√(3√n ), 3√(√√n ) = √√(3√n ). Given the definition of what a root is this follows rather trivially from
the associativity of multiplication, so there is no reason the abbacus writers should see this as a
problem.

402 The Palatino Praticha (fol. 375r ), having a slightly different organization of the preceding
chapters, similarly speaks of the “ninth and tenth chapter”.
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solution on fol. 297r (for the good reason that the solution offered for the next question
is very close to what has been left out), and adding at the end that the possibilities to
speak about other roots in similar ways are infinite, and saying that this closes part 8.[403]

This closing demonstrates that the ensuing lacuna (fol. 200r begins in the middle of
a sentence) belongs wholly within part 9, which is drawn from part 15.1 of the Liber
abbaci (above, p. 129). A comparison with the folio numbers indicated in [Boncompagni
1857] suggests that 2 sheets have been lost.[404]

After the lacuna, the text follows that of Fibonacci’s part 15.1 closely, leaving out
nothing and adding nothing except the closing formula on fol. 303r,[405]

And this will suffice concerning the 9th part. Next we shall speak about the 10th, so be
attentive. And for finishing this part we shall say deo gratias.[406]

Since the text follows the Liber abbaci faithfully, there is no reason to say more about
this part than was said about Fibonacci’s text above – except that this faithfulness[407]

shows that the abbacus environment had not worked actively on the topic, in spite of the

403 The Palatino Praticha has almost the same text (with a proviso for the reduced legibility); it
does not omit Fibonacci’s alternative solution, and the final words added after the borrowings from
Fibonacci are slightly different.

404 The foliation of the manuscript was made after the loss of these sheets, and is thus continuous.

405 There was almost certainly also an introduction not drawn from Fibonacci. The corresponding
introduction in the Palatino Praticha [ed. Arrighi 2004/1967: 190f ] runs as follows:

Many strain themselves to show that this ninth part of this treatise is not necessary for
the rule of algebra; and among these are some moderns whose names I shall at present
not disclose. But (among) those who are demonstrators that not in vain work hard in
algebra, the first is Leonardo Pisano since, in the first part of the 15th chapter, he gives
names to the proportion of 3 and 4 quantities. And master Paolo says, in the second part
of the treatise on continuous quantities, that without Leonardo’s 15th chapter nothing can
be done, I say its first chapter. And master Antonio, in the Gran trattato, says “I
presuppose that the proportions of the first part of the 15th chapter are clear to you”. And
my noble master Domenico, in the memories he left to me, said, “don’t depart with these”
[...].

The final period may be taken as a warning that this is a personal testimony and not taken over
from the model shared with the Ottoboniano writer. That the first part is described as giving “names
to the proportions of three and 4 quantities” does not suggest that the Palatino writer had a profound
understanding of what he copied.

406 This final invocation is also found in the closing formulas of parts 5 to 8. Part 10 instead has
laus Deo. The Palatino Praticha closes its parts 3, 6, 7 and 9 with the former and parts 5 and 8
with the latter formula. The abbacus environment was decidedly pious in its written expression –
whether as a matter of mere routine is difficult to know, and hardly the same for everybody.

407 Shared by the Palatino manuscript everywhere I was able to read my scan.
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opinion of the Palatino writer just quoted (whose words, when closely read, indeed do
not contradict this conclusion).

Part 10 (fol. 303r–343r ) deals with algebra; the prestige of this topic within abbacus
culture is reflected in the opening words:

All that which has been said on this point would be in vain without the present, since
here is shown the rule that solves all cases that can be solved, speaking in squares and
cubes and in all the continuous quantities, as I shall show in the cases. And therefore you
shall apply the intellect to this part [...].

The chapters are then listed:

In the first we shall write the definitions of the said rule.
In the second the way to multiply, divide, detract and join the names of that rule with

each other, and with simple numbers.
In the third are 6 equations of the said rule showing their demonstrations clearly.
In the fourth examples of the said rule, that is, the said 6 modes.
In the fifth many other equations.
In the sixth cases solved by the said equations.

Chapter 1 (fol. 303v–304r ) is quite short. It explains that some speak of the “rule of
algebra” and others of the “art of the thing” (reghola d’algebra respectively reghola della
chosa ); that according to “those who understand” (gl’intendenti ) it means “rule of
opposition and of recuperation” (d’oppositione e di ricuperatione, with the inversion we
already know from Fibonacci, cf. above, pp. 115 and 138, and an alternative translation
which we shall encounter again on p. 307 in Benedetto’s quotation from Guglielmo de
Lunis); and that many have written broadly about it, in particular “Leonardo Pisano and
master Antonio de’ Mazzinghi”. But because a book called Algebra maumetti sets things
out very clearly, that will be the fundament.[408]

The following explanation of censo, radice and simple number is indeed close to al-
Khwārizmı̄ – and so close to what is offered by Benedetto [ed. Salomone 1982: 2f ] that
they must have used the same vernacular version (the obvious but wrong guess would
be a vernacular translation of Gerard of Cremona’s Latin version, cf. below, p. 306 and
note 473). After this, however, and before the definition of the six cases, the excerption
from al-Khwārizmı̄ stops.

Chapter 2 (fol. 304r–305v ) leaves the classics and turns to the abbacus tradition in
its presentation of the rules for multiplying and dividing algebraic “names” – in our
language, “powers”.[409] At first it states the products of powers until the sixth. Thisis

408 Since the Palatino manuscript (fol. 391r ) does the same though with a somewhat different
justification (“so that the work of the Arab Maumet, which was almost lost, may be restored, I
shall begin by that”), the use of al-Khwārizmı̄’s treatise must go back to the shared model.

409 There is a difference of shade, we should remember when using the modern term. In abbacus
algebra, even of the mid-15th century, thing, censo, cubo, ... were seen primarily as different entities,
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named cubo of cubo, while the fifth power is either cubo of censo or censo of cubo (told
to be the same). There is no trace of Antonio’s cubo relato (above, note 340), the system
is purely multiplicative. For all products, a second example with the coefficients 6 and
8 is given – for example, “6 censi times 8 cubi make 48 censi of cubo. Next follow
divisions within the same limit, sometimes (in our terminology) leading to a positive,
sometimes to a negative power, this time with corresponding examples with coefficients
48 and 6 – for example (fol. 305r )

From dividing things by cubi results a fraction denominated by cubi, as from dividing
48 things by 6 cubi results this fraction .

8 things

1 cubo

Slightly later it is explained that this can be reduced (schisato, the same term as is used
about the reduction of common fractions: is the same as . At the end (fol.

8 things

1 cubo

8 dragmas

1 censo

305r–v ) it is explained that addition and subtraction of different powers cannot be
simplified, joining of 6 censi and 8 cubi and 3 censi di censo makes 6 censi and 8 cubi
and 3 censi di censo.

Chapter 3 (fol. 305v–307r ) presents the fundamental six cases – or so it says, the
copying from the model (which is much better reflected in the Palatino manuscript) omits
much.

In order to see the changes made by the Ottoboniano writer, we shall first have a
look at the corresponding Palatino section (fol. 391r–399r ). It starts by stating the six
fundamental cases in Arabic order, all normalized, and all provided with the same examples
as in al-Khwārizmı̄’s text.[410] It is noteworthy that the writer uses dramme
(corresponding to Latin dragmae ) much more consistently than Gerard’s text for numbers
(and also more than the extant Arabic text); as we shall see (p. 309), it is also informative.
It is explained regularly that it is the same as “simple numbers”, as is the identity of roots
and things (chose ).

As in al-Khwārizmı̄’s text, geometric demonstrations follow. There are ten diagrams
(al-Khwārizmı̄ has four). Even in those that have a counterpart in Gerard’s version, the
lettering is wholly different.

The Palatino writer then presents the rules for multiplication and division of powers,
saying that here he is going to follow Antonio. As we remember, that topic has already
been dealt with earlier in the Ottoboniano Praticha (without reference to or use of

and only secondarily as members of a geometric series. The latter view, though always present
(already Jacopo’s rules for higher-degree cases demonstrates this) was becoming more outspoken
from Antonio onwards, and was to be that of higher-level abbacus algebraists in the outgoing 15th
century.

410 Both the extant Arabic text [ed. Rashed 2007] and Gerard’s translation [ed. Hughes 1986]. The
first four cases are provided with three examples each, one normalized, one with an integer and
one with a fractional coefficient of the highest-degree term. The last two are presented by a
normalized example only.
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Antonio).
Chapter 3 of the Ottoboniano Praticha starts with a listing of the six cases in

normalized form but abbacus order, beginning by thing equal to number. For this case,
the numerical example differs from that of al-Khwārizmı̄, for the others it is the same.

Then the three simple cases are repeated or summarized, still in abbacus order, and
now in non-normalized abbacus style.

The first and second mixed cases (censo and roots equal number respectively censo
and number equal roots ) are presented as in the Palatino text, still with al-Khwārizmı̄’s
examples. Then it skips the third mixed case (roots and number equals censo ) and
describes in words only a simple geometric demonstration, namely for that unexplained
case, and closes the chapter (fol. 307r ) with the same words as the Palatino Praticha (fol.
399r ).

Chapter 4 (307v–309r ) is another presentation of the fundamental six cases, now in
full abbacus style: abbacus order as standard since Jacopo (above, p. 184), all cases non-
normalized and the first step of the rules thus being a normalization, and the sixth case
in the form censi equal things and number, not things and number equal censo as in al-
Khwārizmı̄ and the preceding chapter copied from him. All examples pretend to deal with
commercial matters, though most are nothing but pure-number-problems said to concern
the monetary possession of somebody.

The corresponding chapter in the Palatino Praticha (fol. 402v–406v ) presents different
examples – still of types we know from earlier abbacus algebras – “find me two numbers
so that ...”, “find me a number which ...”. At the end (fol. 409v–410r ) it reproduces a letter
(transcribed in [Arrighi 2004/1967: 166]) from 1397, written by a certain Masolo da
Perugia and addressed to Giovanni di Bicci de’ Medici (initiator of the Medici rise to
power in Florence).[411] It speaks of the solution of higher-degree equations by means
of special roots:

I understand that you find it marvellous that cubi, censi and things can be made equal
to number, considering that the opinion of all predecessors is that this should not be
possible. I say that every equation [adeguagliamento ] can be determined, and, if the way
had not been very long and difficult, I would have sent it herewith; although I shall send
you what you ask for.

First I say that, when cubi, censi and things are equal to number, there may be three
necessary and diverse answers, all of which will be explained to you.

The roots are infinite, which the geometer calls incommensurate lines, as it appears
from the 107th of the 10th of Euclid.[412]

411 Actually an answer to a request made by Giovanni, who thus still took time for such matters
in spite of being fully occupied by the expansion of the Medici bank.

412 Campanus numbering, X.115 in modern editions, following [Heiberg 1883: III, 370]. The
proposition is actually irrelevant to what follows, the unlimited number of roots of which it speaks
are the lines produced from a medial line – corresponding arithmetically to the continued taking
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The cube root of 84, with detraction [abattimento ] of 5 things, is 4; because 5 things
are 20 which, detracted from 84, leave 64, whose cube root is 4; as is said. Another
example: the cube root of 33, with detraction of 2 things, is 3; because 3 times 2, which
are the things, make 6 which, when detracted from 33, leave 27, whose cube root is 3,
as is said.

The cube root, with joining of the things, are done as I have said above; only that
above is detracted, to these are joined. The example: the cube root of 44, with joining
of 5 things, is 4 in number; because 4 times 5, which are the things, make 20, which,
joined to 44, make 64, whose cube root is 4, as is said.

The Palatino writer goes on, “In his letter he shows these equations; but the reason they
are not good I do not know”. It seems implausible that Masolo himself should have
explained in the letter that the roots he speaks of are not good, so the present writer must
know about other objections.

However that may be, there is a close connection to what we have encountered above
(p. 240) in the Florentine Tratato; even the example 44 is the same.[413] Masolo’s
opening words also indicate that in his environment (and that of Giovanni di Bicci) the
kind of false solutions that start with Gherardi were not accepted.

Chapter 5 of the Ottoboniano Praticha begins (fol. 309r–310r ) by listing rules for
higher-degree cases, with several peculiarities. The cases listed are (the numbering is in
the manuscript, the preceding “Ot” obviously not – dK stands for duplici chubi ):

Ot7 K = N
Ot8 CC = N
Ot9 dK = N
Ot10 KK = N
Ot11 CCC = N
Ot12 CC = t
Ot13 CC = C
Ot14 CC+K = C
Ot15 CC = K

Ot16 CC = K+C
Ot17 K+t = C
Ot18 K = C+t
Ot19 K+C = t
Ot20 CC+N = C
Ot21 CC+K = C
Ot** CC+t = N
Ot22 CC+C = N
Ot23 CC = C+N

Double cube, it turns out, is the fifth power, and the solution is expressed as the radice
relata of the number term after normalization. There is not much order in the list; since
the naming of powers is elsewhere multiplicative, we must expect CCC in Ot11 to be
the same as KK in Ot10 (the solutions are expressed as root of root of root respectively
cube root of cube root, which allows no cross-check); if this is true and the writer has
not discovered that the two cases are identical, we may doubt his understanding of the

of square roots. We may take that as evidence that there was an ongoing interest in Elements X
among certain abbacus teachers – but with the proviso that interest seems not to have entailed much
understanding, at least not as a necessary consequence.

413 As we see, instead of speaking of a cube root with added debt, as done by the Florentine Tratato
(above, p. 241), Masolo operates with a distinct cube root with detraction.
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matter – as supported by his change of terminology for the powers, which suggests copying
without much thought. Apart from that, we may observe that coefficients are spoken of
explicitly, sometimes as “the number of” (Ot11), sometimes as “the number that is for”
(Ot13), sometimes with Dardi’s “quantity of” (Ot16, Ot19). Ot14 and Ot19 are followed
by the explanation that they are like the case C+t = N, and the existence of a double
solution is pointed out in Ot17 and Ot20. Finally, the non-numbered and evidently
irreducible case Ot** is discarded after having been defined and normalized.[414]

The rest of chapter 5 (fol. 309r–343r ), “cases solved by the said equations”, contains
problems said to be borrowed from the Liber abbaci (fol. 309r–326r ), Luca di Matteo
(fol. 326r–331v ), Giovanni di Bartolo (fol. 331v–335r ), and Antonio de’ Mazzinghi (fol.
335r–343r ). In the section otherwise coming from the Liber abbaci, two problems are
inserted – the first, about a purchase of wheat and barley (fol. 315r ), is the problem that
“was sent to Florence by a master from L’Aquila “already around 12 years ago” (above,
p. 246), and which goes back at least to Biagio. The second, on fol. 320r, is quite simple –
in symbols, (4√n ) n = 7n, solved by the observation that if a number multiplied by some
other number makes 7 times as much, then this other number is 7; hence 4√n = 7, etc.

On the whole, the section follows Fibonacci, sometimes forgetting diagrams in his
margin even though the text refers to them, sometimes conserving them; a couple of times
(fol. 311r, 312v ), Fibonacci’s verbal multiplications of algebraic binomials are repeated
in symbolic form in the margin, and thrice (fol. 324r, 325r and 325v ) Fibonacci’s diagram
[B431,439,440;G654,665,667] is replaced by a marginal symbolic calculation; the present
writer (or rather, his model) did not share Benedetto’s aspiration to “speak like” his source
(cf. above, p. 227). Where Fibonacci uses census, avere or quantitates about one or more
numbers (thus not where census designates the algebraic second power, cf. above, p. 151),
they become numero /numeri.

We have no possibility to compare the next section with Luca di Matteo’s original,
but a number of the problems ascribed to him can be traced back to Biagio, others to
Antonio’s Fioretti – among these one on fol. 330v which pretends to solve the problem
which Antonio did not like and therefore did not complete (above, p. 227). Evidently a
fallacy is involved.[415] Many of the problems are contorted versions of normal

414 The chapter has no counterpart in the Palatino manuscript, which instead (fol. 410r–478v ) goes
directly to problems borrowed from the Vaiaio, Fibonacci, Luca di Matteo (a Florentine abbacus
master, 1356 to 1433 or 1436) and Giovanni di Bartolo – the counterpart of chapter 5 of the
Ottoboniano Praticha.

415 Antonio, we remember, had arrived at

= 36–t2 .5 t 5 t
Squaring this, Luca gets

(36–t2 )2 = 5+t+5–t+ = 10+ .2 25 t 2 2 25 t 2
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recreational abbacus problems or genuine business questions – give-and-take problems
involving roots (several, e.g. fol. 327r ); partnerships where the partners contribute with
different monies whose ratio is given indirectly (fol. 328r ), or involving a squared
contribution (fol. 328v ), combined works with abstruse conditions (fol. 329r,v ), loans with
compound interest and changing but unknown rates with known difference (fol. 329v ),
and barter involving a root (331r ). We have encountered such problems in the Florentine
Tratato (above, p. 239), and modestly already in Jacopo’s algebra (above, p. 185). In spite
of the fact that the Tratato was produced during the period where Luca di Matteo was
active, there is no textual evidence suggesting it was written by Luca;[416] the two texts
seem to reflect a fashion of the Florentine outgoing 14th and early 15th century.

As already mentioned in note 366, similar problems were also abundantly solved by
Giovanni di Bartolo. This is confirmed by the much more restricted selection here, which
once again contains further problems coming from Biagio and Antonio (one, fol. 333r,
solved differently than by Antonio). Most interesting – not per se but because
Regiomontanus presents the same solution and marginal scheme, se below, p. 350 – is
a problem on fol. 331v (the second of those ascribed to Giovanni di Bartolo). It is one
of the problems about dividing a certain dividend first by one divisor and then by another
one exceeding the former divisor by a known amount, the difference between or the sum
of the two quotients being given – familiar since Abū Kāmil and Fibonacci, we remember,
and amply present also in the abbacus tradition since Gherardi (above, pp. 149 and 195);
within the abbacus tradition it was the earliest problem types calling for the application
of formal fractions (cf. above, p. 223). Using like the manuscript the abbreviation ρ for
the thing but indicating addition with a modern “+” and replacing the long stroke by a
modern equation sign, we may express the problem as it appears in the margin of the
manuscript as

+ = 40
100

1ρ

100

1ρ 7

The solution (in the margin as well as in the text body) goes via the calculation

+ = = = 40 ,
100

1ρ

100

1ρ 7

100ρ 100 (ρ 7)

(1ρ) (1ρ 7)

100ρ (100ρ 700)

1censo 7ρ

for which reason 200ρ+700 = 40censi+280ρ; in the margin, where censo is abbreviated
σ, we find

Subtracting 10 on both sides – left, unfortunately, from the expression that is squared – Luca arrives
at a biquadratic. Rhetorical algebra requires great skill when matters become complex.

416 With the slight proviso that even an insightful mathematician may sometimes make blunders,
the fallacy pointed out in note 415 also speaks against identification.
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100ρ

100ρ 700

200ρ 700

1σ 7ρ
40

200ρ 700 ——— 40σ 〈280ρ 〉

which for the moment we may take note of as representative of the level at which symbolic
calculations are performed in the manuscript; the long stroke “———” here as mostly
functions as an equation sign, that is, the confrontation of two equals (elsewhere in the
manuscript it is used occasionally for other confrontations, for instance between the
possessions of two partners).

Part 11 (fol. 343v–348r ) is a very traditional abbacus geometry; most problems are
similar to what was already presented by Jacopo (above, p. 34 onward), the others build
on similar principles. There is no need to go through the details, they would teach us
nothing new. We may therefore restrict us to the first of two problems belonging to the
same family as Jacopo’s fallacious column-in-a-well (above, p. 40, here fol. 346v ), which
illustrates that transmission had eliminated the fallacy as well as the intricacy of the Liber
mahameleth and the Liber abbaci that had induced it – namely the use of different units
for volume and hollow measure (above, p. 41). In the likeness of the Liber mahameleth
and the Liber abbaci it speaks of a cistern, not a well:

There is a cistern, long 10 cubits, broad 8 cubits, high 6 cubits, and the water stands 5
cubits high. A stone falls in it which each way is 4 cubits. I ask how much water will
remain. First bring the stone to square cubits, where you multiply 4 which it is long times
4 which it is broad times 4 which it is high, they make 64, and 64 square cubits is the
said stone. Where you square the area of the bottom of the said cistern, where you multiply
10 times 8, they make 80, and you divide 64 in 80, 4/5 results, and 4/5 of a cubit you shall
say that the water raises in the said cistern, and thus you shall make the similar.

Apart from the formulation of the question, which fits a situation where there is an
overflow of water, this is impeccable. We observe that volumes are still measured in
“square cubits”.

Instead of this small collection of geometric problems, the Palatino Praticha offers
on fol. 490r–491r a list of abstractly formulated rules, beginning with the computation
of square and rectangular areas and of an equilateral triangle – the latter in a rather
unorthodox formulation. Later come, among other things, transformations within Florentine
metrology and between volume measure and hollow measure for grain, and the contents
of barrels and of a heap of grain (as it falls naturally). The compiler gives the reason that
he had initially intended to deal with geometry at greater length; but since he has decided
to write about the topic in a separate volume, he here gives only that which is needed
in order not to leave the treatise incomplete.
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Judging from the style of its opening words,

compared hands
one might believe this separate volume to be the
roughly contemporary manuscript Florence, BNC,
Palatino 577, a Praticha di geometria; however,
the hands are somewhat different, as can be
observed.[417] On the other hand, the Ottoboniano
manuscript contains on fol. 355r–429v, after the
Praticha d’arismetricha, another Praticha de geometria, which though not identical is
clearly close kin of the Palatino 577. As we have seen, the Ottoboniano and Palatino
Pratiche di arismetricha are in many places copied from the same source; even the
Pratiche di geometria are apparently representatives of a whole family of geometric

417 [Simi 1999] contains an edition of extensive extracts. [Simi & Toti Rigatelli 1993: 462f ] argue
from a reference on fol. 11v–12r to the “10 demonstrations and solutions” which the writer has given
“in the first chapter of the eighth part” in his Praticha d’arismetricha that the writer must be the
one who produced the Palatino Praticha. However, since this chapter of the Palatino and the
Ottoboniano Pratiche coincide and both are copied from the same source (maybe from the hand
of the Vaiaio ), this reference only shows kinship, nothing more.

However, the reference excludes Ettore Picutti’s identification [1989: 76] of the writer as
Benedetto da Firenze.
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encyclopedias.[418] Only the autographs and no copies of the Palatino and Ottoboniano
Pratiche d’arismetriche have survived, while the earlier version of the Palatino Praticha
(above, note 350) has been lost; other encyclopedias may therefore also have been
produced and lost, including the geometric encyclopedia announced in the Palatino
Praticha.

Due to their similarity with the two Pratiche di arismetricha I have spoken above
of the two geometries as “encyclopedias”. This might be considered a misnomer. Whereas
the arithmetical encyclopedias are indeed encyclopedic, drawing on many sources (eclecti-
cally, of course, encyclopedias are eclectic and not monographs), the geometries depend
if not exclusively then overwhelmingly on Fibonacci’s Pratica geometrie. I shall therefore
not discuss them further – a detailed discussion of their relation to the model is not very
relevant to a portrait of abbacus mathematics.[419] At most they confirm that material
drawn from Fibonacci did not enter into fruitful interaction with new developments within
the field of abbacus mathematics – not least, it has to be added, because geometry was
peripheral to the curriculum of the abbacus school, for which reason there was no spur
to direct creative work within abbacus mathematics toward geometry or to use geometry

418 Simi [1999: 68 and passim ] asserts that the Ottoboniano geometry is a reduced copy of the
Palatino geometry. A glance at the diagrams in the former and the latter on respectively fol.
388v–389r and fol. 134r and comparison with [Boncompagni 1862: 101] will suffice to show that
this is impossible: the Ottoboniano writer knows all four diagrams from Fibonacci’s Pratica
geometrie, while only two of them (one of these moreover omitting one of the diagram letters)
are in the Palatino geometry. The appurtenant texts confirm the conclusion. After teaching how
to measure “a field or the figure of a fish” respectively “a figure similar to a fish” (an area delimited
by two circular arcs), the Ottoboniano geometry goes on with the measurement of “a field having
the figure called elana”, some kind of oval shape; elana could be a Latinization of al- ayn, “eye”,
which would fit the shape. This passage is not in the Palatino geometry, and Simi [1999: 60 n.
17] supposes it to be an addition; actually, it is translated from the Pratica geometrie [ed.
Boncompagni 1862: 101] and thus instead omitted from the Palatino geometry.

Simi [1999: 44] also attributes “with almost full certainty” the Ottoboniano Praticha to the
same hand as the Palatino Praticha, claiming it to be a reduced copy. Even here, the presence in
the former of diagrams omitted in the latter show this not to be the case – a conclusion that is
confirmed by the differences in algebraic terminology discussed above.

A similar consideration refutes Picutti’s claim [1989: 76] that Pacioli copied from the Palatino
geometry in his Summa. Pacioli, indeed, conserves many diagrams from Fibonacci’s Pratica which
are omitted in the Palatino geometry – cf. for instance [Pacioli 1494: II, fol. 16r] with fol. 56r of
the latter and [Boncompagni 1862: 59] – the Palatino geometry omits the first of two diagrams
here.

On the other hand, the similarities between the Ottoboniano geometry and Pacioli’s Summa
identified by Picutti leave no doubt that Pacioli used a pre-existing Tuscan translation of Fibonacci’s
text which was close to the Palatino and the Ottoboniano geometries; but Pacioli as well as the
Ottoboniano writer must have used better versions than the Palatino geometry.

419 For the same reason I shall also not take up other vernacular versions of Fibonacci’s Pratica.
See [Hughes 2010] and Arrighi’s edition of one of them [1966a].
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as the basis for challenges.

Benedetto

There is no need to say more about the Palatino Praticha than was done in the
previous pages, in particular during the comparisons with the Ottoboniano namesake.
Benedetto’s Praticha, on the other hand, deserves extra attention.

Benedetto was almost certainly born in 1429 and died in 1479.[420] Beyond the
Trattato de praticha d’arismetrica he has left a Tractato d’abbacho, less extensive and
less advanced and in consequence copied more often; one manuscript was transcribed
by Arrighi [1974].[421]

We have already witnessed Benedetto’s care for philological precision, which makes
him a valuable and unique source for the development of abbacus mathematics. But there
is much more than reliable copying in the treatise.

It opens[422]

Begins [open space long 1/6 of a line] of the treatise of practice of arithmetic drawn from
the books of Leonardo Pisano and other authors. Compiled by B. for a dear friend in the
year of Christ 1463.

A paragraph of almost half a folio page first extols that honest competition which makes
everyone try without arrogance to do better than his neighbour, and then (addressing the
dedicatee) speaks about a common friend Ł, who has communicated to Benedetto the
desire of the two to be helped with certain difficult mathematical questions, for which
reason he has now composed a treatise (of no less than 1012 densely written folio pages) –
confirming that the dedicatee-“friend” was of such social standing that communication
with Benedetto had to go via an intermediary.

A second part of the preamble approaches the subject-matter, beginning with two
Latin quotations from Boethius’s Arithmetic I.1 and I.2 – one explaining the primacy of
arithmetic over the other mathematical disciplines, the other how everything is constructed
on the basis of number. However, “since the treatise is rather for practical than for other
uses”, Leonardo Pisano and others who have written on practice will be excerpted and
explained. Since arithmetic and geometry are connected and mutually supportive, along
with the present treatise Benedetto intends to write another one about geometry – even
this one lost if ever written.

The present Praticha is explained to consist of 15 books. In close paraphrase:

420 See Ulivi’s thoroughly documented biography [2002a].

421 Repeating the erroneous information given in this manuscript, Arrighi ascribes the Tractato
d’abbacho to Pier Maria Calandri. The mistake is corrected in [Van Egmond 1980: 96]. 18 surviving
manuscripts of the treatise are listed in [Van Egmond 1980: 356].

422 The whole preamble (fol. 1r–v ) is transcribed in [Arrighi 2004/1965: 138f ].
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1. The representation, multiplication and subtraction of numbers [fol. 1v–20v];
2. the nature and properties of numbers with respect to each other [fol. 21r–29v];
3. division by integers [fol. 30r–45r];
4. fractions [fol. 45v–64r];
5. proportional numbers [fol. 64v–82v];
6. everything that has to do with trade[423] [fol. 83r–171v];
7. the principles having to do with the chatain[424] [fol. 172r–184v];
8. what has to do with interest [fol. 185r–226r];
9. problems solved by means of the double false position [fol. 226v–233r];
10. recreational problems, corresponding to chapter 12 of the Liber abbaci [fol.

233v–299v];
11. some proportions that have to do with continuous quantities [fol. 300r–310r];
12. roots [fol. 310v–367v];
13. the rule of algebra [fol. 368r–388r];
14. cases exemplifying this rule [fol. 388v–408r];
15. cases taken from several masters [fol. 408v–474v];
16. cases having to do with square numbers [fol. 475r–506v].

At the end of the preamble, Benedetto promises always to give due reference when
reference is due, confirming thus his intended philological precision.[425]

Some of the books deserve closer description and analysis – in some cases summarily,
in others in depth.

Book 2 (fol. 21r–29v ), “nature and properties of numbers with respect to each other”,
is a decent and well-ordered theoretical arithmetic, drawing on Euclid and Boethius, similar
in topic to part 3, chapter 2 of the Ottoboniano Praticha (above, p. 249). It was edited
separately by Arrighi [1967b]. It deals with the odd and the even, with the subdivisions
into evenly even, etc.; with arithmetical series; with prime and composite numbers; with
deficient, abundant and perfect numbers, including (fol. 24v ) determination of the first
five of these[426] and a meticulous control of the last of them; and with the Boethian

423 The beginning of the book itself cautiously specifies that it deals with everything a merchant
ought to know which falls under number.

424 As to the actual contents, see the description on p. 284.

425 As we shall see, Benedetto sometimes shares inspiration with the other two Pratiche without
revealing his source; he appears to distinguish inspiration from philologically faithful copying.

426 As we remember from p. 249, the Ottoboniano Praticha also finds the sixth. Both organize the
calculation in a scheme, Benedetto much clearer than the Ottoboniano writer:

Evenly even numbers 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

The sum 3 7 15 31 63 127 255 511 1023 2047 4095 8191
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names for ratios. A second chapter presents figurate numbers: polygonal numbers until
heptagonals, as well as pyramidal and cube numbers; and at the end so-called circular
or spherical numbers, those whose powers all end by the same digit, that is, 5 or 6.

The “principles having to do with the chatain” (book 7 ) is properly speaking a
misnomer. The chapter itself specifies that it deals with “the way to solve cases by the
simple mode of chatain”, which turns out to be what Fibonacci calls the “rule of
proportion” (cf. above, p. 86), demonstrated by means of line diagrams.

One of Fibonacci’s examples of this method, we may remember from p. 82, speaks
of selling three pearls in Constantinople, and an alternative solution by means of regula
recta was given in the Liber abbaci. Benedetto repeats the problem (with a minor
numerical change and as dealing with “precious stones”) on fol. 182v but gives the solution
by means of modo retto, using the occasion to introduce this “almost universal” method.

Throughout this chapter there are many marginal calculations, and often these spread
into the text column (line diagrams only appear on fol. 172r–v ). In some of the latter cases
it can be seen that space was prepared for them, meaning that the text was written first;
such calculations are clearly meant to inform the reader, Benedetto did not need them
himself. Elsewhere, as we shall see, it is obvious that complex calculations were made
first and the text written afterwards, proving that Benedetto did not copy but worked on
his own.[427]

Book 8, supposedly on interest, opens with moral deliberations similar to but more
elaborate than those of the Palatino Praticha (above, note 25). Chapters 1–5 (fol.
185r–218v ) treat of simple and compound interest, discounting, making up of accounts
at a specific time, etc. Here (fol. 193v–201r ) we also find tables of compound interest
similar (also in layout) to those of Antonio as copied in the Palatino (above, p. 226), with
the only difference that Benedetto starts with 6 percent per year instead of 5 percent –
plausibly because Benedetto deemed this low rate to be deprived of practical interest.

There are many marginal calculations in these five chapters – the computations are
indeed often quite intricate; but almost all seem to be of the kind that seems intended
for the reader, not something needed by Benedetto; we may assume that Benedetto copies,
from his own earlier or from foreign material (maybe updating such matters as dates of
fictional payments due, which on fol. 203v–213r run from 1458 to 1464, reaching into
near future at the moment of writing). Only the text of a few problems at the end of
chapter 5 dealing with loans with interest that is amortized by the rent of a house have
calculations written first, showing them to be independently calculated by Benedetto in

Perfect numbers 6 28 496 8128 33550336

427 That such calculations are made on the manuscript page itself seems to exclude that Benedetto
used loose scrap paper or other external means for his calculations. As we shall see in note 444,
however, he appears to have changed his practice at a certain moment.
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1463.
Chapter 6 (fol. 218v–223r ) deals with repeated commercial travels with expenses –

a topic which Fibonacci deals with before the problems about amortization by rent, we
remember from p. 90. Benedetto points out that these problems belong together with those
about interest but concern gains that justly are legally accepted.

Almost all of the problems are borrowed from the Liber abbaci. Often even the way
to solve them is taken over though in different words: Benedetto does not translate, except
when explicitly reporting – he is a teacher setting out matters in his own words. In many
cases, however (in particular but not only when Fibonacci simply indicates the result
corresponding to a variation of parameters), Benedetto makes his own calculations, which
can then be seen to have been performed in the margin before he wrote the text. Here,
his preferred method is the modo recto. In one case on fol. 221r (in agreement with
Fibonacci [B263;G425] but with new detailed calculations), Benedetto appeals to the modo
verso. In the problem where Fibonacci appeals to two unknowns, summa and res (“amount”
and “thing”) (above, p. 88), Benedetto (fol. 222v ) uses chosa and quantità (“thing” and
“quantity”), making an extensive marginal calculation spreading far into the text column,
abbreviating quantità as q and writing chosa sometimes in full, sometimes as ρ.[428]

Chapter 7 (fol. 223v–226v ) is explained to deal with “the way of doubling, called
doubling of the chess-board, which problem is fitting for this book”. The opening of the
chapter (fol. 223v–224r ) is missing from my scan,[429] and of the first interpretation
of the doubling I have thus only seen the final part. This suffices, however, to show that
Benedetto uses the Florentine metrology of his time, which means that he has had to do
the calculations on his own; and further that he has replaced Fibonacci’s pedagogical
example (above, p. 101) with its sequence grain – chest – house – city and the step factor
65536 = 216 by a sequence grain – small bowl – sack – granary – house – castle – city –
region – realm – world – sphere with step factor 1024 = 210, which (supposedly) allows
to imagine 100 doublings.

Fibonacci’s alternative interpretation of the chess-board problem, where “the following
square is the double of all its antecedents”, is followed closely.

After this, Benedetto presents a selection from the further problems from Fibonacci’s
chess-board chapter – not in exactly the same order; not all of them; and without

428 It may be worth observing that at one point the text finds that at the end of the fourth travel
(where nothing remains for him) the traveller has

5things less 6quantity 5/12 and 18fiorini 1/4 .
In the margin this stands as the equation

5ρ equal to ——————— 6q 5/12 18 1/4 .
As mentioned above (p. 279), the long stroke is used regularly in the Ottoboniano Praticha as an
equation sign (though not only); as we see Benedetto (here, not always) feels the need to explain
it in words.

429 The introductory words are thus quoted from [Arrighi 2004/1965: 149].
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Fibonacci’s extensive alternative solutions. Last in the chapter Benedetto copies Fibonacci’s
rabbit problem (above, p. 94) – even here abbreviating.

Book 9 (fol. 226v–233r ) is presented as “containing the treatise on the rule of chatain,
meaning ‘of 2 false positions’”, not only (as in the introduction) as “problems solved”
by this method.

This time the term is given the normal explanation, copied from Fibonacci. As do
the Ottoboniano and the Palatino Pratiche, Benedetto goes on (fol. 226v–228r) with
Fibonacci’s explanations and proofs (above, p. 106), once again omitting a number of
alternatives. His examples (fol. 228v–233r ), on the other hand, are all different from those
found in the Liber abbaci and in the two other Pratiche, and accompanied by marginal
calculations made before the text column was written – once again Benedetto is clearly
on his own. Most interesting is the last problem (fol. 230r–233r ), dealing with five men
buying a horse. Here Benedetto applies Fibonacci’s multiple nesting of double false
positions (above, p. 113), calling the position for the price of the horse the “general” (not
“universal”) position; the subordinate positions are spoken of simply as “positions”, not
as (in the Liber abbaci ) “particular positions”; none the less, inspiration from Fibonacci
is hardly in doubt.[430] As shown by comparison with the other two Pratiche, the

430 I shall not go through the calculations – the six folio pages would become exorbitant even if
expressed in symbols – but only show the beginnings. If A, B, C, D and E are the possessions of
the five men and H the price of the horse, the givens are (all numbers count fiorini ):

A+ 2/5 (B+C+D+E )–4 = H
B+ 1/4 (A+C+D+E )+5 = H
C+ 1/5 (A+B+D+E )+2 = H

D+ 1/8 (A+B+C+E ) = H
E+ 3/5 (A+B+C+D )–14 = H
A+B+C+D+E+H = 190

Perspicaciously, Benedetto promises that “it will be very long to explain if made by position” (molto
lungho dire fia a farlo per positioni ). At first he makes the general position that H = 50, and the
(secondary) position that A = 20. That gives

2/5 (B+C+D+E )-4 = 30 ,
whence

(B+C+D+E ) = 85 .
Now the tertiary position is made that B = 17. Then

C+D+E = 68 ,
whence

A+B+C+D = 88 .
Inserting this in

B+ 1/4 (A+C+D+E )+5 = H
gives H = 44, 6 less that the position.

Then the tertiary position is changed to B = 21; etc. This leads to H = 47, 3 less than needed.
The true tertiary position would therefore be B = 25, whence C+D+E = 85–25 = 60 – etc. The
outcome is that A = 20, B = 30, C = 40, D = 50, E = debt 10, H = 60; as could be expected, the
value found for B in the first instance is not definitive.
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inspiration Benedetto takes over from this source is beyond the level of even the Vaiaio
and his students).

Book 10 (fol. 233v–299v ) does not repeat the statement on fol. 1v that it corresponds
to chapter 12 of the Liber abbaci. However, insofar as themes are concerned, the initial
statement is not mistaken. In paraphrase, the chapters are introduced as follows:
1. the solution of certain cases about the nature and properties of numbers;
2. cases about men having denari;
3. cases about men who work;
4. cases about men who have denari and find denari;
5. about men who buy a horse, and similarly;
6. about rambling cases, whose rules vary;

Like Fibonacci’s corresponding part 12.1, the present chapter 1 (fol. 233v–237r ) deals
with summation of series, including application to pursuit and meeting problems; some
problems are borrowed from the Liber abbaci, others not. Of some historical though not
particular mathematical interest is a meeting problem on fol. 236v (not borrowed from
Fibonacci): Two men move around the earth, one towards east and one towards west.
“According to the astrologers”, the circumference of the earth is 20400 miglia.[431]

Though the Portuguese had only started their travel eastward by going south in the previous
decades and Columbus had not yet started dreaming about reaching the Indies by going
west, the idea of travelling around the earth was becoming possible.

Chapter 2 (fol. 237r–256r ) begins with all-less-each problems, the easy type which
in the Liber abbaci [B284–286;G454–456] follows immediately after the rabbit problem
(above, p. 94); the problems and the discussion, however, do not depend on Fibonacci;
then follow give-and-take problems. The first of these, though not in the Liber abbaci,
appears to be borrowed (space is reserved within the text column for calculations,
obviously to be borrowed – but then this space is not used). The next 17 can be seen to
be based on Benedetto’s own work: calculations are mostly written before the text column,
and most are solved by means of the regula recta, which Benedetto from now on rarely
identifies by name; mostly the possession of the first man is posited to be a quantity, but
once (fol. 243 v ) “in order to remove many fractions” instead 6 quantità – as we might
expect, Benedetto does not act mechanically but chooses his algebraic unknown
sagaciously.

Then, on fol. 244r, we find a problem tacitly borrowed from the Liber abbaci [B194;

As Benedetto observes, whoever insists on solving such cases by position will run into very
great toil (grandissima faticha ). We shall soon see that Benedetto himself has better methods to
propose.

431 The value comes from al-Farghānı̄, see [al-Farghānı̄ 1546: 28], and must thus refer to “miles”
used in early ninth-century Iraq.
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G328], which may be expressed in symbols as

A+7 = 5 (B–7)+1 , B+5 = 7 (A–5)+2 .

Fibonacci argues in a way that is similar to what he had done with line diagrams;
Benedetto instead proceeds by means of an unidentified regula recta, apparently calculating
in the margin before writing the text.

The next problem (fol. 244v ) is (correctly) identified as coming from chapter 7 part
3 of the Liber abbaci, but Benedetto points out that Fibonacci errs when claiming that
the problem has no solution. The problem [B193;G328] can be expressed

A+7 = 5 (B–7)+12 , B+5 = 7 (A–5)+12 .

Fibonacci claims indeed that the problem when generalized as

A+7 = 5 (B–7)+X , B+5 = 7 (A–5)+X

can be solved only as long as X (presupposed integer) does not exceed 11, and the problem
with X = 12 is supposed to illustrate that. Unfortunately he makes a mistake – the limit
is X<41, after which first A and then also B become negative.[432] Fibonacci, however,
argues in a way that involves two auxiliary entities, the “major sum” S = A+B and the
“minor sum” s = A+B–X. When solving the case X = 12 Fibonacci finds that ( 7/8 + 5/6 ) S =
S, which he considers impossible – overlooking that it just means that A+B = 12, in which
case S = 0. This is indeed the solution (A = 5, B = 7).

Benedetto relates Fibonacci’s argument (slightly misrepresenting it as if it concerned
the possessions A and B ) and then shows (on a different example) how the modo recto
can be applied; irrespective of his reverence for Fibonacci he is quite able to leave the
trail of the great predecessor (as also when warning against use of the nested double false
position).

29 more problems follow – a few taken over from the Liber abbaci, but even then
as a rule solved independently. Some are of the normal give-and-take type where transfers
are defined in absolute terms, in some however they are defined as a fraction of the
possession of the giver or the receiver; some belong to the same family as Fibonacci’s
grasping problem (above, p. 95), told in a way that involves a friend making peace; some
state complex linear relations between the possessions. In four cases, regula recta with
two unknowns is applied:
1. Fol. 249v, the first part of the solution of problem about four possessions,

A = 1/2 B+ 1/3 C+ 1/6 D–8 , B = 1/5 (A+C )+ 1/4 D+2

is made by means of “the rule of chatain” – but as it turns out, what is meant is the
“the simple mode of chatain” from book 7, that is, Fibonacci’s “rule of proportion”.
However, that is not enough, so after almost one folio page of arithmetical arguments
C is posited to be a chosa and D a quantità. In the marginal calculations they appear
as ρ and q.

432 Solution of the equation system leads to A = (121–3X )/17, B = (167–4X )/17.
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2. In a variant of the grasping-problem on fol. 254v, quantità and chosa are used, still
appearing as q and ρ in the margin; at the end of the marginal calculation, its outcome
is stated like this:

the quantità is worth 13
the chosa is worth 141

Within the marginal calculations we also encounter the long stroke used as an equation
sign.

3. Another variant of the same problem on fol. 255r uses the same two unknowns, and
is similar in all respects.

4. Yet another variant of the problem takes as its unknowns quantità and somma.[433]

In the marginal calculations, quantità is abbreviated q but somma written in full. Once
again we find a final summary in the margin and the long stroke used as equation
sign.
The chapter closes by stating that its “problems are of great pleasure and great

fantasy”.

Chapter 3, about “men who work” (fol. 256v–261v ), starts simply: “20 men plant 900
trees in 1/2 day. It is asked, in 20 days, how many trees would 100 men plant”. Soon follow
problems concerning combined works, of increasing complexity. The last problem (fol.
261r ) deals with a piece of work performed by three masters, “two without the
first/second/third can finish in 6/8/9 days”. There are no marginal calculations, so
everything seems to be borrowed without recalculation (from what Benedetto had already
done elsewhere or from somebody else). Several of the problems are solved by means
of the regula recta with a single unknown, involving formal fractions. These, as we know,
had been in full usee for more than a century, and do not call for further analysis.

Chapter 4, “about men who have denari and find denari” (fol. 261v–272v ), contains
problems of type “finding a purse”. At first comes this:

Two have denari and find a purse in which there is denari. The first says to the second,
if I had the money in the purse I would have 3 times as much as you. The second says
to the first, if you gave me the denari in the purse I should have 4 times as much as you.

The possession of the first man is posited to be a quantità. The contents of the purse
(borsa ) is not posited, but it is dealt with as a second algebraic unknown in the ensuing
regula recta solution. In the marginal calculation (quite short, the problem is simple) the

433 As we remember from p. 89, Fibonacci also uses summa (translated “amount”) in the travel
problem. Since the problem is quite different, there is no reason to believe Benedetto copied this
idea – in both cases the entity thus called is an amount of money. But they reflect a shared basis
idea, to take the name of some entity appearing in the problem – be it “amount”, be it “goose”
as on p. 242 or “purse” as on p. 85) as the second algebraic unknown.
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two appear as q and b. Even here, a long horizontal stroke serves as equation sign.
Soon the problems become more complex – sometimes becoming determinate,

sometimes involving until five men, sometimes two, three or four purses with given linear
relations between their contents; regularly, an algebraic solution involving the same
unknowns is used,[434] at times with highly complex marginal calculations made before
the text column was written.

On fol. 270v something totally unexpected happens (to my knowledge and with a
proviso to follow about Fibonacci, totally unprecedented):[435]

Four have denari, and walking on a road they found a purse with denari. The first and
the second say to the third, if you give us the purse we shall have 2 times as much as
you. The second and the third man say to the fourth, if we had the denari of the purse
we should have 3 times as much as you. The third and the fourth say to the first, if we
had the denari of the purse we should have 4 times as much as you. The fourth and the
first say to the second, if you give us the denari of the purse we shall have 5 times as
much as you. It is asked how much each had, and how many denari there were in the
purse.

At this point (that can be seen from the organization of the page, redrawn below, p. 292)
Benedetto starts making symbolic algebraic operations in the “margin” – in one place
going more than 80% into what should be the text column. Using already familiar standard
abbreviations for “the first”, “the second”, “the third” and “the fourth” (which I shall
represent by α, β, γ and δ) and b for the purse he first writes the equations (juxtaposition
as usually meaning addition, enlarged distance equality)

γ 1/2α
1/2β

1/2 b
δ 1/3β

1/3γ
1/3 b

α 1/4γ
1/4δ

1/4 b
β 1/5α

1/5δ
1/5 b

and then he starts operating algebraically on these. That is, Benedetto undertakes an
algebraic calculation with five unknowns, apparently without thinking that this is something
particular.

Actually, the four equations are already the outcome of a first algebraic operation,
which is described in the text he writes afterwards, which goes on

We shall do in this way, you shall say, the first and the second with the denari of the

434 In the case of several purses, the contents of the first becomes the unknown borsa. In a problem
on fol. 267v where the contents of three purses is given, there is no algebraic role for the borsa.
In a problem beginning on fol. 269r, the quantità is the joint possession of the first two men – but
Benedetto is so much in the habit that he writes “of the first” and then has to insert “and the second”
above the line.

435 Transcriptions of Benedetto’s Tuscan text for the whole development of this idea can be found
in [Høyrup 2020].
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purse say to have 2 times as much as the third man. Whence the third man by himself
had the 1/2 of that which the first and the second and the purse have. And mark
[segnia[436] ] this. And then you shall say, the second and the third man with the purse
have 3 times as much as the fourth, so the fourth man had the 1/3 of that which the first
and second have, and of the purse. And mark even this. And then you shall say, the third
and the fourth man with the purse had 4 times as much as the first, and therefore the first
man by himself had the 1/4 of that which the third and the fourth man had, and of the
purse. An mark this. And then you shall say, the fourth and first have with the purse 5
times as much as the second, so that the second will have the 1/5 of that which the first
and fourth man have, and of the purse. And this is marked. And you shall bring the denari
of the third to a comparison.[437] And you shall say, the denari of the third man is as
much as the 1/2 of the denari of the first and the second and of the purse. From where
it is to be known how much are the 1/2 of the denari of the first, which we have ¿brought
together?, that the denari of the first are the 1/4 of the denari of the third and fourth man
and of the purse, and let the 1/2 of the denari of the first be 1/8 of the denari of the third
and fourth and of the purse. Therefore you shall say that the denari of the third should
be as much as the 1/2 of the denari of the second and of the purse and as much as 1/8 of
the denari of the third and fourth and of the purse. Therefore you shall take away 1/8 of
the denari of the third and join 1/8 of purse to 1/2 purse. And we shall have that 7/8 of the
denari of the third are 1/8 of the denari of the fourth and 1/2 of the denari of the second
and 5/8 of purse. [...].

This only takes up two lines (with two lines inserted indicating the factors 1/2 and 1/8 )
in the symbolic calculation. Without this incipient symbolic algebra it would probably
not have been possible for Benedetto to plan the whole ensuing sequence of substitutions
in a way easily leading to the goal.

With this tool at hand, he soon reaches the point where he can reduce the question
to one with the usual two unknowns, the quantità (the same as β) and the borsa. Finding
that q = 2596b Benedetto chooses (the problem being indeterminate) the solution b = 4897,
q = 2596. This gives that the four possessions are 3717, 2596, 2596 and 4366 denari and
the purse 4897 denari, which Benedetto reduces, dividing by the common divisor 59, to
the solution “in smaller numbers” 63, 44, 95, 74 and 83 denari .

The marginal calculation is made within a number of areas delimited by curved lines –
see the redrawing on the next page. Benedetto refers to the whole structure as a
castelluccio, a castelet, and we may indeed see it as a building consisting of many

436 Technically, this means that it is written down as the first symbolic equation,
γ 1/2α

1/2β
1/2 b

437 Technically, as we see in the following, this leads to an algebraic substitution.
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Fol. 270v, redrawn. Thick lines represent the problem statement, thin lines the procedure

description (the first two lines belong to the procedure of the previous problem).
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chambers.[438]

It might be difficult to follow the path through the castelet without being guided by
the text, but once one knows the order it can be seen to go through these steps, starting
upper left:

γ = 1/2α+ 1/2β+ 1/2 b , (1)
δ = 1/3β+ 1/3γ+ 1/3 b , (2)
α = 1/4γ+ 1/4δ+ 1/4 b , (3)
β = 1/5α+ 1/5δ+ 1/5 b , (4)

derived from the initial conditions of the problem.
As a first step, to the right in the same chamber, 1/2α is found from (3) and substituted

in (1), yielding

γ = 1/8γ+ 1/8δ+ 1/8 b+ 1/2β+ 1/2 b , (5)
which is reduced to

7/8γ = 1/8δ+ 1/2β+ 5/8 b . (6)
Next (2) is used to find 1/8δ, which is substituted into (6), leading to

7/8γ = 1/24β+ 1/24γ+ 1/24 b+ 1/2β+ 5/8 b , (7)
which is reduced to

5/6γ = 13/24β+ 2/3 b . (8)
Division by 5/6 transforms this into

γ = 13/20β+ 4/5 b (9)
In the next part of the calculation (next chamber downwards), 1/3β is found from (4) and
inserted into (2), which leads to

δ = 1/15α+ 1/15δ+ 1/15 b+ 1/3γ+ 1/3 b . (10)
This is reduced to

14/15δ = 1/15α+ 1/3γ+ 2/5 b . (11)
Now (3) is used to derive 1/15α, which is substituted into (12). That gives

14/15δ = 1/60γ+ 1/60δ+ 1/60 b+ 1/3γ+ 2/5 b , (12)
which reduces to

11/12δ = 7/20γ+ 5/12 b . (13)
Division by 11/12 reduces this to

δ = 21/55γ+ 5/11 b . (14)
Now (the large chamber to the right) Benedetto shifts to the familiar set of two unknowns,
q, identified with β, and b, already in service. From (9) we get that

438 Elsewhere (also in Benedetto’s Tractato d’abbacho [ed. Arrighi 1974: 55 and passim ], the term
designates a particular scheme for multiplication – in Benedetto’s Tractato nicely contained within
walls. For other occurrences, see [Smith 1923: 111].
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γ = 13/20β+ 4/5 b , (15)
and from (14) that

δ = 21/55 ( 13/20 q+ 4/5 b )+ 5/11 b ,

whence

δ = 273/1100 q+ 19/25 b . (16)
Further, from the original condition behind (4) we know that

δ+α+b = 5β ,

whence

δ+α+b = 5q . (17)
This leads to

α = 5q–( 273/1100 q+1 19/25 b ) ,

that is,

α = 4 827/100 q–1 19/25 b . (18)
The values for α and β are now inserted into the original condition that gave rise to (1),

2γ = α+β+b , (19)
from which follows

2γ = 5 827/1100 q– 19/25 b , (20)
that is,

5 827/1100 q– 19/25 b = 26/20β+ 8/5 b (21)
(even in the marginal calculation, 26/20 appears without reduction). Addition and subtraction
lead to

3 1597/1100 q = 59/25 b , (22)
and after multiplication by 1100 “so as to avoid fractions”

4897q = 2596b . (23)
So (lower left chamber), if b is chosen to be 4897 (as Benedetto knows, the problem is
indeterminate and allows this choice), q will be 2596. From (18) then follows that α =
3717; β is already known to be 2596, while γ is found for instance from (15) to be 5605,
and δ (16) to be 4366; b is already known to be 4897.

“In smaller numbers” (bottom right chamber) this is reduced by the factor 59, which
gives him α = 63, β = 44, γ = 95, δ = 74, b = 83. Since the coefficient 2596 in (23) arises
as 59 1100/25 = 55 59, it will have been obvious to try whether 59 is a common divisor.
Benedetto does not explain from where he gets the number 59 but says to act “according
to L[eonardo] P[isano]”.

A confrontation with the problem from the Liber abbaci that was presented on p.
85 is illuminating. The problem is obviously the same, and in the beginning the procedures
are parallel; but at the point where Benedetto brings “the denari of the third to a
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comparison” (6), they diverge, and the new symbolic tool helps him to make a much more
transparent exposition than the one he could find in the Liber abbaci.

Nothing in the text suggests that Benedetto sees his new tool as revolutionary, and
within his own horizon he is right.[439] At the background of Fibonacci’s text, what
Benedetto provides is for the moment a rather marginal improvement, no mathematical
revolution.

Three simpler purse problems round off the chapter, two solved by means of quantità
and borsa and one by arithmetical “consideration”.

In general terms, chapter 5 (fol. 272v–288v ), which deals with “men who buy horses
or similarly”, does not differ from chapter 4. Many problems are taken over from
Fibonacci, but as a rule Benedetto prefers his own method, mostly the regola recta with
two unknowns. Noteworthy are four problems that gradually unfold symbolic algebra
involving more than two algebraic unknowns. The first of them (fol. 277r ) runs like
this:[440]

Four men have denari and want to buy a horse, and no one has so many denari that he
can buy it. The first says to the second and the third, if you give me 1/2 of your denari,
with mine I shall buy the horse. The second says to the third and fourth man, if you give
me the 1/3 of your denari, with mine I shall buy the horse. The third man says to the fourth
and the first, if you give me the 1/4 of your denari, I shall buy the horse. Further, the fourth
man asks the first and the second for the 1/5 of their denari and says to buy the horse.
It is asked, how many denari each one had, and what the horse was worth.

Even though there are many ways to solve such cases I shall take the most convenient,
or let us say the least tedious.|| That is that you shall say, we propose that the first with
the half of the denari of the second and of the third man has a horse. And we say that
the second with the third of the denari of the third and fourth man buy the horse. So the
first with the 1/2 of the denari of the second and third man has as much as the second
has with 1/3 of the third and fourth man. From there you will see confronting [ragua-
gliando ], that is, detracting first on each side [parte ] 1/2 of the denari of the second, and
we shall have that the denari of the first man with 1/2 of the denari of the third man are
as much as 1/2 of the denari of the second with 1/3 of the third and fourth man. And then
you remove from each side 1/3 of the denari of the third man, and we shall have that the
first man with 1/6 of the denari of the third man is as much as 1/2 of the denari of the

439 If he had done so, it would have been obvious to point it out in something meant as a gift to
a patron, thus cautiously intimating the value of the gift – but he does not, neither here nor when
the method returns in the next chapter.

440 A closely related problem is found in the Liber abbaci [B240;G393], only with fractions 1/3 ,
1/4 , 1/5 and 1/6 – apart from that the structure of the question is identical. There too, Fibonacci’s
procedure is if not algebraic than at least quasi-algebraic, but even in the present case Benedetto
proceeds on his own.
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second. And take note of this [nota [441]]. [...]

This time, the text until || was written first, after which Benedetto starts calculating in
the margin. We observe, firstly, that Benedetto is aware that he is using a particular
method, which furthermore is “the most convenient”, that is, less “tedious” than the
alternatives. A modern reader will certainly agree, in particular when realizing that the
marginal calculations and not the textual description is meant. Moreover, we find a new
technical term, “to confront” (raguagliare ), meaning to construct the reduced equation,
obtained by addition and subtraction on both sides of the equation. The marginal
calculation is still organized in a “castelet”, even though the word does not reappear (there
is no occasion for that), and the symbolic operations are also quite similar to what we
know from the purse problem. However, since the price of the horse does not enter until
the very end, here we have symbolic algebra with four unknowns – towards the end once
again reduced to algebra of two unknowns, here quantità and chavallo.

After a simpler three-participant problem solved algebraically by means of quantità
and chavallo follows (fol. 278v ) a further sharpening of the new tool in another problem
taken over from Fibonacci, where it gets a characterizing name, “by equation”.[442]

Benedetto might have expressed Fibonacci’s quasi-algebraic procedure within the new
framework and does so in the initial steps – not necessarily copying, these are simply
the obvious first steps. Then, once again, the two solutions diverge.

Four have denari for which they want to buy a horse, and none of them has so many
denari that he can buy it. The first and the second say to the third man, if you give us
the 1/3 of your denari, we shall buy the horse. The second and third man say to the fourth
man, if you give us the 1/4 of your denari we shall buy the horse. The third and fourth
man say to the first, if you give us the 1/5 of your denari, with ours we shall buy the horse.
The third and first man say to the second, if you give us the 1/6 of your denari we shall
buy the horse. It is asked, how much each one had, and what the horse was worth. We
shall do it by equation. Where you shall say, the first and second with 1/3 of the third buy
the horse. And the second and third man with 1/4 of the fourth man buy the horse. Thus
the denari of the first and second with 1/3 of the denari of the third man are as much as
are the denari of the second and third man with 1/4 of the denari of the fourth. Where
confronting the sides, taking away from each side the denari of the second and 1/3 of the
denari of the third, we shall have that the denari of the first are as much as 2/3 of the
denari of the third man and 1/4 of the denari of the fourth man. And mark this. Then you
shall say, the second and third man with 1/4 of the denari of the fourth man buy the horse.
And the third and fourth man with 1/5 of the denari of the first buy a horse. So the denari
of the second and third man with 1/4 of the denari of the fourth man are as much as the
denari of the third and fourth man with 1/5 of the denari of the first. Therefore take away
from each side the denari of the third and 1/4 of the denari of the fourth man, and we

441 Technically, notare, translated “to take note” serves as a synonym for segnare, “to mark”.

442 per aguagliatione – as we remember, this term regularly refers to the reduced equation.
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shall have that the denari of the second are 3/4 of the denari of

fra fol. 278v

the fourth and 1/5 of the denari of the first. And then, going on,
you shall say that the third and fourth man with 1/5 of the denari
of the first buy the horse. And the fourth and first with 1/6 of the
denari of the second buy the horse. It therefore follows that the
denari of the third and fourth man with 1/5 of the denari of the
first are as much as the first and fourth with 1/6 of the denari of
the second. Where, confronting the sides, taking away on each
side the denari of the fourth man and 1/5 of the first, we shall have
that the fourth——— third man who—— has the 4/5 of the first and 1/6 of the
second. And mark this. And thus you shall do for the fourth man,
saying, the first and fourth with the 1/6 of the denari of the second
buys the horse. The first and second with the 1/3 of the denari of
the third buy the horse. Therefore the fourth and first with the
1/6 of the denari of the second have as much as the first and
second with 1/3 of the denari of the third man. Therefore
confronting the sides, taking away on each side the denari of the
first and 1/6 of the denari of the second, we shall have that the
denari of the fourth are 5/6 of the denari of the second and 1/3 of
the denari of the third. And of that has been taken note. And you
shall begin at the first equation,[443] saying, the denari of the
first are the 2/3 of the denari of the third man and 1/4 of the fourth
man. Therefore it has to be known what 1/4 of the denari of the
fourth are. From the others, however, we have found that the
denari of the fourth man are the 5/6 of the second and 1/3 of the
third man, where the 1/4 of the denari of the fourth man are as
much as the 5/24 of the denari of the second and 1/12 of the denari
of the third. Where to the 2/3 of the denari of the third man you
join 1/12 of the denari of the third and 5/24 of the second, they make
3/4 of the third and 5/24 of the denari of the second. And then bring
the 3/4 of the third and—— apart from the others, saying, the third man
has the 4/5 of the first and 1/6 of the second, where the 3/4 of the
third man are the 3/5 of the first and 3/24 of the second. And you shall join to 5/24 of the
second 3/5 of the first and 3/24 of the second, they make 3/5 of the first and 1/3 of the second,
and we shall have made that the denari of the first are as much as 3/5 of the first and
1/3 of the second. Therefore you shall detract on both sides the denari of the first, you
shall have that 2/5 of the denari of the first are 1/3 of the denari of the second. That is,
that the 2/5 of the denari of the first are as much as the 1/3 of the denari of the second.
Thus, if the first should have 5, the second would have 6. Let us now try the others. You
shall say that the third has as much as the 4/5 of the first and the 1/6 of the second.
Therefore, the 4/5 of the first and 1/6 of the second are 5. And so much would he have.
And the fourth has 5/6 of the second and 1/3 of the third, where the 5/6 of the second are

443 aguagliatione – as can be seen in the marginal calculation, the first reduced equation.
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5 and 1/3 , and the 1/3 of the third man are 1 2/3 , which all make 6 2/3 . And thus it is done,
the first has 5 and the second 6 and the third 5 and the fourth 6 2/3 . Which, so as not to
have fractions, multiply all by 3. And you shall have the first 15, the second 18, and the
third man 15, and the fourth man 20. And so as to know what the horse is worth, you
shall join 15 of the first and 18 of the third—— second, they make 33. To these joined the
1/3 of the denari of the third man, that is, of 15, they make 38. And as much is worth
the horse. And thus the first had 15, the second 18, and the third had 15, and the fourth
man had 20. And the horse was worth 38.

Now the technique is mature. Firstly, Benedetto no longer falls for the temptation
to shift to the traditional two unknowns, he uses the four unknowns (as observed above,
the price of the horse does not enter the algebraic manipulations) until the end. Secondly,
the marginal calculation is extremely neat. It fills only a narrow column in the margin
and does not go into the text column, but the corrections in the describing text still suggest
that the marginal calculations were made first.[444]

A related problem follows immediately on fol. 279r, dealing with five men who in
groups of three ask the next one in the cycle for, respectively, 1/4 , 1/5 , 1/6 , 1/7 and 1/8 of
their money so as to be able to buy the horse.[445] Even this case, Benedetto says, will
be made “by equation”, and he shows how the first reduced equation is to be constructed.
For the others he refers to “the teaching made below”, and a space large 11.5 centimetres
and high 9 centimetres is indeed left blank there; unfortunately, it has not been filled by
calculations, but none the less we see that Benedetto thought that his symbolic calculations
would be preferable to a verbal description – seemingly making them in a separate medium
and forgetting to transfer them. At this point Benedetto may have felt that he had explained
the technique sufficiently well. There are 24 more horse problems in the chapter, and most

444 It is to be observed, however, that from this point onward, the manuscript contains no more
invasive marginal calculations made before the text was written – those that intrude can be seen
to have been made in already prepared triangular or rectangular spaces. That is not very significant
from fol. 300r onward: from then on most of the substance is taken over from Fibonacci, Campanus
or earlier prestigious abbacus authors (due credit given), and whatever marginal material was to
be inserted was known to Benedetto from the originals. Even fol. 288v–299v, containing “rambling”
recreational problems “for which the rules vary” may not be informative. But after the present
problem there are still ten folios (twenty pages) with horse problems, where marginal calculations
could be expected, and all we find in the margin are scattered brief notes extracted from the text,
in the style “t o 12 q mê 6 ca” (“the third, 12 quantità less 6 horses – thus on fol. 282v )”. It looks
as if Benedetto has decided from this point onward to be a clean writer and make his draft work
separately. There are a few inconsequential exceptions, on fol. 314r, 315r, 325r and 335r. In all three
instances, composite geometric diagrams (no calculations) seem to have been made first – most
likely because it was difficult to predict how much space they would take up before they were
effectively drawn.

445 The problem is once again borrowed from the Liber abbaci [B243;G398]. Fibonacci solves it
by a quasi-algebraic procedure.
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are solved by means of the familiar two unknowns quantity and horse – or, when a goose
or a hare is bought, quantity and goose respectively hare.

Only one relatively simple problem (fol. 282r ) about four men, of whom the first
asks the second for 1/2 of his denari and the third for 1/3 of his (etc.) makes use of the
method. No detailed calculations are presented, but when the first manipulations of the
rhetorical equations gives the simplified equations that “ 4/5 of the first are as much as
1/2 of the second” we find the characteristic phrase “and take note of this”, and a
corresponding note in the margin; the next two simplified equations are also written in
the margin, but without the “take note”. Given that the arguments are relatively simple
Benedetto may well have made all arguments directly in words, in no need of symbolic
calculations.

Beyond that, one problem dealing with five men and five horses (the prices of which
differ by known amounts) (fol. 286v ) explains that

where in the way given before, making and observing well, you shall have that the first
man had 1589 fiorini [...].

There is no further explanation, nor any annotation in the margin. Here, given the
complexity of the problem, the way referred to might be “by equation”; but the reference
to “the way given before” also occurs in other situations where the method “by equation”
is not meant, so we cannot be sure.

Neither the next chapter nor the following books offer any occasion to practise the
method. No reader we know of seems to have noticed that Benedetto had introduced a
new method; when Johannes Buteo (Jean Borrel) did something very similar in [1559]
he did not even need to denigrate Benedetto, as he did with other sources so as to deny
his debts;[446] as his contemporaries, he almost certainly neither knew nor knew about
his Florentine predecessor.

The sixth and last chapter of book 10 (fol. 288v–299v ) deals with “cases called
rambling”; different from Fibonacci and the Ottoboniano Praticha Benedetto explains
that this means cases solved by varying rules (chasi nominati erratici, de’ quali le reghole
si variano ) – thus the heading, the beginning of the text explains in more detail while
adding that they are also dilettevoli.[447]

First come three problems of type leo in puteo, similar in structure but not coinciding
with those which Fibonacci presents in his “tree” chapter (above, note 46 and p. 80). Since

446 Among these probably Stifel, since like this predecessor he uses A, B, C and D for the unknowns –
see below, p. 379.

447 The Palatino Praticha (fol. 237v ) also attempts an explanation, though less fortunately, claiming
that they mostly have several answers – evidently a misunderstanding of what we find in the
Ottoboniano Praticha (fol. 206v ), that they can be solved in several and different ways.
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Benedetto solves them correctly, as we may say,[448] they are no longer homogeneous,
and he has justly moved them here. Three slightly complex and badly formulated pursuit
problems come next.[449]

Problems of type “unknown heritage” follow (fol. 289v–290v ) – the same as in the
Ottoboniano Praticha (above, p. 261), with trivial changes (e.g., 1000 fiorini instead of
100 fiorini ) and with characteristic shared phrases that show that they do not draw
independently on Fibonacci even though there is no doubt that both as well as the Palatino
Praticha are ultimately based on the Liber abbaci.[450] Benedetto also shows his better
mathematical insight by explaining why the formula to be used for the sophisticated cases
depends on whether α< ε or α> ε (in the sense explained on p. 92).

Next we find a number of problems depending on the “Chinese Remainder Theorem”,
all from the Liber abbaci. As the Ottoboniano and the Palatino Pratiche, one of the
problems deals with the counting of eggs. However, Benedetto moves this dress to the
first problem (as in the Byzantine problem collection, cf. note 379), probably as an
appetizer. More interesting than this shared copying from Fibonacci are three problems
on fol. 292r–v:
– To find the smallest number which when divided by 17 leaves 14 and when divided

by 19 leaves 10;
– to find a number which when divided by 64 leaves 16 and when divided by 82 leaves

13;
– to find a number which when divided by 13 leaves 6 and when divided by 18 leaves

448 The first is about a man going from Florence to Pisa, a distance of 40 miles (it is said), walking
4 miles a day, and returning 2 miles each night. Benedetto prescribes to detract at first 4 miles,
corresponding to what is reached after the first day; the remaining 36 miles are covered in 18 days,
and it is immaterial for the answer whether he returns 2 miles in the following night – except that
a following question asks for a return according to the same principle, which is then made in 18
days (Benedetto forgets that the initial 4 miles also correspond to a day and says 17).

The Ottoboniano Praticha, fol. 123v has a very similar problem, we remember (above, p. 252),
also with return, and solves it correctly.

449 For example, a dog is said (fol. 289r ) to follow a hare at a distance of 100 steps, and “each 5
steps of the dog are for 7 steps of the hare”. It is not said whether the 100 steps are steps of the
dog or of the hare – the solution shows them to be hare steps.

A similar problem in the Ottoboniano Praticha (fol. 125v ) specifies that the distance is measured
in “steps of dog”, and the following one that it is measured in “steps of hare” (there is no counterpart
in the Palatino Praticha ). Should we suspect Benedetto of sloppy copying here? Or is the
Ottoboniano writer doing better than their shared source for the problem type?

450 For instance, the father wants to divide la mia sustantia et mobile (Ottoboniano fol. 211v )
respectively la sostantia e il mobile mio (Benedetto fol. 289v ). The Palatino Praticha (fol. 237v)
abbreviates to la mia sustantia. Evidently, Benedetto had access to the shared source of the two
predecessors though he often goes beyond it. (That all three speak of “sons” when Fibonacci deals
with the division of a number is immaterial – this change is too close at hand.)
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13.[451]

The first and third are solved semi-empirically – the first by adding so many times 17
to 14 that the outcome leaves 10 when divided by 19. The second is said to be one among
several sent by the venerable Perugian [452] to master Giovanni [di Bartolo[453]].
It has no solution, and the purpose of the challenge was evidently to leave Giovanni
dumbfounded; Benedetto shows instead (probably repeating Giovanni) that the question
is impossible, since numbers leaving 16 when divided by 64 are even, while numbers
leaving 13 when divided by 82 are odd. It thus illustrates the competitive nature of the
ambience of the abbacus masters, and gives us supplementary insight in the types of
problems that might serve as challenges.

A few related observations and questions follow, then comes a three+one variant of
the loaf-sharing problem we know from Fibonacci and the Ottoboniano Praticha (above,
p. 261), and a problem about cloth[454] with a similar mathematical structure.

After an inserted problem borrowed from Giovanni di Bartolo follows (fol. 293v )
the “apostate” problem about 50 eggs given to three sons (here “men”) to sell – see above,
p. 262. According to [Ghaligai 1521: 64v] the term “apostate” was introduced by Benedetto
about problems that cannot be solved by any specific rule but are presented so as to
provide pleasure “in winter evenings when together around the fireplace”, and the absence
of the term from the Ottoboniano and Palatino Pratiche as well as from (ps.-)Paolo (above,
note 382) would seem to support that hypothesis. However, Benedetto’s words, “these
are called apostate problems” (queste si dichono ragioni apostate ) suggest that the term
was already in use (but perhaps only in his own earlier practice?); also possible is that
Ghaligai knows the term from Benedetto (whom he has read) and not from elsewhere,
and supposes Benedetto to have introduced it.

As in the Ottoboniano Praticha, this is followed by the familiar twin-inheritance
problem (above, p. 23), and then by the two problems which in the Palatino Praticha

451 Marginal insertions of forgotten passages of 15 and c. 6 words show us that Benedetto copies –
probably all three questions.

452 Space left open.

453 Benedetto relates on fol. 431v that when Giovanni took over Antonio’s school at the age of 19
after the death of the latter, invidious older masters tried to expose his incompetence by having
their best students challenge him; instead Giovanni showed himself so much better than the
competitors that their students left them for Giovanni.

Evidently, these students “of various subjects” (di varie materie ) will not have been 11-year
old boys following the normal curriculum but probably mathematical dilettantes and abbacus masters
in spe.

454 Three men have, respectively, 14, 12 and 10 cubits of cloth and go together to a tailor to have
a robe (cioppa ) made for each. The tailor manages to make four, the last for himself, which he
buys.
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precede the twin problem and which the Ottoboniano Praticha presents in part 5 chapter
10 (above, note 383). Riddles characterized as “fables” follow: two versions of the river-
crossing riddle (in wolf-sheep-cabbage and jealous-husbands versions) and the “Joseph
game” (above, p. 263). Further come (among other things) a version of the question of
how to share the stake of a game which is interrupted before it is finished (here not a
game of chance but of cross-bow shooting, interrupted because the arc breaks[455]),
and divination problems partly drawn from the Liber abbaci, with added explanations
and exemplifications.

Book 11 (fol. 300r–310v ) starts by explaining that so far all cases could be referred
to numbers. For the six last books that will not suffice, even though Benedetto promises
to explain as much as possible by means of discrete quantities. But “because the irrational
continuous quantities are endless (innumerabili ) as appears from 10th of Euclid” that is
not always possible. Therefore Benedetto starts, with an unspecific reference to Campanus
(that is, to his version of the Elements, no doubt to book II) how the product 6×6 can
be represented by a rectangle. There is a further reference to the “last or indeed second-last
book of Leonardo Pisano’s Praticha” (the chapter on roots, with the initial explanation
of the “keys” – above, p. 115).

A first chapter of the book therefore goes through the same terrain as Fibonacci’s
“keys” (actually, the complete Elements II in Campanus’s version, whereas Fibonacci
stops at II.6), but with full geometric explanations, all obviously inspired by Campanus
but with different numerical examples.[456] The chapter closes with an added discussion
of the properties of the root of 72, and a reference to Boethius’s Gran trattato.

The second part is a translation of part 15.1 of the Liber abbaci (above, p. 129). It
is very close to the counterpart in the Ottoboniano Praticha (part 9, see above, p. 272)
though not identical word for word; but since both are also close to Fibonacci’s text
nothing excludes independent translation. Further analysis is superfluous.

455 7 rounds are to be made, and the stake of 3 fiorini is to be divided proportionally to how many
rounds each one has won. When the arc breaks, the first man has won 2 rounds, the second 1 round,
the third none. Benedetto admits that many opinions in the matter exists, and presents a solution
which he finds clearer than certain others. The solution given is that the first gets 2/7 of the stake
for his 2 victories, the second 1/7 , while the remaining 4/7 are to be divided equally (the apparent
difference in skill not being taken into account). Obviously a simpler situation than the usual question
where the winner takes all, and some kind of justice has to be achieved. See select text excerpts
in [Schneider 1989: 9–24].

456 Or self-invented examples. It is not clear whether the Campanus manuscript used by Benedetto
contained numerical illustrations. The Basel edition [Euclidis megarensis ... Elementorum libri xv,
1537] contains some, but they differ from those of Benedetto; neither the Ratdolt edition
[Preclarissimus liber elementorum Euclidis perspicacissimi, 1482], [Lefèvre d’Étaples 1516] nor
the modern critical edition [Busard 2005] contains any.
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Book 12 (fol. 310v–367v ) is dedicated to roots. Having already presented an equivalent
of Fibonacci’s “keys”, Benedetto starts chapter 1 (fol. 310v–312v ) by referring to the three
basic categories considered in la regola dell’algebra, leading to the explanation of what
a root and next a surd root are, with examples that differ from those of Fibonacci.[457]

Next he inverts Fibonacci’s order of numerical approximation and exact geometric
construction (above, p. 117), giving the geometric construction first; he changes the
diagram and the lettering, and adds the same triangle-based alternative as the Ottoboniano
and Palatino Pratiche (above, p. 267). The method of the numerical approximation is
spoken of as the prossimana, the term we encountered in the Ottoboniano Praticha (above,
note 392), which must then have been the name that was locally current; Benedetto himself
only speaks of the outcome as “rather close”; the traditional la più pressa radice, “the
closest root” he uses instead about the closest integer approximation (for 10 thus 3). As
does the Ottoboniano Praticha, he completes the second approximation (3 37/228 ), and then
continues by showing how to make a third approximation (though not going through the
calculation). After this Benedetto, like the Ottoboniano Praticha, finds the approximate
root of 2/3 , but in his own way: first making use of the procedure he has just taught, then
the same procedure as the Ottoboniano Praticha but with higher precision – thus
confirming that Benedetto knew the model of the Ottoboniano and Palatino Pratiche or
some closely related work (which could reach as far back as to Antonio’s Gran
trattato ) but deals with the inspiration independently, though forgotten long passages
inserted in the margin suggest that sometimes he copies when he comes to the extraction
of the square roots of multi-digit numbers.

Chapter 2 (fol. 312v–339v ) is presented as an explanation of the classes of irrational
magnitudes from Elements X. It is independent of Fibonacci and instead a paraphrase
of Campanus proposition by proposition, adding numerical exemplifications as done by
Fibonacci. Many diagrams also come from the Campanus Elements, but quite a few do
not. A mutilated version can be found in the Palatino Praticha, fol. 331v–350r, in the
middle of a chapter about the multiplication of roots, which shows that Benedetto follows
a pre-existing model; he may still have introduced pedagogical changes of his own but
we cannot know. After the paraphrase, in what appears to be his personal style and thus
almost certainly his own contribution, Benedetto admits that

I certainly believe that many things because of the obscurity of the speaking will be badly
understood, but if one puts himself at study he will certainly understand them with facility
[...].

This serves as a preamble to a final one-page schematic summary, which (there a bit out
of place) is also in the Palatino Praticha (fol. 350r ) and thus not original with Benedetto,

457 This introduction also differs from what is found in the Palatino and the Ottoboniano Pratiche,
cf. above, p. 265.
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in spite of the apparently personal preamble.
With chapter 3 (fol. 339v–344v ) Benedetto returns to Fibonacci’s footsteps (more

precisely, to his part 14.2b), as he declares, requesting the preceding chapter to be well
understood before the reader proceeds. In a pattern we have observed before, Benedetto
at first follows Fibonacci but soon diverges, presenting many extra problems, following
an abbacus-culture tradition which we also find reflected in the two other Pratiche but
not their precise exposition. Obviously, replacing the numerical parameters in
multiplications of monomials, binomials or trinomials is no great mathematical feat if
only the principles are well understood. Towards the end, Fibonacci’s problem about
finding two roots of roots whose product is rational (above, p. 123) is taken over together
with the letter-based proof.

Chapter 4 (fol. 344v–351v ) is announced to teach how to divide by the fourteen types
of irrational lines (pointing out that division by rationals has already been treated in book
4); actually it starts by teaching how to divide by a root – exemplified by the calculation
30÷√20 = √(900÷20) = √45; it then goes on with similar calculations involving also roots
of roots. It thus corresponds to parts 14.4a and 14.4b in the Liber abbaci. However, it is
independent of section 14.4a, while the counterpart of section 14.4b (like chapter 3) initially
follows Fibonacci but then becomes largely independent, venturing into intricacies not
dealt with in the Liber abbaci – for instance (fol. 350v ) 10÷√(1+√9); as we have seen
repeatedly since Giovanni di Davizzo and Dardi (above, p. 204 and 214), Benedetto uses
rational roots “as if they were irrational” (and uses the trick for control). It is noteworthy
that Benedetto when borrowing from Fibonacci uses the verb dividere but elsewhere the
term partire, current in the abbacus tradition.[458] He omits Fibonacci’s discussion of
the extraction of roots of binomials here, and moves it to the next chapter.

Of some interest is an observation made (fol. 346v ) at the intersection between the
two parts of the chapter, namely that

Having to divide a joined or movable quantity [quantità agunto overo mobile ] by a
diminished quantity, a diminished quantity results. As saying, you shall divide 100 in less
5, I say that 20 less results. Because to multiply 5 less by 20 less make 100, which are
movable. As you will show that multiplying diminished by movable makes diminished.

This is followed by rules for diminished divided by diminished and diminished divided
by joined. “Movable” for a positive quantity almost certainly refers to the concept of
“movable property”, which (like “joined”) seems to refer to something added (as movable
property is additional to real property, cf. the testator’s reference to la sostantia e il mobile
mio, above, note 450). What is of interest is the idea of dividing by a “diminished
quantity” – that goes beyond the notion of subtractive quantity, and thus implies that this

458 The same shift can be observed in the Ottoboniano Praticha (e.g., fol. 283r–v ) and in the Palatino
Praticha (e.g., fol. 333r–v ).
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idea was gradually giving way to a concept of negative quantity; still a concept rooted
in practice, not yet theoretically based.

Also informative about changing patterns of thought and increasing precision of the
mathematical language is the parallel between a passage from the Liber abbaci [B376;
G579] and its counterpart in Benedetto’s Pratica (fol. 349v ). Fibonacci’s text runs

if you want to divide 10 by 2 and by the root of 3 and by the root of 5 [...]

while Benedetto has

if you want to divide 10 by 2 and root of 3 and root of 5 [...].[459]

Fibonacci’s words are ambiguous, and would be the same if he had wanted to speak of
the separate determination of the three divisions 10÷2, 10÷√3 and 10÷√5. Only the context
(that division by a trinomial is taught) shows what is meant.[460] Benedetto instead,
by avoiding repetition of the preposition creates an algebraic parenthesis, showing
unambiguously (at least to the attentive reader) that a single division with divisor
(2+√3+√5) is meant.

Chapter 5 (fol. 351v–356v ) is presented as dealing with “the joining and detraction
of the said lines with certain other propositions needed in the whole book”. It corresponds
to and initially draws on part 14.3 of the Liber abbaci (above, p. 123). Once again,
however, Benedetto’s text diverges, changes the order of matters, and even when Benedetto
treats the same topic he mostly does so in other words and with other numbers.

On fol. 355v begins the section on the extraction of the root of binomials which
Fibonacci deals with at the end of part 14.4b (above, p. 126); even here, Benedetto proceeds
with proofs of his own (though based on the same principles) and different numerical
examples. While Fibonacci deals with examples of the first, second and fourth binomials
only (with a “do likewise” for the third, fifth and sixth), Benedetto deals in detail with
all six.

Chapter 6 (fol. 356v–367v ) promises to say everything Fibonacci explains in the fifth
part of his chapter 14, concerned with cube roots. It falls into three parts (not separated
explicitly by Benedetto), only the first of which has approximate counterparts in the
Ottoboniano and Palatino Pratiche. The first part (fol. 356v–361v ), on the approximate
numerical determination of cube roots of numbers and on the conditions that the addition

459 Respectively

si vis dividere 10 per 2 et per radicem de 3 et per radicem de 5

and

se vuoi dividere 10 per 2 e radice di 3 e radice di 5.

460 As we remember from note 336, lesser mathematical minds than Fibonacci might fall into a
similar trap and assume that √(a+√b ) = √a+√√b.



– 306 –

or subtraction of cube roots can be reduced to simpler form, follows Fibonacci’s text
closely, omitting nothing substantial and adding nothing though often reformulating. The
topic was obviously one where Benedetto had nothing to add and on which he can thus
be assumed not to have worked himself.

The second part (fol. 361v–362v ) can be characterized as an addendum to Fibonacci’s
work on roots from the perspective of the abbacus tradition. It leaves behind the specific
topic of cube roots and begins by pointing out that there are many kinds of roots that
“cannot be understood even though they are defined: radice relata, radice pronicha (cf.
above, p. 209), and various other roots. The definitions of the two roots identified by name
are explained and exemplified, and it is pointed out that the pronic root is not linked to
a continued proportion as are the others; in order not to produce “major confusion”
Benedetto says no more on the matter, and shifts attention to much simpler matters, namely
operations with roots and fractions: 2/3 of √20, 1/5 of √80, 3/8 of √128, 2/3 of √36, √20
expressed as part of √30, √ 5/6 expressed as part of √ 7/8 , √12÷ 1/2 , and so forth until 2/3 of
3/4 of √50. All very elementary, but called for by the absence of fractions in the chapters
related to Fibonacci’s chapter 14 and the important role of fractions in abbacus mathematics
(algebra and otherwise).

The third part (fol. 362v–367v ) is meant to clarify the connection between continued
proportions (starting with 1) and proper roots (that is, not such things as the pronic root,
already pointed out not to enter this discussion). In the sequence 1–2–4–8–16–32–64, 2
is thus the root of 4 and the cube root of 8; in general, the product of any number with
its root is a cube “as defined in the treatise of cube roots, that is, the present chapter”.

From here, in order that his treatise may have no imperfections, Benedetto moves
on (fol. 363r ) to something not treated in the Liber abbaci but instead in Fibonacci’s
Pratica geometrie [ed. Boncompagni 1862: 153–155], namely the finding of two mean
proportionals. First Fibonacci’s Latin text is quoted, afterwards (fol. 364v ) a vernacular
translation is given.

Three different constructions are described. Since the proofs are long and very
challenging, wholly outside the normal abbacus tradition (preceding as well as following
after Benedetto – as also revealed by Benedetto’s need to make the vernacular translation
himself), there is no reason to include an analysis here. So, no more shall be said about
Benedetto’s book 12.

Book 13 (fol. 368r–388r )[461] is announced as dealing with “how and in which way
cases are solved by the rule of algebra amuchabale”. As stated above (p. 273), the
introductions to algebra in the three Pratiche share so much that they must draw on the
same vernacular version. This version is not identified by the other two Pratiche, but
Benedetto says it was made by Guglielmo de Lunis:

Let us render thanks to the Almighty, thus begins the text of the Arabic Aghabar in the

461 The whole book 13 is transcribed in [Salomone 1982].
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rule of Geber which we call algebra. Which rule of algebra, according to the translator
Guglielmo de Lunis, embraces these 7 names, that is, geber [al-jabr ], elmelchel [perhaps
al-muqābalah[462] ], elchal [al-qabilah[463] ], elchelif [perhaps al-khalās, “liber-
ation”/“riddance”[464]], elfatiar [?], diffarelburam [difa al-burhān, “defense of the
demonstration”[465]], eltermen [al-tamām[466] ]. Which names according to Guglielmo
are interpreted thus: Geber is as much as to say recuperatione because, as will be
understood in the following, the case will be solved by the recuperation of two equal parts.
Elmelchel is as much as to say exenplo, or asomigliamento, because the solution of the
case is found by making similar [asomigliare ] the quantity that is posited to the given
case. Elchal is as much as to say opositione, because of two quantities that are found one
is opposed [oposta ] to the other, and when there are not two opposed quantities, then
the case is insolvable. Elchelif is as much as to say dispositione because, even though
there are two opposed quantities, if they are not disposed for the application of the rules,
the case would be outside the rules and therefore there is a need that the quantities be
ordered [disposte ].

Here, the “question Guglielmo de Lunis” needs to be considered, as being often
maltreated. We know about Guglielmo’s translation from two more sources. One is
Canacci’s Ragionamenti d’algebra [ed. Procissi 1954: 302], where we find a similar but
not identical passage:

The role of algebra, which rule Guglielmo de Lunis has translated from the Arabic into
our language. And the said Guglielmo and others say it was composed by an Arabic master
of truly great insight, even though some others say it was one whose name is Geber, to
which Leonardo Pisano says that algebra muchalbile is the interpretation of the rule in
this language. The rest of the said rules begins, Let us give thanks[467] to the Almighty,
and following the said Guglielmo the said rule in the said language contains seven names,
that is, seven parts, called like this in the said language, geber, el melchel, elchal, elchelis,
elfatiar, diffarel buran, eltiemen [...].

462 Thus Ulrich Rebstock (personal communication).

463 The disappearance of the “b” shows that an Iberian pronunciation of Arabic is rendered, as pointed
out by Ulrich Rebstock (personal communication).

464 Thus Ulrich Rebstock. Paul Kunitzsch (personal communication) proposes al-ta lı̄f (“formation”,
“composition” etc.). As we shall see in a moment, Raffaello Canacci, having elchelis. supports
Rebstock’s proposal.

465 Proposed by Ulrich Rebstock.

466 “Completeness”, “perfection”, and similarly. Proposed by Paul Kunitzsch.

467 Canacci has a meaningless “andano gratie” here, where Benedetto has the certainly correct
“rendiamo gratie”.
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In what follows, Canacci’s quotation from Guglielmo agrees with what we have seen in
Benedetto, except that Canacci (like Jacopo as well as Biagio and Antonio as rendered
by Benedetto) speaks of aghuaglamento instead of asomigliamento. By rendering al-khalās
as elchelis and al-tamām as eltiemen Canacci shows that he does not know Guglielmo’s
text from Benedetto (who writes elchelif and eltermen ), or at least not through Benedetto
alone.

In [1521: 71v], Francesco Ghaligai repeats Canacci’s introduction, but with explicit
reference to Benedetto. Like Benedetto he writes elchelif and eltermen, and he translates
elmelchel as assimigliamento. He must thus have known Benedetto’s text along with that
of Canacci, or a precursor.

Beyond that, a gloss ascribes erroneously a manuscript of the Gerard-translation to
Guglielmo [Hughes 1986: 223]). As Hughes observes, this is only evidence of awareness
that Guglielmo had made a translation.

These are all the known references to Guglielmo’s translation of al-Khwārizmı̄’s
algebra. Except for the last one, which betrays to know nothing beyond the existence of
Guglielmo’s version, all refer to the quoted list of translations of Arabic words. Whether
Canacci’s “our language” means Tuscan (or some other Italian) vernacular or Latin cannot
be decided – when contrasted to Arabic by a Tuscan writer, Latin could also be “ours”.

Now to the “question Guglielmo de Lunis”. Since Pietro Cossali [1797: I, 7], historians
of mathematics have been aware that Canacci ascribes a translation of Arabic algebra
into “our language” to Guglielmo de Lunis, whom Cossali (reading Canacci’s words as
a claim that Guglielmo was the first to import Arabic algebra) took to have worked before
Fibonacci. When it turned out that the Latin algebra (Liber restauracionis ) which
Boncompagni edited in [1851: 28–51] on the basis of the manuscript Vatican, Vat. lat.
4606,[468] was not, as he had supposed, that of Gerard of Cremona, nor that of Robert of
Chester, wielding of Occam’s razor led to the assumption that it had to be that of
Guglielmo: three names, three translations, no need to multiply entities.[469]

Unfortunately, this identification is impossible. All positive information which we
possess about Guglielmo’s translation is that it contained the above list of transcribed
Arabic terms together with explanations, and there is not the slightest trace of that in the
Liber restauracionis. The difference is also revealed in the title of the latter, which
corresponds to Gerard’s and Fibonacci’s translation of jabr as restauratio, while Guglielmo
as quoted uses recuperatio. As any razor, that of Occam has to be handled with care –

468 Since then, a better preserved manuscript has been discovered and edited by Wolfgang Kaunzner
[1986]; recently, Marc Moyon [2019] has discovered a third manuscript and produced a critical
edition based on all three manuscripts.

469 Franci [2021: 244] claims that this identification was invented by Barnaba (sic ) Hughes. If she
had read [Kaunzner 1985: 10 n. 58] (listed in her bibliography) she would have known that it goes
back at least to Moritz Steinscheider [1904: I, 80], repeated with reference to this work by George
Sarton [1931: 563] and others.
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if not, if no blood flows, at least one ends up forcing square pegs into round holes.
Guglielmo himself seems to be identical with the Guglielmo de Luna who was

connected to the Studio of Naples (instituted by Emperor Frederick II in 1224) and/or
to the courts of Frederick and his son Manfred; and who translated Ibn Rušd (Averroës)
and other philosophical writings into Latin.[470]

After the explanations quoted above, Benedetto goes on:

And Leonardo Pisano says in the third part of the 15th chapter, the rule of agebra
amuchabale means rule of opposition and restoration, that is, of restoring, as will be clearly
seen in the cases. And, so that the rule will be well understood, I shall divide the said
book in three chapters. In the first are the clear demonstrations by diagrams of the said
rule. [...].

Which model Benedetto intends to imitate in what follow is not clear from these words.
However, in the very end of the first chapter (fol. 371v ) he writes

An even though Leonardo Pisano shows this same with clear demonstrations, none the
less I have taken these as older and written in the said book of aghabar.

That is, the first chapter follows or paraphrases Guglielmo’s translation. While the above-
mentioned Liber restauracionis is an evident redaction, comparison with Gerard’s
translation shows that Guglielmo was in the beginning very close to al-Khwārizmı̄’s
original text (even in comparison with the extant Arabic manuscripts), both as concerns
the order of cases and by presenting cases in normalized form. On the basis of Benedetto’s
text alone it cannot be definitively ruled out that Guglielmo simply followed Gerard’s
Latin text, even though he must then also have known Arabic terminology. However, the
consistent use of dramme in the presentation of the cases in the Palatino Praticha (above,
p. 274) seems to exclude it; like Gerard, Guglielmo must have had an Arabic manuscript
at his disposal that was close to al-Khwārizmı̄’s original.[471] That does not exclude
that he also made use of Gerard’s translation or at least knew it. In that case, however,
it becomes somewhat implausible that he should have translated into Latin[472] – it would

470 See, lately, [Delle Donne 2007]. Roland Hissette [1997] raises tentative objections, but based
on the impossible identification of Guglielmo’s translation with the Liber restauracionis (which
he does not fully endorse).

471 Another misunderstanding should be cleared away. According to [Kaunzner 1985: 8], in the
lettering of diagrams z is replaced by ζ or ξ in one manuscript of the Liber restauracionis as well
as in Columbia University, Plimpton 189. This is taken as evidence of a connection to the Greek
scholars in Frederick II’s Sicily. Unfortunately for this conclusion, the letter in question is simply
ç (at least in the Plimpton manuscript, a copy of Benedetto’s Praticha ), just as it is in Benedetto’s
autograph. It replaces z, in diagrams taken over from Fibonacci as well as in the running text –
for example, in terço, avança and sança (terzo, avanza and senza in modern Italian).

472 It is true that from texts of the standing of Aristotle’s Metaphysics such partial retranslations
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have made much more sense to prepare a vernacular version on the basis of an Arabic
text and an existing Latin version.[473]

In any case, from chapter 2 (fol. 371v–374r ) onward Benedetto leaves Guglielmo and
Fibonacci behind. Chapter 2 replaces al-Khwārizmı̄’s discussions of sign rules and of the
arithmetic of roots and binomials, which Benedetto has already dealt with extensively
in earlier books. Here, instead, the sequence of algebraic powers is introduced, together
with their products and quotients; the latter show kinship with what we find in the
Ottoboniano Praticha (above, p. 274), for instance by explaining (372r ) that

from dividing things by censi results a fraction denominated by things, as from dividing
48 things by 8 censi results .

6

1thing

However, all formal fractions are reduced directly, as in the present instance. Also different
from the Ottoboniano Praticha, the fifth power is called cubo relato. It is clear that the
two draw on a shared tradition (an abbacus tradition, far beyond al-Khwārizmı̄ and
Fibonacci) but also obvious that they deal with it differently – not only is Benedetto more
clear-minded mathematically, he is also closer to Antonio than the Ottoboniano writer.
At the very end (fol. 374r ) comes an explanation of abbreviations;

the things are written like this, ρ, and censi like this, c, and cubes like this, , and censo
di censo like this, cc, and cubi relati like this, r, and cubi di cubo like this, .

Chapter 3 (fol. 374r–388r ) replaces al-Khwārizmı̄’s six problems illustrating the six
basic case with a series of 36 cases and appurtenant problems (two for each case);[474]

were made; but al-Khwārizmı̄’s algebra hardly had such standing.

473 In [2021: 231], published after the first version of this was written, Franci asserts that “an accurate
reading of the text” reveals it to be that of Gerard.

The “accurate reading” consists of confrontation of two short passages from Gerard’s translation
with what is found in the Palatino Praticha; they are indeed fairly similar (one being in Latin and
the other in Tuscan they are evidently not identical), perhaps somewhat more than would be expected
from two independent conscientious translations of the same text though certainly not more than
could happen if the Tuscan translator knew the Latin text. Since Franci apparently has not compared
with the Arabic text (not even modern translations of that text), she may find the similarity more
striking than it is. Moreover, she does not observe that other parallel passages are definitely not
close to each other. She notices that the Tuscan text contains some complements but overlooks
that the letterings and orientations of shared diagrams differ, and also the use of recuperare instead
of ristorare (the latter term is used by Benedetto as well as the Palatino writer, but never in passages
coming from the “book of aghabar”. Finally she admits her inability to explain where the list of
Arabic terms should come from (apparently she has not noticed their indubitable Iberian origin).
All in all, her observations only supports the hypothesis that Guglielmo may have known Gerard’s
text, yet without proving it beyond reasonable doubt.

474 As we remember (above, p. 274), the corresponding section of the Palatino Praticha instead
returns to al-Khwārizmı̄ – more precisely to Guglielmo’s version, as revealed by the copious use
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the first six cases are still in al-Khwārizmı̄’s and not in normal abbacus order (above,
p. 138), but the definitions and rules for the cases are now in abbacus style, non-normalized
and hence having a normalization as their first step; the full list of cases can be found
above (note 293). Most of the problems are of easily constructed types, not least asking
for numbers in given ratios fulfilling conditions corresponding to the equation – in “such
part” formulation, in spite of Benedetto’s familiarity with ratio and proportion language.

First (fol. 387v ) this exemplification of the case Be1, αC = βt:

Find two quantities so that the first is such part of the second as 2 of 3, and when the
first is multiplied by the second they make as much as when the total of the two is
multiplied by 9.

As higher powers get involved, matters become much more intricate – not by necessity
but evidently because Benedetto (or his source for the problems[475]) chooses to exploit
the possibility to construct something looking scary. The last question (fol. 387v ),
illustrating Be36, αKK = βR+γCC, runs like this:

Find two quantities so that the first is such part of the second as 1 of 2, and when the
first is multiplied by the second and this multiplication is multiplied by the multiplication
of the first in itself joined to the multiplication of the second in itself. And that which
they make is multiplied by the multiplication of the square of the difference that there
is from one quantity to the other multiplied in itself, makes as much as multiplying the
first in itself, and this multiplication still in itself, and this multiplication by the first
quantity, joined to it the multiplication of the second in itself, and the multiplication
multiplied by the multiplication of half the difference that there is from one quantity to
the other, and this multiplication multiplied by 6.

As a clue to the construction of complexity we may observe that with the particularly
convenient choice of a ratio 1 : 2, “the difference that there is from one quantity to the
other” is nothing but the first quantity, while “the multiplication of the first in itself joined
to the multiplication of the second in itself” is nothing but 5 times the square on the first
quantity.

In book 14 (fol. 388v–408r ) “are shown cases that exemplify the rule of algebra
according to what master Biagio writes”; it was already discussed above (see p. 204).

Book 15 (fol. 408v–474v ) “contains cases from various ancient masters”. At first,

of dramme.

475 A suggestion that Benedetto copies is found on fol. 379r, where case Be17 (αCC+βK = γC )
precedes case Be16 (αCC = N ); but that is no proof that Benedetto copies from somebody else,
here and elsewhere when copying without indicating his source he may well have used some earlier
writing from his own hand.
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however, comes a kind of brief history of the abbacus tradition.[476] In doubt whether
Paolo dell’Abbacho, Antonio or Giovanni di Bartolo had been the greatest, Benedetto
is convinced that they are far beyond others who have written since 1300, “even though
Leonardo Pisano was from around that time”. As we see, all three heroes are Florentine,
as are the many others who are mentioned – and

even though I do not deserve to be known as a teacher but still as a learner,[477] I may
be counted together with the others. And if I were to write who has said and what he has
said, the volume would certainly be fastidious; but I shall quote some problems from
Leonardo Pisano, some from master Giovanni and some from master Antonio. And because
their volumes are at hand, I believe it is permissible to write these. And I am convinced
that master Paolo composed rather copious works; but they cannot be found except in
fragments [ispeçata ].

So, at first (fol. 408v–431r ) Benedetto presents faithful extracts from part 15.3 of the Liber
abbaci, conserving also Fibonacci’s marginal diagrams, drawn within already prepared
spaces (never fenced in by curved lines as it happened earlier when Benedetto has
calculated first in the margin and written the text afterwards). As introduction he quotes
the autobiographical note from the beginning of the Liber abbaci in Latin (a marginal
note in a later hand on fol. 409r translates into Tuscan).

Next, as chapter 2 (fol. 431v–450v ), follow extracts from Giovanni di Bartolo.[478]

They were already spoken about above (p. 255). So was (much more extensively) chapter
3 (fol. 451r–474v ), Antonio’s Fioretti.

“The 16th and last book of this treatise [...] contains cases about numbers and
squares” – thus the heading of book 16 (fol. 475–504r ). The text itself begins

The treatise about square numbers is the most difficult and in need of deeper thought
[maggiore chonsideratione ] than any other. And I have found none who speaks of it in
more elevated manner than Leonardo Pisano. Therefore I intend to write that in this
volume; and I shall divide this book into two chapters: in the first giving the text of
Leonardo; in the second giving certain cases that have been written by many others. [...].

Chapter 1 (fol. 475r–501r ) begins by quoting Fibonacci’s introduction to the Liber
quadratorum, once again in Latin (and even this time translated into Tuscan in the margin,
but by another hand than the translation in the margin of fol. 409r )

The Liber quadratorum [ed. Boncompagni 1862: 253–279] begins by using the
production of square numbers as the sum of successive odd numbers starting from 1 as

476 Transcribed in [Arrighi 2004/1965: 155].

477 Probably false modesty – Benedetto was born in 1429 and thus 33–34 years of age when writing
this.

478 These extracts are transcribed in [Pancanti 1982].
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a way to find Pythagorean triples (a name Fibonacci evidently does not give them). For
example, 1+3+5+7+9 = (1+3+5+7)+9, whence 52 = 42+32. This is illustrated by a line
diagram [ed. Boncompagni 1862: 254] lettered a-b-c-d-e-f. After that, almost all diagram
letterings start a-b-g (when not using later alphabetic sequences because they continue
an earlier argument using a-b-g ); it appears that Fibonacci draws the bulk of the work
from an Arabic source – perhaps, once again, from a preceding Latin translation of an
Arabic treatise.[479] A number of theorems follow that are either related to similar sums
(including sums of squares) or to Pythagorean triples. However, the central interest
(beginning on p. 265) is the topic of congruous numbers to which these theorems lead:
integer or rational numbers which, when added to and subtracted from a specific square
integer or rational number (the congruent square ), produces other square integer or rational
numbers – such as, for instance, 24, which added to and subtracted from 52, yields 72

and 12, while 120 added to and subtracted from 132 yields 172 and 72. Since this topic,
though not quite ignored, remained a marginal concern in the abbacus environment, I shall
not go into the details but restrict myself to generalities.

As to the mathematical topic, one may consult Laurence Sigler’s mathematically
annotated translation [1987]; a translation of the results into symbols (but no further
mathematical study) can be found in [Picutti 1979: 276–281].[480]

The earliest known evidence of surviving interest in the topic after Fibonacci appears
to be a manuscript written by Gilio da Siena in 1384, which lists 35 problems with
solutions but offers no indication of how the solutions were obtained [ed. Franci 1984:

479 At the end of the treatise [ed. Boncompagni 1862: 279] comes “a question asked me by master
Theodorus, philosopher of the Imperial Lord [Frederick II]” (on whom, cf. Schramm 2001:
298f ):

I want to find three numbers which collected together with the square on the first number
make a square number. And if to this square the square of the second is added, comes
out a square number; and when to this square the square of the third is added, similarly
a square number comes from it.

Here, the letter sequence in the diagram used in the first transformation is a–b–c–d–e. In a lemma
which is then proved, however, it is a–b–g–d–e–f–i, suggesting that the lemma was borrowed but
its application to Theodorus’s question independently developed by Fibonacci – documenting, if
need should be, that Fibonacci had perfect understanding of what he borrowed and was able to
use it creatively. Further on, when a–b–g returns in diagrams it is together with the unit dragma
for numbers and ascending continued fractions – further suggestions of a direct or indirect loan
from an Arabic source.

480 Historiographically it may be added (since none of those historians or mathematicians who have
written about the topic seem to be aware of it) that congruous numbers play an important role in
Old Babylonian and even earlier Mesopotamian mathematics. They turn up because the square on
the parallel transversal bisecting a trapezium (a favourite topic) is equidistant from the squares on
the parallel sides – see [Høyrup 2002a: 237f ]; whether there is any connection to what is found
later in Diophantos and Arabic authors seems dubious.
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12–17; ed. Franci & Toti Rigatelli 1983]. Evidently Gilio must have drawn on sources
that escape us but which existed; Franci gives reasons to believe that Gilio may have been
a student of Antonio, and if not at least knew his works well. Then, with an imperfect
rule, a somewhat longer list of congruo-congruent numbers turn up in 1424 in the Alchune
ragione (see above, note 284), fol. 32v–33r.

The next witnesses I know about are Benedetto’s Praticha and the manuscript Florence,
BNC, Palatino 577 (discussed above, p. 280). They are discussed together with a
transcription of the latter version in [Picutti 1979]. This is where the erroneous claim is
made that this manuscript was due to Benedetto (see note 418) – another accident following
from clumsy handling of Occam’s razor. The two texts also differ more from each other
(and from that of Fibonacci) than Picutti acknowledges. From the way Theodorus’s
problem is presented it is obvious that Benedetto cannot have copied from Palatino
manuscript but the latter possibly from Benedetto: Benedetto (fol. 499v ) translates
Fibonacci verbatim, “This was proposed to me”, while Palat. 577 (fol. 279v ) relates, “A
case, written for L. P. by master Theodorus”).

Then, to my knowledge, the next surviving appearance is in Pacioli’s Summa [1494:
13v–14v] (the folio numbers are misprinted, “13” as “51”, “14” as “15”).

In chapter 1, Benedetto follows Fibonacci’s work to the end – sometimes paraphrasing
rather than translating; but that he intends to follow is revealed by an observation made
on fol. 501r: until this point the presentation has followed what was written to the
illustrious Emperor [Frederick II]; now it follows what was addressed to Cardinal R[aniero
Capocci ].[481]

Chapter 2 (fol. 501v–506v ) is introduced by the remark that “the cases about square
numbers are among the most difficult that we have”, and that many of them are apostate
(that is, allowing only solution by reason-guided experiment[482]), but they are very

481 The Liber quadratorum thus also existed as a master copy (perhaps an evolving master copy),
from which Fibonacci made copies dedicated to different persons; cf. above, p. 58, on the Liber
abbaci.

Ranieri is indeed the dedicatee of the prologue of the Flos, whereas the ensuing text of that
work is directed to the Emperor; even here we thus have traces of the same process.

This observation explains a curious passage in the Flos [ed. Boncompagni 1862: 234]. Here,
addressing the Emperor, Fibonacci speaks of the Liber abbaci as your book, which suggests that
a copy had been dedicated to Frederick, even though the version we know has Michael Scot as
its dedicatee (with the possible exception of manuscripts where a dedication is lacking). In this
connection we should remember that in manuscript culture a “dedication” corresponded to what
a present-day author writes on the title page of a copy of a book given to a friend rather than to
the dedication printed in the same book. There would thus be nothing automatically wrong in
dedicating the same work to several persons.

482 This remained true at least less than two decades ago: according to [Guy 2004: 306], “it is only
for the last twenty years, since the work of [Jerrold B.] Tunnell, that we have a reasonably complete
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pleasant and ask for much thought. This is followed by a list of 130 congruous-congruent
couples, followed by 4 pages of commentaries (fol. 502v–504r ), after which follow another
two pages with 215 further couples.[483] Another page (fol. 506v ) with quickly drafted
numerical observations finishes the chapter – the book – and Benedetto’s whole Praticha.
Whereas the other books close formally, often with thanks to or praise of God, there is
nothing similar here. After more than a thousand densely written pages and under pressure
to finish his marvellous gift in time Benedetto seems to be tired.

Summary observations concerning the Florentine encyclopedias

After this long and admittedly fastidiously detailed analysis of the three encyclopedias
it may be time to turn to general considerations.

Firstly, it has to be remembered that these encyclopedias, though apparently merely
the surviving representatives of a larger group of similar works, do not represent general
abbacus culture. Socially, they stand apart by being gifts to top members of the patriciate.
This, furthermore, is reflected in distinctive attitudes.

One of these reflects the ways of the Humanist movement, which was also close to
the heart of the Florentine patriciate – namely that the introduction of algebra is based
on al-Khwārizmı̄ “so that the work of the Arab Maumet, which was almost lost, may be
restored” (the Palatino Praticha, see above, note 408) or because his demonstrations are
older (Benedetto, above, p. 309). The authors are certainly not Humanists themselves –
their style cannot be compared to that of, say, their contemporary Leon Battista Alberti.

Another distinctive attitude is the aspiration to integrate the mathematics of their own
tradition with that of “magisterial” mathematics. In part this also corresponds to Humanists’
ways, namely when Boethius is used (and not merely for empty namesdropping, as in
Latin algorisms and in Jacopo’s and other early abbacus books). To draw on Fibonacci,
on the other hand, goes beyond Humanism. It also goes beyond appeals to the prestige
of Fibonacci as a culture hero (as we remember from note 321, many – obviously
wealthy – Florentine citizens possessed his books in the late 14th century) – for that
purpose, it would have sufficed to draw on the easier parts of the Liber abbaci, there would
have been no need to copy for instance the work on roots, and even less (as done by
Benedetto) to rewrite and expand his “keys” drawing directly on Elements II (above, p.
302) as introduction to the copy of Fibonacci’s part 15.1. In particular, there would be
no need to produce a complete paraphrase of Elements X, the notoriously difficult crux

understanding” of congruent numbers, yet “i[n] spite of improved computing techniques and
machines, it may still be some time before some other of the more recalcitrant examples are
discovered”. If machines are needed, the field appears to remain apostate.

483 The numbers may be approximate. I could evidently count the densely written lines a second
and a third time hoping to get the same result but prefer to use the opportunity to quote what I
learned from my high school physics teacher Kjeld Jensen 60-odd years ago: “the only measurement
with no uncertainty is a counting – and that is only in principle!”
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mathematicorum, as done by Benedetto but apparently also by the model from which the
Palatino writer miscopies it – mutilated and out of place.

As we have seen, Benedetto, though not copying the shared model of the two other
authors as directly as they do, knows either this model or its close kin. We do not know
how far back in time the distinctive characteristics of the three encyclopedias reach back,
though we may guess that the presentation of the Boethian names for ratios is relatively
new – vide the half-protest in the Palatino Praticha, “we in the schools do not use such
words” (above, note 355), whereas interest in Fibonacci’s part 15.1 may go back at least
to Antonio among “demonstrators” (dimostratori – above, note 405).[484] Exactly what
(if anything) is meant precisely by this term is not clear – that is, whether some particular
current is referred to or the term just characterizes single actors. But we may take note
that the Palatino as well as the Ottoboniano writers had been students of the Vaiaio, a
mathematical dilettante, and that much of the advanced material from the Liber abbaci
is shared by them and hence probably goes back to this teacher.

Apart from what Benedetto adds to Fibonacci’s Liber quadratorum and the addition
of the sixth perfect number by the Ottoboniano writer, however, the advanced magisterial
material in the three encyclopedias is on the whole rendered as received – there are few
traces of active creative use. Creative development is found instead within traditional
abbacus-mathematics domains.

Most striking in the perspective of later mathematics – though apparently not
understood by contemporaries and therefore without consequences – is Benedetto’s
transformation of Fibonacci’s probably line-based rhetorical quasi-algebra into a genuine
symbolic linear algebra with four to five unknowns. Admittedly, most of the problems
which serve Benedetto for the purpose are borrowed from Fibonacci, but the problems
are of widespread recreational types, traditionally used for challenges in their most intricate
variants.

More consequential, or at least part of an ongoing trend, is the expression of regula-
recta solutions (thus still first-degree algebra) with two unknowns in symbolic marginal
calculations. Abbreviations for algebraic powers and arithmetical operations (plus, less,
root, universal root, fraction line) had been in use since Antonio (if we trust Benedetto’s
rendering on fol. 464r ) and the Florentine Tratato sopra l’arte della arismetricha (above,
p. 239), in the text column as well as in marginal calculations.

Also representative of a general tendency and of active work within the broader

484 The claim of the Palatino writer that Paolo dell’Abbacho wrote a treatise about “continued
quantities” referring to Liber abbaci chapter 15 (above, note 405) could suggest that already Paolo
had started looking into the advanced chapters of the Liber abbaci, not just copying with little
understanding like the Livero. However, the lack of precise information concerning Paolo’s
mathematics beyond his elementary Regoluzze [ed. Arrighi 1966b] might call for scepticism – these
“small rules” are prescriptions absolutely devoid not only of demonstration but of the slightest hint
of an explanation.
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abbacus environment is the interest in names for higher powers and for their products
and quotients. The Ottoboniano division of “48 things by 6 cubi” (above, p. 274) and
Benedetto’s of “48 things by 8 censi” (above, p. 310) point to a shared background, while
the different ways the outcomes are stated as well as the different namings of higher
powers reflect a situation in flux and thus ongoing exploration.

All in all we may conclude that this early attempt to merge the abbacus tradition with
Humanist culture and with magisterial mathematics led to juxtaposition but not to a fruitful
synthesis transforming either of the three. Apart from the inclusion of al-Khwārizmı̄’s
algebra among the classics, all noteworthy innovations took place within the first
component. In consequence the encyclopedias – even the most innovative of the three,
that of Benedetto – seem to have remained uninfluential.

Eventually, as we shall see, synthesis did take place; but that was under very different
circumstances.



V. Abbacus goes into print and abroad

We shall now turn our attention to the afterlife of abbacus culture: on one hand, to
what happened as abbacus books went into print; on the other, to the emergence and
unfolding of Rechenmeister mathematics in German lands after the mid-15th century –
an obvious descendant, but none the less a new and different mathematical culture.



Early prints in Italy

All levels of abbacus- and abbacus-related books were printed in Italy before 1530 –
most of them close to the abbacus school curriculum, one at the level where also the
algebraic prestige topic was well presented, and – in a class of its own – Pacioli’s
Summa.[485]

The basic to intermediate levels

The first abbacus book to be printed was [Larte de labbacho ] – namely in 1478 in
Treviso, close to Venice, and therefore known also as the “Treviso arithmetic”.[486]

Its first lines state that

A Practica begins, very good and useful for anybody who wants to exercise the art of
merchantry, in vernacular called art of the abbacus.

The anonymous author goes on that he responds to a request made by some much
cherished youngsters who want to dedicate themselves to merchantry.

At first comes an algorism, presenting the writing of Hindu-Arabic numerals, and
afterwards algorithms for addition and subtraction (also of monetary amounts consisting
of lire, soldi and piccioli ), which classical abbacus books often had taken for granted,
followed by multiplications (according to different methods, and including control by
casting out nines) and by division. This takes up 29 of 62 sheets. Fractions are not treated –
they only turn up in the following pages, where the rule of three is dealt with. This rule
is explained at first in almost the usual Italian way,

The rule of three is this, that you should multiply the thing you want to know by that
which has no similarity [che non ha somiglia ] and divide by the other. And that which
is engendered will be of the nature that has no similarity.

This is followed by a supposed clarification that states the same thing, just in “mentioned”
terminology (above, p. 168), and next by an example confronting merchandise (saffron)
and price. Then, as further explanation, counterfactual examples (here identified as

485 Occasionally this class is denied to Pacioli, and his Summa is claimed – by scholars who have
evidently read neither text – to plagiarize Piero della Francesca’s abbacus treatise. That this is an
impossible idea should be clear already from Giusti’s summary [1991: 64] of his analysis of the
latter work. Its author (supposedly Piero) turns out to be

at least confused, and a copyist who does not even [...] discover that what he is writing
has already been copied one or two pages earlier,

also repeating uncritically the false algebraic solutions that had circulated since Gherardi’s time.
A large number of sources for Piero are traced in [Giusti 1993]. There is no reason to add

to Giusti’s exhaustive analysis, but all the more to give space to Pacioli.

486 David Eugene Smith’s English translation has been published in [Swetz 1987].
As we shall see below (p. 362), it may be the first abbacus book to go into print, by a much

more modest introduction to commercial arithmetic in German had been printed in 1475 in Trento.
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“calculations by nameless numbers”, raxone de numeri senza nome ), and further a large
number of mercantile examples often involving for example lire and soldi and deduction
for tare weight (tara ) – mathematically analogous to the problems about the loss of weight
entailed by the washing of wool (above, p. 31). This takes up some 17 sheets, being
followed by partnership. More or less an innovation is the introduction of names for the
partners – in the first examples Piero, Polo (~Paolo) and Çuanna (~Giovanni). Tuscan-
Umbrian abbacus books only speak of “the first”, “the second” and “the third”, but there
is one Italian parallel, incidentally from the same year: Muscharello’s Algorismus, written
in Campania, which [ed. Chiarini et al 1972: II, 154–158, 193] in three problems dealing
with the settling of accounts identifies the creditor and debtor, respectively, as Piero+Mar-
tino, Rinaldi+Simoni and Roberto+Martino, and in one about four gamblers, as Piero,
Martino, Antonio and Francischo.[487] As said in note 240, Muscharello also knows
the “mentioned” formulation of the rule of three.

Partnership takes up seven sheets, and is followed by a single page dealing with barter
(not taking into account the different value of merchandise in cash and in barter), after
which alloying takes up 2½ sheets. Three sheets contain very simple recreational problems,
about couriers meeting, about pursuit, about master masons building a house together,
and a problem of Fibonacci’s “tree” type dressed as a finding of a purse. Two sheets deal
with (lunar) calendar reckoning and two present metrological conversions.

Interest and loans are thus absent, as are the single and double false position as well
as regula recta and algebra. The book is definitely meant for beginners, and perhaps for
self-study; whether the author is an experienced abbacus master can perhaps be doubted.
Measured by the number of further editions (pirated or regular) it did not command great
respect in its time: none are known.

Measured by the same criterion, Piero Borgi’s[488] Opera de arithmetica, printed
in Venice in [1484], was a success; according to [Smith 1908], it was reprinted in 1488,
1491, 1501, 1505, 1509, 1517, 1528, 1534, 1540, 1550, 1551, 1560, 1561, 1567, and finally
in 1572[489] – from [1540] onward under the title Libro de abacho. The printer was
Erhard Ratdolt, who had brought out the first printed edition of Euclid’s Elements (the
Campanus version) in 1482. Counting pages, it is twice as long as Larte de labbacho –
but each page contains ca 30%–40% more typographical units. Grossly speaking it covers
the same matters as Larte (calendar matters being left out), but evidently in greater depth;

487 As we shall see, the first attested use of letters designating persons is slightly earlier in German
area – see below, p. 350.

488 In the 1540 and 1550 editions, “Piero Borghi”, in the 1561 edition “Pietro Borgo”. The 1488
and 1491 editions still have “Piero Borgi”. The others I have not seen.

Library catalogues list the work randomly under all three names, irrespective of how the author
is identified in the edition they list.

489 [Van Egmond 1980: 293–297] gives description of all editions but the last.
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fractions, in particular, are explained in all details.[490] Piero also teaches some extra
topics – thus the proof by casting out sevens and the single and double false positions.
Addition and subtraction are taught after multiplication and division (multiplication and
division of multi-level amounts of money after addition and subtraction, however, but
even for monetary operations multiplication and division come before addition and
subtraction). This may not seem very pedagogical but probably reflects the habits of earlier
abbacus books that did not explain addition and subtraction at all. Fractions and their
arithmetic follow.

The rule of three is introduced (fol. 41v ) as the way to “deal with all merchantry
calculations”, and at first explains that the three things involved “contain two natures”,
two of them “being of the same nature” and the third of the other; that is, it does not use
any of the formulations with which we are familiar, neither “similar–dissimilar” nor “names
mentioned”. It also reinvents the “secondary Toledo reference” to first-second-third (above,
p. 176) – “reinvents”, since the explanation is after all close at hand, and nothing suggests
a link. After that, the explanation is made in terms of the quasi-counterfactual structure,
“if 2 are worth 3, what should 4 be worth?”

Partnerships go well beyond the simple situations dealt with by Larte, presenting
reversed cases (fol. 73v, the contribution of one partner is unknown) as well as cases where
the durations of investments differ (e.g., fol. 74v ); in the last partnership problem (fol.
81r ) the interest rates asked by the three partners differ.

The barter problems, starting on fol. 81v, are also more complex, distinguishing
between cash and barter value of merchandise.

Interest (obviously simple interest) is dealt with a single time (fol. 107v ) in the section
presenting mixed problems (fol. 101v–116v ). That section, among other things, also contains
a number of problems built on the principle of “combined works”, explained in the way
that appears to be behind Jacopo’s calculation (above, p. 24). One of them is a two-
participant variant of the “lion in the pit” (fol. 110r ), which neglects that once the dove
coming from the top of the tower encounters the sparrow hawk coming from the ground,
none of them retreat.

At the end of this section (fol. 112r ) come three problems introducing the false
position, which turns out to be the double false; the first two are of the traditional type,
and easy. The third, a give and take problem involving three men (fol. 113v ), is nested
with three levels of double false positions, and runs over six pages. After this Piero wisely
stops, observing that

Many other almost infinite problems could be brought together with the preceding ones,
which it would be too prolix to couple to these and for the learned superfluous, since all
ways in all problems belonging to merchantry have already been demonstrated.[...] Laus
Deo.

490 [Smith 1926] describes the way basic arithmetic is treated in greater detail than done here.
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The 1540, 1550 and 1561 editions do not agree that no more needs to be said, and add
10 problems after the give-and-take problem before declaring (in the same words) that
enough is enough.

Another great publishing success was Girolamo Tagliente’s Libro dabaco che insegnia
a fare ogni raxone marcadantile, et a pertegare le terre con larte della Geometria,
“Abbacus Book That Teaches to Make All kinds of Merchantry Calculations and to
Measure Terrains by the Art of Geometry”. Van Egmond [1980: 334–344] lists no less
that 31 editions, the first from 1515, the last from 1586.[491]

Tagliente’s volume is less than half as long as that of Borgi, and slightly longer than
Larte de labbacho.[492] It confirms the impression given by these two predecessors that
the genre growing out of the basic abbacus books was in certain respects – first of all
intended audience – moving away from what we find before printing; with the proviso,
however, that all three are from Venice (the cradle of Italian high-quality printing), while
most abbacus manuscripts – in particular those we have looked at – are Tuscan or in
Tuscan tradition.

Manuscripts, unless disseminated through something like the bookseller system of
late medieval universities, were not addressed to and did not reach a wide audience; we
have seen that the Florentine encyclopedias were addressed to single “patron-friends”.
Tagliente, instead, in his preface (fol. 2r ),[493] addresses “magnificent noblemen, noble
citizens, enlightened artisans”, and later speaks about the utility of the book to “friars,
priests, students, doctors, gentlemen, artisans”.

On the whole, the contents of Tagliente’s book is similar to that of Borgi. At first
it explains the place-value system, and then the proof by casting out sevens before teaching
the various multiplication algorithms. Even here, multiplication is followed by division;
the arithmetic of pluri-level amounts of money, however, is dealt with very briefly, and

491 Nine of these are undated but claim to have been produced by the same printer as the first three
(Luca Antonio de Uberti); they may in reality be pirate editions, since a 10-year privilege was given
in 1515 and renewed in 1520. The edition I mainly use (controlling with the [1530] and [1532]
editions) is supposed by the Linda Hall library to be from 1520, though with a doubt (I shall refer
to it as [1520x]); it appears to be the undated edition listed by Van Egmond [1980: 335] as
number 4.

Van Egmond [1980: 344f ] further lists four editions of a rather similar book, at first printed
in 1524 under the title Componimenti di arithmetica, from 1525 until 1527 onward as Opera che
insegna a fare ogni ragione di mercantia or Opera nova che .... However, the [1527] edition claims
to be written by Giovanni Antonio Tagliente, Girolamo’s brother, who had also assisted with the
latter’s Libro dabaco.

492 For this comparison, counting typographical units on select pages used for text only, I have not
taken into account the many woodcuts in Tagliente’s book. If I had done so Tagliente’s book would
probably go below 40% of that of Borgi, and somewhat below Larte.

493 The volume is not foliated; my counting begins with the title page.
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fractions are left out – later it is stated (fol. 26v ), when a rule-of-three calculation leads
to a fraction, that “this could be reduced. But in order not to occupy your mind I shall
not explain such subtleties to you”.

The rule of three is explained (fol. 22r ) in terms of the similar and the not similar;
as Borgi, Tagliente takes into account the complications arising from tare weight. After
that (fol. 39v ), alligation (not only alloying) is dealt with, and then (fol. 47v ) partnership,
which also encompasses a reverse case and different durations of the investments. One
case (fol. 50v ) runs like this:

Two men want to share 120 ducats. The first wants twice as many as the second, I ask
what is due to each. Do thus, posit that to the second was due one. Then to the first is
due two, join together, they make 3. Then multiply 2 times 120, it makes 240, divide by
3, from which results 80 ducats, and as much is due to the first. And rob [bari, properly
“cheat”] these 80 ducats from the 120 ducats, remains 40 ducats, and as much is due to
the second, and it will be made.

We notice, firstly, that an unexplained single false position is made use of as a way to
transform the problem into one for which partnership may serve as a model; second, that
the partnership rule is not followed to the end, as one would expect if the purpose had
been to train that rule systematically.

The single false position is used tacitly once more in a similar problem on fol. 50v,
and on fol. 55r in a “tree problem” – and nowhere else, if I am not mistaken.

After partnerships and analogous problems follows barter on fol. 51r, taking into
account the difference between cash and barter value, and then from fol. 56v until fol.
63v a collection of mixed problems, mostly traditional and including also divinations.

The last two sections have no counterpart in Borgi’s book. First, on fol. 54r–68v, comes
a simple geometry; it goes beyond that of Jacopo (above, p. 34) in only one problem,
which asks for the circumference of a wax sphere made from “small spheres” (ballote)
with implausible circumferences 2, 3 and 6 cubits – supposed to be √(22+32+62 );
Tagliente’s stereometric intuition is no better than that of Jacopo. In spite of the promise
of the title to teach how to measure terrains (pertegare, literally to measure with the pertica
rod), all that is taught is how to calculate areas (etc.) once the measurements have been
made; even in this, the chapter does not go beyond traditional abbacus geometry.

Last comes (fol. 68v–78v ) a tariffa similar to the one that was included by Gherardi
in his Libro di ragioni, but ending with a description of how various kinds of merchandise
should be if of good quality (ginger and other spices, wax, sugar, rice – and many more);
whether this is counted as part of the tariffa is not clear, since the tariffa proper is
separated from this list by a description of the volume (fol. 76v–77r ).

This description ends by claiming that with these characterizations of good quality
merchandise the reader will be ready to “stay in and go to all parts of the world”. One
may entertain some doubts, just as one may doubt a teaching of commercial arithmetic
without fractions (from p. 15 we remember Jacopo’s assertion that “without [fractions]
this art cannot be subtly exercised nor learnt”). All in all, the final overselling of the
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product, the avoidance of subtleties that

Tagliente,
tvillingsarv

might overburden the mind, and the
copious woodcuts might suggest that we
classify Tagliente’s bestseller as a multi-
media coffee table book – “abbacus
mathematics made easy, beautiful and
entertaining”.[494]

Not all descendants of the abbacus
tradition obviously went the coffee-table-
book way. Over the following centuries many texts were produced at the modest level
which really served basic commercial teaching, similar to that of Borgi or simpler.[495]

An early example of this simple category is Filippo Calandri’s De arithmetricha
opuscula from [1491].[496] Calandri belonged to a renowned Florentine family of abbacus
teachers; so, even though his book aims at being simple, he covers not only simple and
compound interest but also discounting (simple and compound) and other more complex
questions related to loans; barter is also dealt with more broadly than by the preceding
books. A fair number of recreational problems are included, but none of them are so
intricate that they call for a single or double false position (not to speak of regula recta
or algebra). The geometry section does not go much beyond what we know from Jacopo
(above, p. 34) – in style not at all.

The higher level

The outstanding higher-level text is Francesco Ghaligai’s Summa de arithmetica,
printed in Florence in [1521][497] and dedicated to Cardinal Giulio de’ Medici by his
“humble servant”. Already the title shows the higher ambitions, which are confirmed by

494 At least Girolamo’s assisting author Giovanni Antonio Tagliente was indeed the author of such
books [Rivali 2019]: he published on calligraphy – [Tagliente, G. A. 1524] ran through 35 editions;
on letter writing with models to be copied – love letters as well as official correspondence; on
embroidery; on book-keeping; finally, a book offering to teach to read within a couple of months.

495 Giovanni Sfortunati’s Nuovo lume from [1534] might look somewhat more ambitious; according
to the title page it carries the name “new light” “because many propositions which other authorities
have concluded falsely, and here they are repaired ...”; Sfortunati presents himself as from Siena
and as a “most perspicacious scrutinizer of the Archimedean and Euclidean doctrines”, as behoves
an author who dedicates his work to the Duke of Ferrara. However, the major influence from these
is that the problems are not spoken of as ragioni but as propositions.

496 Apparently a printed version of what had once been the school-book of Giuliano de’ Medici
(1453–1478), characterized on the title page as nobilis et studiosus. The original date may thus
be around 1465. It was reprinted in [1518].

497 Reprinted in 1548 and 1552 as Pratica d’arithmetica.
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the contents. Ghaligai had been a student in a school held by the distinguished abbacus
master Giovanni del Sodo, probably in the late 1490s, who on his part is likely also to
have been connected to the Vaiaio [Ulivi 2017: 16, 22].

I shall not make a detailed description but concentrate on the last four (of 13) books,
which take up algebra. A few observations of what precedes are in order, however, since
they make the same point. Book 1, about “what number is”, starts by giving the Euclidean
definition as “multitude composed of units”, and also presents other matters from basic
number theory: even/odd, composite/prime, perfect/abundant/deficient, and a few more.
It is thus similar to part 3 chapter 3 of the Ottoboniano Praticha (above, p. 249) and to
book 2 of Benedetto’s Praticha (both about the “nature and properties of numbers”) though
much shorter than either. It also contains the same scheme for finding perfect numbers
as Benedetto, though restricted to the first four perfect numbers (perhaps because the
typesetting allowed no more).

After the arithmetic of fractions, book III takes up square roots (fol. 21r–v ) and
proportions (fol. 22r–27v ). Certain aspects are similar to the three Florentine encyclo-
pedias – for instance, the ascription of the definition of a square root to Fibonacci, and
the determination of the square root of 2/3 by the method used in the Ottoboniano Praticha
(and secondarily by Benedetto) (above, p. 266). All in all, however, it is clear that Ghaligai
did not draw directly on these works nor on the shared model of the Ottoboniano and
the Palatino Pratiche. Instead, the similarities inform us about more widespread Florentine
15th-century habits – seemingly also that material from the Liber abbaci was adopted
more broadly than earlier and elsewhere in the abbacus tradition.

Book VIII (fol. 57v–61r ) contains pure-number problems, beginning with the relatively
simple – for example

make of 6 two parts so that one multiplied by the other make 8, and their squares joined
together make 20. Divide the said 20 in half, 10 results from it, multiply in itself, it makes
100, and from this detract the square of 8, that is 64, 36 remains, whose root is 6; put
above the half of the squares, that is 10, it makes 16, and its root will be the major part;
and the minor the rest until 6, that is, 2.

This could of course be argued for instance from Fibonacci’s “keys”, as presented by
the three encyclopedias (above, pp. 265 and 302); here, however, no arguments are given.
As we shall see when discussing Pacioli’s Summa (below, p. 334 and onward), however,
a large number of similar rules were in circulation. Afterwards come (fol. 59v–61r ) extracts
from Fibonacci’s Liber quadratorum.

Book IX, about the double false position and “many rambling problems”, is the one
where Ghaligai refers to Benedetto as the originator of the notion of “apostate” problems
(above, p. 301), showing that he knows Benedetto’s work; all the more noteworthy is
that his own text avoids the problems where Benedetto (or the Ottoboniano writer) make
use of two or more algebraic unknowns.

Books X–XIV deal with algebra. Book X (fol. 71r–89v ) is told in the table of contents
“to be the first of our algebra, drawn from the tenth of Euclid and Leonardo Pisano and
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Giovanni del Sodo”. It begins by quoting Guglielmo de

delSodo

Lunis (cf. above, p. 308), but only the passage
explaining Arabic terms. On fol. 71r–v Ghaligai then
presents and explains a set of abbreviations for the
algebraic powers – with idiosyncratic geometric symbols
and with particular names for the prime powers beyond
the relato, the seventh power being pronicho, the 11th
tromico, the 13th dromico. Other powers are produced
by multiplication, and the whole system illustrated by
the corresponding powers of 2. The whole system is
taken over from Ghaligai’s one-time master del Sodo,
and is also used in the following to express powers of
numbers – for example (fol. 73r ),

When a line is divided into 2 parts, then the of each part with 3 times the multiplication
of the square of each part in the other equals the of the whole line.

These signs (functioning only as abbreviations, never as symbols on which can be operated)
are also used to express roots, and when the rules for multiplying powers and roots are
set out on the following pages.[498] Then (fol. 76r–88r ) “because Benedetto has spoken
broadly about it”, the classes of Euclidean binomials and their relations are presented
“following his style and way”.

Last in the book (fol. 88r–89v ) come rules for algebraic cases with examples, and
a half-page returns to matters connected to Elements X.

The short book XI (fol. 90r–92r ) is identified in the table of contents as “the second
of algebra and drawn from the second of Euclid”. Its actual contents is a sequence of
problems implicitly referring to propositions from Elements II, and solved by means of
algebra.

Book XII (fol. 92v–97v ) contains select problems taken from part 15.3 of the Liber
abbaci. Book XIII (fol. 98r–109v ) is a collection of problems taken over from Giovanni
del Sodo, beginning with linear give-and-take problems solved algebraically.[499] Gra-
dually matters become more complex, with give-and-take and purse-problems involving
roots and products, which leads to second- and third-degree equations. Even higher degrees
(until the dromico, the 13th) are called for in the solution of pure-number problems (none
of the cheap type asking for numbers in given ratio, but many dealing with numbers in
continued proportion).

498 The same system was reported by Raffaello Canacci, another former student of del Sodo, in
his Ragionamento d’algebra from ca 1495 – but with misunderstandings and almost never used
elsewhere in the manuscript, see [Høyrup 2019a: 861, 895].

499 The regula recta is no longer spoken about; as we have already seen in the Ottoboniano Praticha
(above, p. 250), others had long since given up the distinction between this technique and algebra.
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Luca Pacioli

Pacioli was an abbacus teacher – more precisely, a teacher of abbacus mathematics,
but at universities – but not only.[500] Born in humble circumstances between 1446
and 1448 in Borgo Sansepolcro close to Arezzo (thus Tuscany), he appears to have been
taught by or at least to have become familiar with Piero della Francesca while a boy.
Around 1465 he went to Venice, becoming a private tutor in the Rompiasi merchant family
while also serving in its commercial enterprises. During this stay in Venice he followed
the teaching of Domenico Bragadin at the Scuola di Rialto – a municipal school at the
level of a university arts faculty, concentrated on Aristotelian philosophy but under
Bragadin also teaching algebra and geometry [Stabile 1971]. In 1470 he entered the
Franciscan order, wrote a first treatise on arithmetic and algebra (now lost), and shortly
afterwards visited Rome, being for several months the guest of Leon Battista Alberti. That
is, already before being called to the Perugia municipal university in 1477–1480 to teach
there (thus not in an abbacus school), he had familiarity with philosophy as well as
theoretical geometry and Humanism. From this period exists a huge manuscript known
from the dedication as Suis carissimis discipulis, “To his very dear students”.[501] He
was invited again for the year 1487–88, at which occasion he started to work at his Summa
de Arithmetica Geometria Proportioni et Proportionalita, which was printed in Venice
in [1494]; leaving aside his other publications and unpublished work[502] as not belonging
to the afterlife of the abbacus school we shall now turn to this book, of which according
to Alan Sangster’s weighing of available evidence [2007] close to 2000 copies may have
been printed.[503]

Ghaligai’s Summa may be said to have justly changed its name into the more modest
Pratica d’arithmetica in the second and third edition. In contrast, Pacioli’s “Total of
arithmetic, geometry, ratios and proportions” carries its name with honour.

Like the other grand treatises we have looked at it is dedicated to a representative
of political power – namely to the Duke of Urbino. The florid dedicatory letter (first in

500 Biographical details as given here can be found in [Di Teodoro 2014] and [Ulivi 1994].

501 Vatican, Vat. lat. 3129, edited in [Calzoni & Cavazzoni 1996].

502 In particular the Divina proportione about regular polyhedra, printed in [1509a] but written almost
a decade earlier; a vernacular translation of the Elements that has been lost (but see [Folkerts 2006:
article XI, 222f ]; an edition of Campanus’s Latin version of the Elements [Pacioli 1509b]; and
a manuscript De viribus quantitatis (“About the Powers of Quantities”), see

http://www.uriland.it/matematica/DeViribus/Pagine/index.html
(last accessed 10 May 2023).

503 This concerns the first edition from 1494. Since the printer undertook to produce a new edition
in 1523 on his own costs (Pacioli had died in 1517) we may be confident that these copies were
sold, if not immediately then over time.
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the vernacular, then in Latin) is stuffed with references to classical Antiquity, without
forgetting famous contemporary painters – Humanism and courtly culture are much closer
than in the Florentine encyclopedias written three decades earlier.

After the dedication follows a summary of the single parts.[504] That of the first
part offers a list of alleged sources: most of the volume is asserted to have been taken
from Euclid, Boethius, Fibonacci, Jordanus, Blasius of Parma, Sacrobosco and Prosdocimo
de’ Beldomandi. We should be aware that these acknowledgments are strategic; much
in the book comes from the abbacus tradition, including its higher levels represented by
Antonio and others, and not from these Latin writers. Historians would be happy to be
better informed, but we must accept that Pacioli follows his own agenda, not ours – and
still be grateful that he gives much information about the earlier abbacus tradition for
which other sources have been lost.

Also strategic is the claim that Pacioli chooses to express himself in the vernacular
in order to be more useful for the subjects of the dedicatee, the technical terminology
of mathematics being no longer well understood because of the lack of good teachers.
After all, most of the material that is used in the Summa comes from a vernacular tradition
and vernacular sources, and Pacioli evidently repeats their terminology. Even when using
an identifiable Latin source extensively, namely Fibonacci’s Pratica geometrie, Pacioli
prefers to take over as much as he can from an already existing vernacular version. Of
the two parts of the Summa, the second, on geometry, is indeed largely a copy of an earlier
vernacular translation of Fibonacci’s Pratica geometrie, though not copied from the
Palatino geometry (as oft repeated by those who repeated Ettore Picutti blindly, cf. above,
note 418[505]). We shall leave it aside, as we have left Fibonacci’s Pratica and the other
vernacular translations untouched.

The first part deals with “arithmetic, ratios and proportions”; it does so in nine
“distinctions” divided into “parts”.[506]

The first distinction (fol. 1r–18v ) deals with quantity, starting with the philosophical
division into discrete and continuous. It further presents the gamut of concepts belonging
to theoretical arithmetic, including perfect and congruous numbers; but Pacioli cannot
abstain from speaking also about Platonic bodies, which occupy him in many other works,
and at which he arrives via the consideration of how many equal components can make
up a solid angle. He also delves at length in sacred and not so sacred numerology; for
instance (fol. 5r ), the number 3 is found in:

504 All these introductory matters are unpaginated.

505 Even the reproach that Pacioli plagiarized, oft repeated in Italy, is glaringly strategic – namely
anti-clerical strategy (Pacioli being a friar) – nobody scolds Fibonacci for “plagiarizing” just as
much (rather, care has been taken not to discover). Every age and situation has its own strategies
and underlying aims.

506 A detailed description will be found in [Rankin 1992: 367–370].
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– matter, form and privation (Aristotelian metaphysics);
– vegetative, sensitive and intellective soul (Aristotelian psychology);
– Asia, Africa and Europe;
– gold, silver and copper (coin metals);
– intellect, memory and will (the powers of our soul);
– [Aaron’s] rod, manna and the Law of Moses (contents of the Ark of the Covenant,

representing Christ’s humanity, soul and divinity);
– Hell, Purgatory and Paradise;
– lasciviousness, pride and avarice (the three principal sins);
– the leopard, the lion and the wolf (the three animals encountered by Dante in the

opening of the Divine Comedy );
– fast, alms, and prayer (three roads to Salvation);
– God, oneself, the neighbour (those offended by sin);
– the Father, the Word and the Holy Spirit;
and still more of the same kind. As we see, Pacioli is loquacious, entertaining – and a
loyal member of his flock, probably a sincere believer.[507]

In the very end (fol. 18v ) Pacioli says not to go on with cube, pentagonal, hexagonal
and octagonal numbers, and so on “because of these one may rather speak to show off
(a ostentazione ) than for operating”;[508] those who are interested, he adds, may find
them fully explained in the second book of Boethius’s Arithmetic – and then, true to
himself, he does not stop but gives some hints.

The second distinction (fol. 19r–47v ) is an algorism, presenting the place-value system
and the various algorithms for addition, subtraction, multiplication and division, including
casting out sevens and nines. It includes progressions and the extraction of square and
cube roots,[509] and even how to find congruo-congruent numbers.

The third distinction (fol. 47v–53r ) deals with fractions, linking them initially to

507 Hardly a profound theologian – but the theologians of his time were generally well below the
intellectual level of their 13th- and early 14th-century predecessors.

508 Similarly, a longwinded explanation of the Boethian names for ratios is closed on fol. 72v by
the observation that “this has no other importance (for you, practitioner) than to assert solemnly
the results you have found”.

509 Latin algorisms do as much, and their inclusion thus justifies the reference to Sacrobosco as
a source; however, the various algorisms that are shown are those of the abbacus masters.

The geometric way to find the square root of 10 is close to that of the Ottoboniano Praticha
(above, p. 267; and also to Benedetto, fol. 311r ), but sufficiently different to exclude copying from
the shared model of the Ottoboniano and the Palatino Pratiche: instead of a right triangle, Pacioli
uses a rectangle. The method going back to Fibonacci is shown on a diagram closer to Benedetto
than to Fibonacci or to the Ottoboniano Praticha, but again sufficiently different to exclude copying;
it may have been influence by the diagram of the Campanus Elements II.14. The former must go
back to the broader abbacus tradition.
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Elements VII (“basing them” on Euclidean theory would be an exaggeration), while the
fourth (fol. 53r–56v ) goes on with the arithmetic of mixed numbers.

The fifth distinction (fol. 57r– 67v ) is dedicated to the rule of three, and various
applications. As in the Perugia manuscript it is introduced in two ways (cf. above, notes
20 and 240), first with the standard reference to the similar and the not-similar, and
alternatively in “mentioned”-formulation. After some illustrative examples a foundation
in proportion theory is provided on fol. 57v. This gives occasion to a digression on
continued and discontinuous proportions, which includes the observation that ratios have
to be taken between magnitudes of the same kind. There is also space for warnings about
the variations of metrology and monetary values, for sequential use of the rule,[510]

and for an autobiographic note (fol. 67v )[511] inserted within a listing of abbreviations
for algebraic powers (until the 29th power of the cosa ) and for roots.

This list combines a variant of the “root names” for powers which we encountered
in the Tratato sopra l’arte della arismetricha (above, p. 237) with the more habitual names
and their abbreviations, observing that tante terre, tante usanze “as many regions, so many
usages”, and tot capita: tot sensus, “as many heads, so many opinions”:

1a

2a

3a

4a

5a

6a

7a

8a

9a

[...]
29a

30a

no

co
ce
cu
ce.ce
po ro

ce.cu
2oro

ce.ce.ce.
[...]
ce.ce.2oro

[9o] ro

numero

cosa

censo

cubo

censo de censo

primo relato

censo de cubo e anche cubo de censo

secundo relato

censo de censo de censo

[...]

censo de censo de secundo relato

nono relato

We observe that powers have now systematically become functions, not entities (cf. above,
p. 237). For instance, the sixth power, censo of cubo, corresponds to our x6 = (x3 )2.
Unfortunately for practical use, the numbering does not correspond to exponents.

The root names are claimed by Pacioli to be “according to the Arabs, first inventors
of these operative practices” – perhaps an extrapolation from the identification of the cosa,
“thing”, with the root of the censo (above, p. 140) (but as we see, Pacioli identifies the

510 The rule of five (not identified by name) only comes on fol. 194v, in connection with a problem
about grain-eating horses, similar to the one which gives Fibonacci the occasion to discuss the theory
of composition of ratios (above, p. 73) but with different parameters.

511 This note shows that the fifth distinction was written in 1487.
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cosa with the second root).

The sixth distinction (fol. 67v–98v ) deals with “proportions” (even though Pacioli
sometimes uses proportionalità when speaking about a proportion, he mostly uses proportio
about ratios as well as proportions); in several ways it goes beyond what we know from
other writers – which probably does not mean that Pacioli innovates but rather that
surviving sources give a very incomplete picture.

As the other distinctions, this one is divided into a number of “treatises” – here six.
The first of them lists the authorities for the topic, from Plato, Aristotle, Euclid and
Boethius to Jordanus of Nemore, Albert of Saxomy and Blasius of Parma, and explains
the necessity to know about proportions in the fields of law; in medicine; when it comes
to knowledge about nature and mechanical devices; painters’ perspective; etc.

Ratios are, quite traditionally but in an abstruse formulation,[512] said to be the
similarity of the mutual relation between two things (fol.69v ). This opens the way to the
“arithmetical proportion” (a–b = c–d ) along with the normal “geometric proportion”;
inspired by the three “means” (arithmetical, geometric and harmonic) Pacioli then further
claims a “harmonic proportion”. The geometric proportion “will be when comparison is
made comparing one continuum and another, as one line to another line, one surface to
another surface, one body to another body, one [duration of] time to another time”; the
arithmetical “will be when comparison is made from one number to another one, whether
they are equal or more properly between the excesses or differences between the numbers”;
the harmonic, finally, “will be when comparison is made from one voice to another one
and from one sound to another one” – and more badly understood metamathematics
involving continuous and discrete quantities.

I shall not go through the whole distinction[513] but restrict myself to passages that
inform us about developments within the abbacus tradition about which we have no other
information.

The sixth treatise (fol. 84r–98v ) is stated to deal with “seven marvels [mirabiles ] from
the proportions between two quantities”. As a matter of fact it begins with seven “marvels”
involving two quantities, but afterwards considers others which concern three or more
quantities. The first marvel is that

any two quantities you want in any ratio joined together, and then the sum divided by each
of the said quantities; the results then joined together, and then the sum of the said results
equally divided by each of the said results; and again these latter two results joined together,

512 Proportione communiter dicta e habitudine de doi cose asiemi comparate una a l’altra e l’altra
a l’una, in alcun termino a loro univoco – something like “proportion is commonly said to be a
condition of two things compared together, one to the other and the other to the one, in some respect
that is the same for them”.

513 Part of what I leave out is discussed either in [Bartolozzi & Franci 1990: 17–27] or in [Høyrup
2009d: 92–104].
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will always be the sum of the first two results, and it never fails.

In symbols,[514]

=

a b

a

a b

b

a b

a

a b

a

a b

b

a b

b

a b

a

a b

b

I shall not go through all seven marvels (all are rendered in symbols in [Bartolozzi &
Franci 1990: 23–24][515]), but two are noteworthy – in symbols, respectively,

× = +
a b

a

a b

b

a b

a

a b

b

and[516]

+ = 2+denom(a : b )+denom(b : a )
a b

a

a b

b

The marvels appear to have grown out from problems about the splitting of 10 into two
parts a and b, where a/b + b/a respectively 10/a + 10/b is given. Such problems are known
since the beginning of the algebra tradition.[517] It seems likely that Pacioli has borrowed
at least the stock of his marvels, possibly adding some.

On fol. 85r–v, other marvels about three, four or five numbers in continued proportion
follow. The first states that if three numbers are in continued proportion, then division
of their sum by the single numbers produces another continued proportion. This (but with
an arbitrary dividend) had been considered “rather clear and obvious” by Antonio in the
Fioretti [ed. Arrighi 1967a: 54], and is in fact a theorem which is useful for certain the
problems about the splitting of a number into a sum of numbers in continuous proportion.
We may take it for granted that Pacioli borrowed it – possibly directly or indirectly from

514 The fraction lines stand for the operation which Pacioli speaks of as “division”.

515 There is a (mathematical as well as translational) error in the fourth, which should be

= and = .

a b

a

a b

b

a b

a

a b

b

a b

a

a b

b

a b

b

a b

a

The authors have overlooked that the equality between the first and second results are said to be
e converso. As Pacioli points out, the first marvel follows from this.

516 “denom” stands for “denomination of” the ensuing ratio, that is, the corresponding fraction or
mixed number.

517 See [Hughes 1986: 251f ] and [Rashed 2007: 167–165] for al-Khwārizmı̄, [Rashed 2012: 336–349]
for Abū Kāmil; and [Woepcke 1853: 91f ] for al-Karajı̄. All three give general rules for the behaviour
of the quotients, e.g., a/b

b/a = 1 and ( a/b + b/a ) ab = a2+b2.
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Antonio, since he goes on (fol. 85v–86r ) to apply the rules to binomials in the way Antonio
had done in his mirabile dictum (above, p. 228). As pointed out by Bartolozzi and Franci
[1990: 24], Pacioli generalizes Antonio’s method further than Antonio himself had done
without controlling – and errs (so at least it seems – the text is not quite clear).

Next (fol. 86v–87v ) we find a number of rules about three, four or more numbers
in continued or (at times) non-continued proportion. Most, as Pacioli states, follow from
Elements VI.15–16 and VII.20 (Campanus’s numbering, our VI.16–17 and VII.19 – the
product rule for three or four segments or numbers in proportion/continued proportion):
how, if two (or, an overdetermined case, three) neighbouring quantities in a continued
proportion are known, to find the remaining one(s).

Slightly more intricate are the cases where the first and the last of four or five
quantities in continued proportion are known. In the case of four quantities, this coincides
mathematically with Jacopo’s second fondaco problem (above, p. 188), but whereas Jacopo
merely prescribes the extraction of the cube root of the ratio between the fourth and the
first quantity without explaining why, Pacioli uses algebra, without which he finds it
difficult to solve the problem. In the case of five quantities, the middle quantity is found
first from the product rule.[518]

Between these two cases, Pacioli gives the abstract analogue of Jacopo’s third fondaco
problem. Without explanation Pacioli gives the same rule as Jacopo; he certainly does
not know how it comes about (if so, the algebraic solution of the preceding problem shows
that he would have explained). However, the last step of his procedure (how to find two
numbers from their sum and their product) suggests that Jacopo is not his direct or indirect
source: it contains a hint of an underlying geometric procedure (a reference to operation
with two different halves of a quantity) which is absent from Jacopo’s text, and which
neither Pacioli not any intermediate abbacus writer is likely to have introduced on his
own.[519]

On fol. 88r begins a number of “keys [claves ] or evidences concerning quantities
in continued proportion”, likened to the two spiritual keys of gold and silver by which
“in our Catholic Militant Church the first shepherd Saint Peter” opens and closes the doors
of Paradise and Hell for us. While we recognize here Pacioli’s affection for his Church,

518 In generic terms, Pacioli says that the same method can be used for “6, 7, 8, etc.” terms, but
he abstains (maybe wisely) from implementing this insight – fol. 182r he speaks of the sixth root
as the “cube root of the cube root” and of the seventh root as the “root of the root of the cube root”.
These composite expressions might indicate that Pacioli believed they could be found by stepwise
calculation; they may also be traces of copying from a source still expressing higher powers
multiplicatively and emulating this system for the naming of roots.

519 When solving in the geometric part of the Summa the corresponding geometric problem, Pacioli
[1494: II, fol. 18r] merely refers to the contents of Elements II.5, as does his ultimate source
(Fibonacci’s Pratica geometrie [ed. Boncompagni 1862: 63]). Similarly also (here with explicit
citation of Euclid’s proposition) in the arithmetical part, fol. 93v.
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the term “keys” is likely to go back to that of Fibonacci.
In their mathematical substance, however, Pacioli’s 15 keys differ from those of

Fibonacci (which were derived from Elements II and had nothing to do with continued
proportions). Like these, they are theorems (by Pacioli called “evidences”); in part they
are near- or full repetitions of what he has already explained before or easy corollaries
of familiar stuff, in part they are new to the book and not easily guessed without symbolic
manipulation. Since Pacioli does not distinguish, he is likely to have borrowed the group
as a whole (restrictions and further arguments below). All are illustrated by numerical
examples. In symbolic translation they are

(1) If a : b : c : d, then : .
b c

a b c d

b

a c

(2) If a : b : c : d, then : .
a b

c d

a

c

(3) If a : b : c : d, then : .
a c

b d

a

b

(4) If a : b : c : d and S = a+b+c+d, then S/a : S/b : S/c : S/d ; with three members,
this was the first three-number “marvel” on fol. 85r.

(5) If : , then ad = bc; the product rule, amply used before.
a

b

c

d

(6) If : and if c 2+d 2 = a b, then has the same value. Actually,
a

b

c

d (a 2 b 2 ) (cd )
given the proportiononly, (a 2+b 2 ) cd = ab (c 2+d 2 ).

(7) If : , then ([a b ] c ) d = (a d ) (b c ); evidently, this does not depend
a

b

c

d

on the proportionality.
(8) If a : b : c : d, then (a+b+c+d )2 = a (b+c+d )+b (a+c+d )+d (a+b+c )

+c (a+b+d )+a2+b2+c2+d2; this time, Pacioli himself points out that the rule does
not depend on the proportionality.

(9) If a : b : c, then (a b ) c = b3.
(10) If a : b : c, and if, for some quantity Q, Q/a + Q/b + Q/c = a+b+c, then b = √Q.
(11) If a : b : c, then (a b ) c/a = b c, (a b ) c/b = a c, (a b ) c/c = a b, and

(a b ) c/a b = c, (a b ) c/a c = b, (a b ) c/b c = a; Pacioli points out that this
does not depend on the proportionality.

(12) If a : b : c and further : , then p (b+c ) = q (a+b ).
a

b

p

q

(13) If a : b : c, then 2 (a c+b [a+c ]) = a(b+c )+b(a+c )+c(a+b ). With references
to Elements II.2 and the formulations “in other words” in Elements VI and IX
Pacioli points out that this does not depend on the proportionality.

(14) If a : b : c, then a(b+c )+b(a+c )+c(a+b )/2 (a+b+c ) = b.
(15) If a : b : c, then : .

a 2

b 2

a

c

Under the heading “to find mean proportionals between two quantities”, two peculiar
counterfactual calculations follow on fol. 89v which could be Pacioli’s own inventions:
If 2 is the arithmetical respectively the geometric mean between 5 and 11, what are then
the corresponding means between 7 and 13? In both cases, the true means between 5 and
11 and 7 and 13 are found (8 and 10 respectively √55 and √91), and the rule of three
is applied. In the arithmetical case, a proof is performed, consisting in corresponding
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proportional change of the limits, after which the true means between these limits are
shown to coincide with what was found before; in the geometrical case, a similar proof
is sketched but not performed.

The “second case” under the same heading is a traditional question “Three is [too]
little and 4 is [too] much”. The “just or due” amount is said to be √12, the geometric
mean; this – not the arithmetical mean – is then stated to be what is used in all commercial
matters (in omnibus mercantiis ). Primarily, this probably extrapolates from the observation
that the rule of three is based on geometric proportionality. But Pacioli may also think
of the use of the geometric mean in certain mathematical problems in commercial disguise.

In any case, a problem of this kind about three pearls, follows as the “third case”.
The first pearl weighs 1 carat and is worth 200 ducati, the second weighs 2 carats and
is worth 1000 ducati, the third weighs 3 carats. What is its just price?

Pacioli posits a fourth pearl with weight 4 carats. To the weights 1:2:4 in continued
proportion must correspond prices in continued proportion, i.e., 200:1000:5000. Therefore
the price of the 4-carat pearl must be 5000 ducati. 3 carats being the (arithmetical) mean
between 2 and 4, the price of the 3-carat pearl must be √(1000 5000).

A fourth case is also about justice. The Holy Father, Innocent VIII, orders that 10000
ducati be distributed justly between the citizens of Perugia for service rendered. This gives
rise to a long discourse (more than 500 words) about Aristotle’s two kinds of justice from
the [Nicomachean] Ethics V.2–5 (1130a14–1134a16, [trans. Barnes 1984: II, 69–76]):
“commutative”,[520] applicable to commercial exchange, and distributive. Both, according
to Pacioli, “can, broadly speaking, be understood in two ways, geometrically and arithmeti-
cally, though, strictly and properly speaking, the maximal distributive sort can only be
geometrical”.[521] After the digression into ethical theory it is then explained that the money
is justly distributed if given in geometric proportion to the “quality” (bontà ) of each.

The sixth distinction ends (fol. 90v–98r ) with 35 problems[522] and an epilogue (fol.
98r–v ). The last two problems have nothing to do with neither ratios nor proportions –
#34 is “Bachet’s weight problem” (above, p. 97), and #35 belongs to the same family;
parallels in the wording suggest that they are borrowed from the Liber abbaci [B297f;
G471f ]. In all the others, “proportions” play a role.

First come 23 problems about three numbers in continued proportion. In seven of
them, a number (19, 19, 14, 10, “a number”,[523] 10, 10) is split into such constituents;

520 Nowadays normally translated “rectificatory”, but Pacioli follows his fellow friar Thomas Aquinas
(Summa theologiae 1a q. 21 a. 1 s 1 co, see [Corpus thomisticum ]), whom he cites.

521 This point comes from Aristotle, whose Chapter 3 also contains as discourse on proportion theory.
Mathematical proportions (represented by lines and letters) are used further in Chapters 4 and 5.

522 Pacioli also counts until 35, but has two #18, skips #19 and #28 and has two #29.

523 This problem (#15) is indeterminate. Afterwards, the number is chosen to be 10, whereby it is
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towards the end of the sequence, four are dressed as dealing with economic life.[524]

In #1–6, specified “keys” are used as a first step in the procedures, which in these and
the other cases often makes use of algebra or (in #5, #6 and #18) of Elements II.

Algebra is thus used by Pacioli well before he presents it systematically. Often, this
algebra is quite complex. In #4, for instance, Pacioli has to operate with two unknowns
in the same way as Antonio, that is, with “a thing less a quantity” and “a thing plus a
quantity”. The problem in which this is used is a numerical variant of #24 of Antonio’s
Fioretti [ed. Arrighi 1967a: 53][525] – in symbols, to find three numbers a : b : c in
continued proportion such that abc = a+b+c, 36/a+36/b+36/c = a+b+c (Antonio has 20
instead of 36). As may be remembered, all the problems solved by means of several
algebraic unknowns we have encountered after those of Antonio were linear, so either
Pacioli used the Fioretti directly, or there has been a transmission of the technique which
escapes us. Since Pacioli’s “keys” (essential for the formulation of the solutions) are hardly
his own invention (see imminently) yet not present in the Fioretti, I opt for the latter
possibility.

Next follows a sequence of ten problems about four magnitudes in continued
proportion, none of them in concrete dress. Once again, the first ones make use of specified
“keys” (#24–27 – and also #31–32). Most interesting are probably #31–33: #31 and #33
are pure-number versions of Jacopo’s third and fourth fondaco problems; #32 is a similar
problem where the sums of the first two and of the last two numbers are given. In #31,
key (1) is used to reduce the problem; then the second number is taken as the thing and
found by second-degree algebra to be 12 1/2 +√7 37/84 – at which point Pacioli cautiously
leaves it to the reader to continue.[526] Since his present method does not lead
easily[527] to the formula used by Jacopo and by Pacioli in the first presentation of the

made determinate.

524 #18bis deals with a gambler’s gains, where the product rule is explained once again, suggesting
perhaps the text to be borrowed (but Pacioli is too fond of repeating to make that inference certain);
#21 is a challenge, “proposed to me in Florence in 1480, the 22nd of June”, and deals with a
purchase of saffron, cinnamon and mastic; #22–23 are about alloys.

525 Several other problems are also close to Antonio.

526 The solution is correct, but corresponds to a decreasing sequence, which is certainly not what
Pacioli intended; in order to have an increasing sequence, he should have chosen the other root
of the equation, 12 1/2 –√7 37/84 .

When applying later the same method to an analogous wage problem with rational solutions,
Pacioli makes the complete calculation and chooses the correct solution – see presently.

527 Of course it can lead to it, but only if one is able to express the double root (the second and
the third number, respectively) as

±P

2

P 2

4
– P 3

3P Q
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abstract problem just before the “keys” (above, text before note 70), Pacioli appears not
to have noticed the connection.

The use of the “keys” in problem reductions leaves little doubt that these new theorems
about the behaviour of proportions were created as tools for the solution of problems.
Pacioli’s way to add observations about (8), (11) and (13) strongly suggests that the basic
set was not his own. It is likely to have been created during the 15th century, after
Antonio’s time and inspired by him; they seem to reflect a more intimate integration
between algebra and proportions than other sources would make us expect.

In the very end of the sixth distinction (fol. 98v ) Pacioli points out that his primary
intention is always practice. “But if none the less theorizing [speculare ] pleases you, have
recourse to it” – and that is the purpose of what has been said about ratios and proportions.

The seventh distinction (fol. 98v–111v ) is claimed to present the rule of El cataym,

which (according to some) is an Arabic word, which in our language is as much as saying
the rule of two false positions. By which almost all questions can be solved: in particular
those that have to do with trading; where normally one has no need to insert roots of any
kind.

In spite of knowing the meaning of the term, Pacioli at first presents “simple helcataym”,
that is, the simple false position.[528] Most of the examples are slightly intricate, for
instance asking for sequential use of the rule of three. One is a counterfactual calculation:
“If 3 were the half of 7, what part would it be of 11”, for which two different
interpretations are offered. Some deal with combined works, where neither a single nor
a double false position is made.

On fol. 99v begins the double false position proper. Initially it offers a quasi-
algorithmic set of four small rules (followed by explanations) for what to do when either
of the two positions leads to an excess or a deficit (and justly stated to be in reality only
three):

more and more always take away
less and less always take away
more and less always join

(P being the sum of the second and the third number, Q that of the first and the fourth). The product
of these is indeed

P 3

3P Q

as required; but this, done without modern symbolism, will have been far too complicated for Pacioli
(as it would be for us).

528 Benedetto too presents a “simple mode of chatain”, but as we remember from note 424,
Benedetto’s rule is Fibonacci’s “rule of proportion” (above, note 424). What Pacioli does is closer
to the Ottoboniano and the Palatino Pratiche (above, p. 250).
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less and more always join

Arithmetical explanations of the rules are given, which in their mathematical principle
are similar to the one given first by Fibonacci (above, p. 106), but without his line
diagrams. From fol. 102r onward geometric proofs follow, whose diagrams are lettered
almost as the corresponding rule in the Liber abbaci; while this classic is not copied, direct
or indirect inspiration seems almost certain.

The illustrative problems that follow are only sketched, in the sense that they explain
the reduction to questions where the two false positions can be applied but leave the rest
to the reader.

One example is the “nightmare problem” about repeated travels with gain and expenses
leading to bankruptcy (above, p. 88). After the hinted solution by double false Pacioli
explains how the solution can be solved step by step backwards, adding that the same
can be done in the problems about gardens with 3, 4 or more gates. On fol. 106v comes
a give-and-take problem which asks for nested double false positions, a technique which
is explained in some detail; the problem, but not the positions and thus not the calculations,
are shared with Piero Borgi, whose calculations are much more extensive (cf. above, p.
321). The structure is somewhat unusual – the first, second and third with, respectively,
1/2 , 1/3 and 1/4 of what the others possess will all have 20 ducats (Pacioli) or denari (Borgi).
A borrowing is next to certain – but not necessarily from Borgi.

The last part of the distinction (fol. 106r–111v ) has nothing to do with false positions
of any kind. It is rather a transition to the algebra of the eighth distinction, and consist
of another collection of “evidences” (66 in total), preceded by some general observations,
including that Euclid, in spite of all the qualities of his book, has not said everything.

The first ten evidences correspond to Elements II.1–10, and in so far also to
Benedetto’s substitute for Fibonacci’s “keys” (above, p. 302). There are no indications
of any link, however, what Pacioli offers are simply the statements (valid for any kind
of quantities) with numerical examples, no geometric proofs.

The 11th is similarly a reflection of Elements II.11, and observes that the division
in question[529] is a division into mean and extreme ratio, and that the ratio that results
is irrational.

What follows are in part identities (in a few cases inequalities), in part it has some
similarity to what Jordanus does in the De numeris datis, expressing solvability of certain
problems – as in Jordanus’s work illustrated by numerical identities. Many have to do
with the division of a number into two parts. We may look at some extracts in symbolic
translation:
(12) (a+b )/a = 1+ b/a ;
(13) a/b

b/a = 1 ;
(14) ab≤ ( a+b/2 )2 ;

529 In symbols: a quantity is divided as a+b, so that a2 = b (a+b ).
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(15) a 2+b 2 < (a+b )2 if a < b, the former difference increasing with the latter (a+b is
given);

(18) given a+b, a and b are determined unequivocally from (a 2+b 2 )/( a/b + b/a ) .
In order to express these, Pacioli has to develop some rhetorical strategies. We may look
at (18):

If a quantity be divided into 2 parts, which are mutually divided; and the two results are
joined together; and save the sum. And then, if you square each of the said parts; and
the squares joined together; and this sum divided in the saved sum; from which shall come
a determined number. I say that who makes of the first quantity two parts; where the
surface of one in the other makes the said number; will always have the said parts.

In symbols indeed

= = ab .
a 2 b 2

a

b

b

a

ab (a 2 b 2)

a 2 b 2

More interesting than this formula is the trick used to keep the a/b + b/a together as one
number that can be used as a divisor: it is saved, and then retrieved, exactly as we do
when making a calculation on a pocket calculator that requires a parenthesis.[530] The
request that a “determined number” shall result corresponds to Jordanus’s statement that
the outcome is “given”; the discordant expressions makes it more than doubtful that
Jordanus should have inspired Pacioli.

A number of cases are closed by a Latin phrase – et sic habemus intentum (fol.
110r ), etc. Apart from that, there is no Latin; my stylistic feeling (no certain criterion)
suggests no borrowing but to the contrary that this set of evidences has been collected
by Pacioli himself and not borrowed as a totality, as was probably the case with the
evidences contained in the sixth distinction (above, p. 334) – also because there is nothing
which looks like an added commentary to borrowed material.

The ninth distinction (fol. 111v–150r ) opens with the declaration

I find that I shall no longer defer the part which is most necessary to the practice of
arithmetic and also of geometry, in the vernacular commonly called “the major art” or
“the art of the thing” or “algebra and almucabala”, by us called “theoretical practice”
[pratica speculativa ]. Because in it are contained higher matters than in the minor art
or mercantile practice.

At first (fol. 111v–115r ) the powers and their arithmetic are presented (including the
impossibility to reduce expressions involving different powers), together with the sign
rules for multiplication as well as division. A proof similar to that of Dardi (above, p.
213) is given for less times less – more loquacious than that of Dardi and referring to

530 The same trick is used on fol. 46r in the statement of a formula for determining congruo-congruent
numbers.
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the general multiplication of binomials, but still including a double indirect proof. On
fol. 113v follows sign rules for division, similar to those presented by Benedetto, but in
Pacioli’s version ordered with a scheme. New are (fol. 114r ) sign rules for additive
procedures:

plus with plus joined always makes plus
less with less joined still makes less
plus with less joined always one subtracts

and will be the major denomination
less with plus the same as plus with less

I would guess that this is Pacioli’s personal contribution. Evidently, Pacioli has come to
consider “numbers less” as negative, not merely subtractive numbers (still with a two-class
system, not a single number line going from negative numbers over 0 to positive numbers).

At the end of the section come corresponding rules for subtracting “numbers less”.
Next (fol. 115v ) follow roots. First the kinds, square, cube, related, pronic (as quoted

above, p. 209); then (until fol. 119v ) the arithmetic of square and cube roots. The classes
of Euclidean binomials and apotomes and their arithmetic are presented on fol. 119v–143r

(together with a little bit about trinomials), apparently independently of Fibonacci, see
note 170.

Fol. 143r–v continues the listing of algebraic powers from fol. 67v (above, p. 330) with
an explicit backward reference, now tabulating their products, using the root names and
illustrating their meaning by means of corresponding powers of 2.

Afterwards the abbreviations no, co and ce are explained to stand, respectively, for
the first, second and third “root”; these are then what it used in the following explanation
of algebra (where the highest powers play no role).

This explanation starts (fol. 144r ) with another tribute to the discipline:

Having with God’s assistance come to the much desired place: that is, to the mother of
all the cases by common people [il vulgo ] called “the rule of the thing” or “the major
art”, that is, theoretical practice, also called algebra et almucabala in Arabic language,
or according to some in Chaldeic, which in our language is as much as to say “of
restoration and opposition, algebra, id est restauratio, almucabala, id est oppositio vel
contemptio, et solidatio. Because in the said way infinite questions are solved. And those
which still cannot be solved I shall point out.

The Latin quotation leaves little doubt that Pacioli here draws upon chapter 15 as well
as chapter 14 of the Liber abbaci (cf. above, pp. 137 and 115) – directly or perhaps
indirectly, the latter suggested by his correct identification of algebra with restauratio.

This is followed by explanations of what number, thing and census are, and by the
rules for the six simple cases (in Fibonacci’s idiosyncratic order (above, p. 142). Versified
versions of the first three rules are given in the margin.

Geometric proofs are given also for the simple cases (fol. 145v ), probably of Pacioli’s
own making; those for the composite cases are in line with the tradition but include explicit
references to Elements II.
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Four “essential things to note” follow, of which the first three teach how to simplify
equations by the elimination of integer or fractional coefficients and by the operations
of restoration and opposition. The fourth (fol. 148v ) steps outside the trodden path, pointing
out that sometimes one has to posit two unknowns – second unknowns being called “deaf
quantities”. Pacioli takes as example a question for two numbers whose squares added
together are 20 and whose product is 8. He posits the first to be a thing plus a quantity,
the second to be a thing less a quantity (we recognize Antonio’s trick – above, p. 229).
Pacioli does not solve the problem, but since the resulting thing is 3 and the quantity is
1, “deaf” [sordo ] must here mean “unknown”.

Pacioli further explains that this quantity is called “second thing” (cosa seconda ) in
the ancient practical books (ne li libri pratichi antichi ), while “the moderns call it simply

” – that is, there must have been much more use of two unknowns than can be seen
from extant sources.[531]

The last part of the distinction (fol. 148v–150r ) shows how to reduce certain higher-
degree cases while others are impossible; in the end Pacioli explains (considering only
three-member equations) that it has so far been impossible to create general rules if the
intervals between the powers are not pairwise equal; they can only in certain cases be
solved a tastoni, “by groping”. As is the case with the squaring of the circle, also knowable
but so far not found,[532] even though these equations may be possible, they have so
far not been solved.

The ninth distinction (fol. 150r–224v ) is, globally, concerned with mercantile matters.
“Globally”, however, allows several local aberrations. Since most of the mercantile material
is traditional, I shall concentrate on the aberrations and on the innovative mercantile
substance.

The first treatise (fol. 150r–159r ) deals with partnerships, with the usual application
of the principles to mathematically similar questions (for example, the twin problem).
The second (fol. 159r–161r ) takes up a particular type of shepherding contract
(soccida ), warning against the many frauds that it may conceal (wholly outside abbacus
habits and perhaps based on family experience – Pacioli’s father was a small-scale breeder
and peasant); and next the traditional amortization of a loan by the rent of a house.

Barter is dealt with on fol. 161r–168r, and exchange together with letters of exchange
on fol. 168r–173v – the latter also new in format in the abbacus context, even though the
substance is familiar, for which reason the principle is explained in detail and a paradigm

531 None the less, the pair is not mentioned in the Perugia manuscript (with the proviso that the
chapter presenting algebra systematically and thus corresponding to the present distinction has been
lost). Instead, two “horse” problems make use of the algebraic unknowns thing and horse [ed.
Calzoni & Gavazzoni 1996: 311f, 318f ].

532 An echo of Aristotle’s Categories 7b31–33, almost certainly mediated by Boethius’s commentary
to the work [PL 64, col. 231]).
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is shown in the margin.[533] At the end come recreational problems.
All matters regarding interest, discount, etc., are discussed on fol. 173v–182v. Even

here, toward the end we find recreational problems asking for the use of algebra. Alloying
(and a single problem about the mixing of sugar, cloves, sandalwood, mace, nutmeg,
cinnamon and ginger[534]) is the topic of fol. 182v–186r ).

From these mostly genuinely commercial concerns Pacioli turns to (mostly advanced)
variants of the classical recreational problem types:
– repeated travels (fol. 186r–188r ), first- as well as (mostly) higher-degree problems,

no less than six problems dealing with an unknown number of travels;
– complicated give-and-take and similar problems (fol. 188r–190v ), many solved by

means of second- or higher-degree algebra;
– horse-buying and purse-finding “by way of ratios” (fol. 190v–194r ) and using algebra

with one or two unknowns;
– problems about salaries of servants (fol. 194r ). Two coincide with Jacopo’s second

and third fondaco-problem (above, p. 188); the former is said to be solved by means
of what has been taught about (continued) proportions, the latter with a reference to
the appropriate “key”;

– varia (fol. 194r–197v ).
One of the give-and-take problems (fol. 191v ) gives Pacioli the occasion to return to the
“deaf quantity” (I use Pacioli’s notation, where co stands for the thing ):

Three have denari. The first says to the other 2, if you give me half of yours I shall have
90. The second says to the other 2, if you give me 1/3 of yours, I shall have 84. The third
says to the other 2, if you give me 1/4 of yours plus 6, I shall have 87. I give you this
solely to show how one operates by means of a deaf quantity which the ancients call
second thing to differentiate it from the first positions. Posit that the first has 1 co, remove
it from 90, 90 less 1 co remains, and this should be 1/2 of the other 2, these then have
180 less 2 things, and all 3 have 180 less 1 co. Now do for the 2nd and posit that he has
a quantity, which I depict thus, one , and to the 2 remain 180 less a co less a . Take
1/3 , from which results 60 less 1/3 co less 1/3 .

If A, B and C designate the three possessions, the conditions are thus

A+ 1/2 (B+C ) = 90 , B+ 1/3 (A+C ) = 84 , C+ 1/4 (A+B )+6 = 87 ,

and with A posited to be a co, B to be a , Pacioli has found that

533 Dated 9 August 1494, and involving Pacioli’s printer Paganino de Paganini.

534 An observation of general historical interest can be made concerning the prices: sugar is the
most costly (32 soldi the pound, against 12 soldi for pepper and 11 for ginger). There was a strong
economic incentive behind the Portuguese establishment of sugar-producing slave plantations in
the Madeiras and the Azores, and for Columbus’s similar undertaking in Haiti in 1493 [Verlinden
1970: 21].
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1/3 (A+C ) = 60– 1/3 co – 1/3 .

Inserting this in B+ 1/3 (A+C ) = 84 and using that B = 1 Pacioli derives the equation

1 = 36+1/2co ,

which is the second possession.
Now comes something new:

Now for the 3d do similarly: Posit that he has a quantity, remove it from 180 less 1 co,
that is, still from the amount of all three. [...].

Pacioli thus operates with three algebraic unknowns, but only with two at a time, which
allows him to recycle the name quantity. This second position allows Pacioli to derive
the equation

1 = 48+ 1/3 co ,

which is the third possession. That brings him back to a single unknown,

A+B+C = 1co+36+1/2co+48+ 1/3 co .

But we know that A+B+C = 180–1co. This solves the problem. In the end Pacioli specifies
that one shall always with this method isolate the quantity, and explains that

by means of these deaf quantities which the ancients called second things a great many
strong problems can be solved by the one who handles the equations well.[535]

After these 24 pages dedicated to mathematical bravery Pacioli returns to what is
really useful for the merchant – though, like the advanced recreational and algebraic
material, well beyond what was taught in the abbacus school.

First (fol. 197v–198v ) Pacioli speaks (in headlines, but in much detail) about what
should be in the quaderno, a book of inventory, transactions and, not least, of accounting
(as we remember, in his early years in Venice Pacioli had participated in the mercantile
activity of the Rompiasi family).

Next (fol. 198v–210v ) follows the exposition proper, whose main constituent is what
won Pacioli the honour to have his portrait on an Italian 500 lira coin in 1994 and to
be the founding hero in histories of accounting: the first (or at least the first surviving)
description of the double-entry bookkeeping system that was in use in Venice.

Last in the ninth distinction and in the arithmetical part of the Summa (fol.
210v–224v ) comes a very detailed tariffa copied from one that had been printed in Florence
in 1481 (Libro che tracta di mercatantie et usanze de’ paesi ), originally copied around
1450 by Giorgio di Lorenzo Chiarini from what was in use among Tuscan merchants in

535 Nicolas Chuquet had used the same method of a recycled second unknown repeatedly in the
appendix to his Triparty, written in 1484 – see [Heeffer 2012: 134f ]. Since the Triparty was a
manuscript and apparently did not circulate (apart from Etienne de la Roche’s use of it in [1520]),
Chuquet was certainly not Pacioli’s source. On the other hand, the shared principle supports Pacioli’s
claim that he presents existing ideas.
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Ragusa (now Dubrovnik) and circulating in many

Pacioli-coin

manuscripts before being printed [Travaini 2003: 73, 164].

As said above, I shall not discuss the geometry part
of the Summa, just recall that it is largely a vernacular
version of Fibonacci’s Pratica geometrie, mostly drawn
from an earlier vernacular version but more complete than
earlier surviving manuscripts in volgare. In this respect
it can be seen to go beyond even the mathematically most
advanced representatives of the abbacus tradition (not to
speak, obviously, of abbacus geometry proper). On the
other hand if reflects the lacking interest of the abbacus environment to develop the field
of theoretical geometry beyond what was inherited.

The arithmetical part of the Summa, on the other hand, though building upon the
abbacus tradition, goes much beyond it, while even the sophisticated recreational level
and the algebra of the abbacus tradition in itself had gone well beyond what we find in
such early representatives as the Livero, the Columbia algorism, and Jacopo – and, if we
look at the 15th century where Fibonacci was to some extent re-adopted, often beyond
the Liber abbaci. Those parts of the Summa, moreover, which do present genuine abbacus
matters tend to present far fewer examples than had been the custom even in the Florentine
encyclopedias: Pacioli – in this respect similar to many more recent mathematicians –
appears to suppose that a single example suffices to teach a principle.

We may claim that this was brought about by the particular personality of Pacioli –
neither Borgi nor Ghaligai went as far; but this personality was allowed to unfold, and
was certainly shaped, by the new socio-cultural conditions of the late 15th century, where
Pacioli was allowed to interact with Alberti the Humanist and to teach not in abbacus
schools but at universities. His endeavour if not his personality was probably also shaped
by the possibility to go into print; in any case printing was what allowed the Summa to
have an immense influence in the 16th century.



The German-speaking area

Already around the mid-15th century – thus before the beginning of mathematical
printing – abbacus culture started to spread to German lands. The counterpart of abbacus
naturally became Rechnen, “to calculate”, and that of the abbacus master therefore
Rechenmeister. A document from Nürnberg shows that in 1457 three Rechenmeister held
school there – and legal documents from 1486–87 that they were in unfriendly mutual
competition [Schröder 1988: 301; Vogel 1949: 243].

At that time, they represented a new profession, for a while only existing in cities
engaged in long-distance trade to or through Italy and therefore able to draw on Italian
inspiration. As the corresponding school type took root more broadly, the normal institution
in German area would be the Schreib- und Rechenschule, which taught reading and writing
together with commercial arithmetic – thus combining what had been two different levels
in Italy (children being enrolled at age 6 or so). To be observed, however, is that the
writers whom we shall encounter below characterize themselves as Rechenmeister alone
(when not as Stadtschreiber, “municipal secretaries”, or the like).

Wolack’s lecture

As is the case concerning the earliest decades of the abbacus school, we have no direct
testimony of the contents of the teaching of these Rechenschulen. The first trace we have
of abbacus culture spreading to Germany is thus at the same time evidence that practical
arithmetic inspired by the abbacus tradition was in the process of being accepted as fitting
for arts-faculty students.[536] In 1467 and 1468 a certain Gottfried Wolack held lectures
at Erfurt University, conserved in several Latin manuscript copies, one of which was
published by Hermann Emil Wappler [1900]. It begins

The rule of proportion begins with its [examples].
The first rule is called de tri by the Italians for shortness, that is “of three”, because it
contains three numbers; golden, because it is very fitting to many questions; useful, because
several other rules can be reduced to it as their first principle; it is also called “of
proportionals”. [...]

An explanation of how to organize the numbers in a square follows, and a single
example.[537] The second rule, dealt with similarly, is the inverse rule of three, the third
is the rule of five, adequately identified as “composite rule of three”. The fourth is the

536 In the process, certainly, but in a slow process. In 100 German school regulations from the 14th
and 15th centuries, “calculation is mentioned in only two cases: in the municipal school in Wesel
(1494) and in the Latin school in Nabburg in Oberpfalz, where according to the school regulation
from 1480 exercises in calculation should be held at holidays and at other appropriate occasions’”
[Vogel 1949: 239].

537 The Arabic names for the four numbers are indicated, agreeing with what is found in Robert
of Chester’s translation of al-Khwārizmı̄ [ed. Hughes 1989: 64], in a spelling that coincides with
that of the Dresden manuscript C 80 (below, p. 354).
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partnership rule, and the fifth the same with differing durations.
The sixth deals with mixing in given proportion, the seventh with simple interest in

a rule-of-five setting.
Unnumbered is a variant of the “hundred fowls”, without the request for an integer

solution and thus treatable by the partnership rule. The eighths explains the kind of
proportional sharing where the promised shares amount to more than the totality (the
“fallacious sharing” of the Pisa Ragioni, cf. p. 162); the ninth is the twin problem, the
tenth the unknown heritage, the 11th a pursuit problem with constant speeds, and the 12th
a corresponding meeting problem.

After these rules, claimed to come from the rule of three (evidently not true in the
case of the unknown heritage), three more are added – a meeting problem with one
participant going with constant, the other with arithmetically increasing speed; a question
of combined works; and a tree problem (formulated about a tower). As we see, all
problems are familiar from the abbacus tradition, and apart from the unknown heritage
(which is solved by means of the usual unexplained rule) all are quite simple (alloying
is missing). One innovation will be taken note of: in two of the additional problems, the
actors involved are designated by letters, not by the usual “one/the other” or “the first/
second/third/fourth”. I know of no Italian precedents, but below (p. 350) we shall encounter
the same phenomenon in a slightly earlier German print. The idea was taken over by other
writers, and came to influence the teaching of elementary practical arithmetic for the next
half-millennium, as epitomized in Stephen Leacock’s pearl about “A, B and C: the Human
Element in Mathematics” [1919: 237–245].[538]

The Regensburg Practica, Friedrich Amann – and Regiomontanus

Wolack was not the first German-Latin writer to be interested in the mathematics
of Italian trade and traders; already before 1450, an unidentified monk at the St Emmeran
Benedictine monastery in Regensburg added to an algorism of the traditional Latin type
a Tractatus de practica. It exists in several manuscripts of different length;[539] they

538 The beginning deserves to be quoted:

The student of arithmetic who has mastered the first four rules of his art, and successfully
striven with money sums and fractions, finds himself confronted by an unbroken expanse
of questions known as problems. These are short stories of adventure and industry with
the end omitted, and though betraying a strong family resemblance, are not without a
certain element of romance. The characters in the plot of a problem are three people called
A, B, and C. The form of the question is generally of this sort: “A, B, and C do a certain
piece of work. A can do as much work in one hour as B in two, or C in four. Find how
long they work at it”.

When I was in high school (and thus beyond the reverberations of abbacus mathematics), our
mathematics teacher once read it aloud to us – during the last lesson before Christmas, I believe.

539 Described and edited in [Vogel 1954: 14–25]. The two principal manuscripts are Munich, Clm
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are mostly in Latin, but some problems (concentrated in one of the manuscripts) are written
in German.

The Practica [ed. Vogel 1954: 27] begins almost like Wolack:

Thus with the help of God the Lord we happily reach from the aforesaid [the algorism]
the practica. First thus the rule of proportionals, which by the geometers is called golden,
by the Italians truly the rule of three [regula de tre ].

After that, the two texts do not have much in common. They share the tree-problem, having
the same numbers, but with the difference that the Practica [ed. Wappler 1900: 54; ed.
Vogel 1954: 39] speaks of a pole (falanga ), which makes it more plausible that 1/4 of
it is in the ground, but makes the total length of 181 9/11 feet less plausible; they also share
the meeting problem with arithmetically increasing speed [ed. Wappler 1900: 53; ed. Vogel
1954: 43]; that they share the unknown heritage [ed. Wappler 1900: 52; ed. Vogel 1954:
64] with the usual fraction 1/10 , and also the twin problem [ed. Wappler 1900: 52; ed.
Vogel 1954: 209] with ratio 1:2 is hardly significant.

The similarity between the introductions shows beyond doubt that the two text are
connected. However, the small overlap of the problems seems to exclude that Wolack
has drawn on the Practica, the connection is likely to go through one or more shared
sources, which suggests that the Practica builds on still earlier material that was present
in the German area.

When we consider the 354 problems of the Practica it is obvious that it draws heavily
on the Italian tradition – not because similar problems were not known in earlier and more
distant cultures but because the German mercantile environment was not in direct contact
with these; two problems [ed. Vogel 1954: 67] are borrowed from monastic recreational
culture – first this one:

One goose speaks to the other geese: I greet you, all 30 geese! One goose speaks, we
are not 30, if we were as many more as we are, then once more as many and the half
part as many, then we would be 30. [...]

The problem is solved by means of a single false position (not identified by name), and
leads to fractional geese. No less than seven problems in the Propositiones ad acuendos
iuvenes ([ed. Folkerts 1978: 45f, 69, 71f ] – above, n. 38, pp. 40 and 100) ascribed to
Alcuin are of this type (but all of these have integer solutions).

A large part of the problems in the Practica are commercial, but we also find
widespread recreational types like give-and-take and purchase of a horse. A number of
problems refer to Italian locations and currencies, but many are adapted to local

14783, written by Friedrich Amann in 1449–1450, with an addition from 1456; and Clm 14908,
in which Amann added more material. In both manuscripts Amann has copied many other works
that have nothing to do with the algorism or the Practica.

See [Gerl 1999: 1] for the reasons to ascribe these and various other manuscripts to Friedrich
Amann and not, as once supposed, to Friedrich Gerhart.
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circumstances. Most striking is that lenders are supposed to be Jews, which suggests that
the ecclesiastical condemnation of interest-taking (which would only affect Christians)
was more efficient in Bavaria than in Italy.[540]

The double false position is dealt with, but with a small (somewhat disputable)
exception (below, note 545) not algebra. Outside the part of the manuscript Clm 14908
that is dedicated to the Practica, however, several sections deal with the topic.[541]

(a) Fol. 133v–134v contain an introduction to algebra in German, written by Amann
in 1461. It explains what “Machmet” says in the book Algebra und almalcobula, namely
what census (afterwards translated into German as zins and as zensus ), radix (wurcz )
and numerus (zal ) stand for, and then repeats the six basic cases in agreement with al-
Khwārizmı̄’s order. There can be no doubt that he draws on either Gerard’s or Guglielmo’s
translation of al-Khwārizmı̄ (Robert uses substantia instead of census ); but the orthography
zensus shows he must also know about the north-Italian tradition (directly or indirectly
from earlier German writings that have been lost). No abbreviations are made use of, nor
a fortiori any symbolism.

(b) Fol. 136v–146v contains another introduction, also in German, Regule dela cose
secundum 6 capitula; it is written by a different hand, except for the control of the example
of the fifth case, which is found already on fol. 136r in Amann’s hand. It is thus due to
a collaborative effort, in which Amann took part.[542] Here, the basic entities are numero,
cosa, and censo (the former two also appearing as zal and ding );[543] the cases are in
abbacus order as we know it since Jacopo, the rules start by a normalization, and al-

540 In any case, it was no idiosyncracy of Amann’s. In 16th-century Rechenbücher there was a strong
predilection for pushing in a Jew when compound interest was explained – cf. [Ober 1545: Cviiiv,
Hvir]; [Ulman & Thierfelder 1564: Hvir]; and [Weber 1583a: 71r]. [Schulz 1600: 109r] gives the
section on compound interest the headline Juden Rechnung. Only [Gleydtsmann 1600: 179] refers
to the creditor simply as einer, “somebody”.

541 For the following description I rely,
1. on the digitized manuscript (https://www.digitale-sammlungen.de/en/view/bsb00103422, last

accessed 10 May 2023);
2. on Maximilian Curtze’s edition [1895] of the algebraic material contained in the manuscript;
3. on Vogel’s description of the manuscript [1954: 12–19].

542 Since this control is found on the recto page of a sheet where these Regule dela cosa begin on
the verso, the only reasonable explanation is that Amann has discovered that it had been forgotten
and then used a free page to insert it. This proves – if need should be – that the two are copying
from the same already existing model.

543 A list of rules for products of powers shows that the fourth power is censo de/di censo, the fifth
dux cubo (i.e., duplex cubo, replacing the cubo relato with which we are more familiar), and the
sixth a multiplicative cubo di cubo.

The duplice chubo was also used, we remember from p. 276, in the Ottoboniano Praticha (but
not in the Palatino Praticha nor by Benedetto).
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Khwārizmı̄ is not mentioned. Here, the background is Tuscan – a north-Italian background
would have given cossa and zenso. From fol. 140v onward, ding is mostly abbreviated
(a stylized d – henceforth I shall use ∂), often superscript. On fol. 143r–v, some formal
fractions are used, but in a way that indicates that the writer does not understand too well:

100

1∂

becomes ∂, becomes ∂ 5 (Curtze, mercifully, corrects).[544]100

1

100

1∂ 5

100

1

(c) Four geometric problems in Latin (fol. 90r–v, thus much earlier in the manuscript
and in a section dated 1459) – make use of second-degree algebra for the solution of
problems involving the Pythagorean rule.[545] Vogel [1954: 73f ] included them in his
edition of the Practica. They designate the first power of the unknown radix and the
second power census. For the census, the abbreviation is used – most likely an
abbreviations for ce, it was also the standard abbreviation for the unit centenarius.[546]

The radix (both when standing for the first power of the unknown and when a square
root is taken) appears as . This does not look much as the “ρ” used in the Florentine
treatises, but we shall soon encounter a (just) possible link.

(d) Fol. 134v–135r (in German),[547] some problems and the statement of the fifth
and sixth algebraic rules make use of zensus and cosa, abbreviating the former , the
latter co – mostly written superscript, as already Vat. lat. 10488 had done (while using
superscript cen for the censo ).

(e) Fol. 146v–153r contain four problems in Latin – the last is a remainder problem,
the former three algebraic problems in commercial dress. The powers of the unknown
are res and census, unabbreviated, but formal fractions are made use of, this time well-
shaped. There are references to the rules of algebra/algebra arabis and to the Euclidean
notion of binomials.

(f) Fol. 153v–154v, also in Latin with a heading De regulis per algebram, etc., “On
the rules by algebra”, solves nine first-degree problems (give-and-take, etc.) by means
of algebra. The census obviously does not occur; the unknown itself is invariably
abbreviated, so we cannot know whether res, radix, cosa or (less likely) ding was intended.
But the abbreviation itself occurs with two shapes, alternating with the simpler ,
which could have been derived from the shape which the Tuscan “ρ” often took on but

544 Similar traces of failing understanding are also found in certain abbacus books. The Libro di

conti e mercatanzie from ca 1395 (above, p. 30) writes “ and 5” instead of “ ”.
1

1 thing

1

1 thing and 5

545 All four are of traditional types. Two deal with a tree of known length that either breaks at a
known height or whose summit then falls at a given distance when the tree breaks; and two with
a ladder first standing against a wall and then sliding down.

546 Amann uses it in the latter function in Clm 14783 (fol. 433r, 439v ); in Munich, Clm 14111, fol.
306v, it turns up in a problem added (according to [Vogel 1954: 21]) by Hermann Poetzlinger to
his selection of problems from the Practica.

547 First discussed by C. Immanuel Gerhardt [1870: 142f ].
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rather represents a contracted re[s], as suggested by Kaunzner [1968: 121 n. 17].
Also of interest in this section is the use of letters to designate persons in two of the

problems.
(g) Amann continues on fol. 155r–156v in a mixture of Latin and German, still with

commercially dressed problems: purchase of a horse, give-and-take, etc.; one is of the
second degree and correctly described as belonging to the fourth rule. The rules are now
spoken of as dela cosa, as in section (b), not as “by algebra”. This, as well as a new
heading, and the change of language, indicates that this is really a new section. The
unknown is still not spoken of in a full word, but it is now abbreviated ∂, while the second
power (in plural form) is censy – both choices also pointing to section (b). A final point
of contact with (b) is a badly understood formal fraction on fol. 156v: it should be ,

80

140 2 ∂

but Amann first writes “80 20∂” and afterwards, discovering that he has forgotten “140”,
writes it under the line with an ∧ indicating where it is to be inserted (which, if done,
would produce “80 140 20∂”).

All in all it is evident that Amann, with his occasional collaborator, knows that algebra
is a branch of mathematics that has to be assimilated, and collects material of disparate
origin in the manuscript; but he appears not to have understood everything to perfection –
which, given the kind of material we can see to have been at his disposal, would indeed
have been a miracle. The vacillating terminology and abbreviations reflect, on one hand,
the use of Latin as well as vernacular sources – the latter mainly Tuscan but also North
Italian; on the other, the lack of agreement even in the Italian vernacular environment
about how to abbreviate operations and powers. We remember Pacioli’s description of
the situation, “as many heads, so many opinions” (above, p. 330).

Occasionally – for example, in [Kaunzner 1980: 135] – Regiomontanus’s use of
algebraic abbreviations or symbols is connected to what we have found from Amann’s
hand, so it may be worthwhile to take a look at what the great astronomer does and appears
to know.

As mentioned above (p. 278), Regiomontanus solves a problem about dividing a certain
dividend first by one divisor and then by another one exceeding the former divisor by
a known amount exactly as does the Ottoboniano Praticha – the only difference being
that Regiomontanus increases the divisor by 8 instead of 7; the dividend is still 100, and
the sum 40. He does so in a private calculation used for a letter to Giovanni Bianchini
[ed. Curtze 1902: 235][548] – undated but answering one from Bianchini which he had
received 11 February 1464.

Regiomontanus calculates like this:

548 Facsimile reproduction in [Kaunzner 1980: Abb. 6]. Gerl [1989: 108] states that this sheet is
difficult to read, and that use of an ultra-violet lamp allowed him to improve some of Curtze’s
readings; however, he only publishes the astronomical calculations. According to Kaunzner’s
facsimile, Curtze’s edition is impeccable in the actual calculation.
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100

ρ

100

1 ρ et 8

100 ρ et 800

100 ρ

200 ρ et 800
——— 40

1 σ et 8 ρ

40 σ et 320 ρ ——— 200 ρ et 800

40 σ et 120 ρ ——— 800

1 σ et 3 ρ ——— 20

ρ here renders Regiomontanus’s , res/cosa, while σ stands for his , census; the long
stroke still functions as equation sign. When used elsewhere in the calculations (in the
four pages rendered in facsimile in [Kaunzner 1971]), “less” is mostly abbreviated ,
probably meant as [m]inus; but we also find , probably meant as minus.[549]

There can be no doubt that Regiomontanus has learned from something like the model
on which the Ottoboniano Praticha was based (in the latter the problem was ascribed
to Giovanni di Bartolo, we remember). Bianchini, when stating his question, may have
done so too; however, since the problem type had circulated in the abbacus environment
since Gherardi’s time this is far from certain.

Apart from that we observe similarity in the choice of symbols with those used by
Amann in his section (c) in 1459.

In the De triangulis II.xii and II.xxiii, Regiomontanus uses algebra to solve geometric
problems.[550] In Johannes Schöner’s printed edition [Regiomontanus 1533: 51, 56],
the exposition is purely rhetorical, but in the manuscript[551] marginal calculations[552]

make use of for res and for census – both superscript – both fairly similar to
what Regiomontanus had done in the Bianchini calculations, the census also to its shape
in Amann’s section (c), while the res can with good will be considered a variant of the
secondary shape in his section (f); possibly, they are Regiomontanus’s own contractions
of re[s] and ce[nsus].

The last piece of evidence concerning Regiomontanus’s practice of algebra is the
manuscript New York, Columbia University, Plimpton 188 (more precisely its first part,

549 We also encounter shapes that could be meant as , close to (regularly found in Italian
manuscripts) but could also be a ligatured pen variant of the first shape. The facsimiles do not allow
us to distinguish, only inspection of the manuscript might perhaps decide.

550 According to [Zinner 1990: 52, 65], book II was probably written in Spring 1463, thus before
the letter to Bianchini.

551 Facsimile [Kaunzner 1980: Abb. 2, 3].

552 These were seemingly added after the main text was written, but we may presume that the
calculations were first made on a separate sheet or a slate.
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which at some later moment was bound together with other documents [Folkerts 1980:
190].

This first part, datable to 1456, was once in Regiomontanus’s possession and annotated
by him. It is itself composite, the first section being a not quite complete copy of Jean
de Murs’ Quadripartitum numerorum, the second a copy of Gerard of Cremona’s
translation of al-Khwārizmı̄’s algebra. A third part is clearly related to Amann’s section
(b).[553]

The annotations to the first two sections show that Regiomontanus, coming out of
the university tradition, preferred the classical methods – he often shows how a result
reached by algebra can alternatively be grounded in geometry or arithmetic; algebra was
obviously not his foremost mathematical tool. That confirms what we can read out of
De triangulis: he has recourse to algebra when being unable to find a geometric way,
hoc problema geometrico more non licuit hactenus [Regiomontanus 1533: 51].

Most informative is the third section, which begins with the heading Regula de cosa
et censo sex sunt capitula, per que omnis computatio solet calculari, “six are the chapters
of cosa and census, by which every computation is habitually calculated”. It then gives
the basic six rules, in abbacus style (starting with a normalization) and order, each (at
least the first two, on fol. 85r ) followed by an example with discussion. After the first
example rules for the multiplication of powers are inserted, whose most noteworthy feature
is that the name for the fifth power is duplex cubus (cf. above, note 543).

There can be no doubt that whoever wrote this – probably Regiomontanus, see
imminently – used a model descending from the abbacus tradition; an independent
compilation produced piece-wise by Regiomontanus would have no reason to restart with
basics after having presented them in section 2, and to change the terminology from res
to Tuscan cosa – and certainly not to invent the “double cube” independently. We may
guess that this model was already produced in a German university environment, but we
cannot be sure – Bianchini’s Flores almagesti, written at the Ferrara court around 1440

553 Paul Lawrence Rose [1975: 93, 112 n. 33] asserts that this part is in Regiomontanus’s hand;
as Folkerts [1980: 200] points out on the basis of the different ways to write the numerals 4 and
7 in the text and in the annotations, this is far from certain (but according to [Zinner 1990: 31]
it could mean that the annotations were written after 1459, while the copy itself was made in 1456
or before). The Quadripartitum text was definitely not copied by Regiomontanus. The third section
is the one which carries the date 1456 on fol. 85r. Here, the shapes of 4 and 7 are in the style
Regiomontanus used by then.

Unfortunately I have only been able to control the few pages (the first page of each of these
three sections) made available at

https://digital-scriptorium.org/xtf3/search?rmode=digscript;smode=advanced;
field1=shelfmark;term1=Plimpton%20188;join1=token;operator1=and;field2=text;
join2=token;operator2=and;field3=text;join3=token;datetype=range;docsPerPage=1;
startDoc=1;fullview=yes (accessed 7.10.2010, apparently defunct 10 May 2023).

for the rest I have had to rely on the secondary literature I refer to.
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or later [ed. Heeffer 2015] is also in Latin (so different, however, that a link or just
inspiration can be excluded – it was indeed only in 1464 or at a later moment that
Regiomontanus annotated a copy of that work).

On the first page of this section, “less” is abbreviated four times as and twice
as . cosa is sometimes written in full, sometimes abbreviated (once superscript,
once not).[554] census is not abbreviated on this page, but according to [Folkerts 1980:
201] later as superscript , while radix (meaning square root) is written , as long since
done by abbacus writers. Since Folkerts asserts that all these abbreviations are used
generally in all Regiomontanus’s algebraic writings, which is clearly not the case, one
may suspect Regiomontanus’s usage to be unsystematic not only on the first page but
throughout the third section.

All in all, there is no reason to see Regiomontanus as the inventor of algebraic
symbolism. Mostly we find less than systematic use of abbreviations. In the Bianchini
notes and the calculations accompanying the theorems of De triangulis, they serve in
schemes, one of which (as we have seen) is clearly taken over from an Italian model,
while the others have at least adopted a borrowed principle (maybe more even there, maybe
not). The material collected in the three sections of part 1 of Plimpton 188 are evidence,
first of all, of an all-devouring appetite for learning about a new branch of mathematics
(with which, as the annotations to section 1 show, he was not yet familiar); in this situation
there is no reason to reproach him, nor to hide, that he was an eager eclectic learner, and
no systematizer.

Nor is there any reason to believe that Amann should have learned his algebra or
algebraic notation from Regiomontanus, as sometimes supposed. The most explicit
formulation of the view may be [Folkerts 2006: 8], central to which is the similarity
between the heading of section 3 of the Plimpton manuscript and that of section (b) of
Clm 14908, the former

Regula de cosa et censo sex sunt capitula, per que omnis computatio solet
calculari,

the latter
Regule dela cose secundum 6 capitula, und mit den selben capitel mag man alle
rechnung machen.

Obviously, the two headings are close relatives; but firstly, as we remember, section (b)
was not written by Amann, even though he must have known the model from which it
was copied, since he can provide a proof that was omitted by the copyist. So, if this was
copied from Regiomontanus’s text, both of them must have had access to it. It is not
sufficient that Amann perhaps visited Vienna in 1456 and there perhaps met
Regiomontanus.[555] Further, if copying, the anonyme must have known that de cosa

554 The lack of system is illustrated by how 2 parts into which 10 is split are written:

1 10 1 cosa

555 Actually, in 1456 both were primarily interested in astronomy, and the 20-year old Regiomontanus



– 354 –

should be changed into something Tuscan, almost succeeding with his dela cose. So, he
must in any case have had more information than could be glanced from Regiomontanus’s
text. At the same time the two texts are too close to each other to allow a hypothesis that
what was written in Clm 14908 in 1461 was based on memory of something the writer
had seen five years before.

Moreover, as we remember, section (b) used ∂ for the ding, nothing like
Regiomontanus’s . Any idea that Amann and his collaborator learned from
Regiomontanus about the possibility to use abbreviations for algebraic unknowns can be
discarded, since they had been used for well over a century by many abbacus writers.

All in all, the beginning of Rechenmeister mathematics in German area (including
Rechenmeister algebra) was the outcome of multiple exchanges, not of the activity of
a single genius – just as the emergence of abbacus mathematics in Tuscany, Umbria and
Lombardy in the late 13th and the early 14th century.

Two manuscripts, a university lecture, and the first prints

Mathematical printing came later than the new mathematics to Germany – speaking
of the latter at its beginning as Rechenmeister mathematics may be even be a misnomer,
since the Rechenmeister profession too was still in statu nascendi and hardly yet in
possession of a characteristic mathematical style or culture. At first we shall therefore
look at another manuscript, Dresden, Sächsische Landesbibliothek, C 80 – consisting of
many parts of disparate origin, and once in the possession of Johannes Widmann (ca
1462–1498 or later), on whom below.

The manuscript is one of those that contain Wolack’s lecture (fol. 303v–303r ). It is
also one of the three manuscript that conserve Robert of Chester’s translation of al-
Khwārizmı̄’s algebra (fol. 340r–348v ). Of interest for our present concern is that all three
of these were made in south-German area around 1450 [Hughes 1989: 11]. The present
copy is incomplete, interrupting before the presentation of the rule of three (which is found
separately and independently elsewhere in the manuscript); the others[556] contain an
appendix listing the six basic algebraic cases in abbacus order and style (i.e., having a
division as first step of the rules). They also use abbreviations for dragma,
cossa/radix[557] and zenso. Hughes printed rendering does not show their shape
unambiguously, but a marginal annotation on fol. 1r in the Vienna manuscript (in the same

was famous only as a calendar-maker and as an astrologer – cf. [Zinner 1990: 31–44] ; so, if they
met and discussed, the discussion would hardly have concerned Regiomontanus’s attempts to learn
about algebra. Moreover, according to Ernst Zinner, there are no traces in Amann’s writings that
he knew any Vienna astronomy postdating Johann von Gmunden, who died in 1442.

556 Vienna, Österreichische Nationalbibliothek, cod. 4770, fol. 1r–12v; and Trier, Stadtbibliothek,
cod. 1924/1471, 393r-400v.

557 The Trier manuscripts has both, each in a single plene writing – see [Hughes 1989: 67, apparatus].
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hand as the text) which is reproduced in Hughes’ edition represents the first power by
; the second power is in any case derived from z – probably something like (

as well as are used in C 80, fol. 350v ). Both cossa and zenso belong to the northern
part of Italy, and none of them seem to turn up in abbacus writings before the 15th
century.[558] There is thus no reason to ascribe this appendix to Robert, as occasionally
suggested.[559] But it is evidence that Robert’s translation reached Germany in the
company of algebraic material from northern Italy – thus evidence of a further component
of the network linking the emergence of Rechenmeister mathematics to Italy.

The two constituents of the Dresden manuscript that have most to tell about the import
of abbacus algebra into German lands are a Latin Algebra and a German Algebra (both
anachronistic titles under which they are known today, none is found in the manuscript).
An edition of the former (fol. 350r–364v ) was prepared by Wappler in [1887: 11–30],
one of the latter (fol. 368r–378v ) by Vogel in [1981].

The German Algebra on its own is evidence of the complex reception: the number
term in equations is designated in some five different ways (two of them “symbols”, with
variations), the first power in equally many, the second to fourth in two to four each –
see the scheme in [Vogel 1981: 11]. This is not due to the involvement of two
mathematically incompetent copyists [Vogel 1981: 18]; both of these draw on a variety
of sources, that in part point to strains in the Italian tradition that we have not encountered
in the preceding discussion of German writings – thus wurczell von der worczell (“root
of the root”) for the fourth power (fol. 368r ) and radix rellata for the fifth (fol. 373r );
further repeatedly from fol. 371r onward the pseudo-fraction notation which we know
from Dardi (above, p. 215), where the apparent denominator is meant as a denomination
(at times with the misunderstanding that instead the “denominator” is the coefficient and
the “numerator” the denomination).

There is no need to go into detail, full documentation is presented by Kurt Vogel
in his commentary.

The Latin algebra is rather different though still (as we shall see) an eclectic
conglomerate. Most remarkable is a systematic notation where the first five powers (starting
with power 0, the unit for numbers) are written , , , , and . Radix, “[square] root”,
is abbreviated “.”, which fortunately does not also serve as punctuation;[560] it is meant

558 Dardi, for instance, writes cosa and çenso; that at least çenso is no invention of his copyists
is confirmed by his abbreviation ç (above, note 297).

559 One might indeed read this out of [Hughes 1989: 26], but I doubt that this is what is intended.
Vogel [1981: 11] also lists these abbreviations as belonging to Robert; one has to go to the note
on the next page to see that what is meant is an appendix to the Robert text, not that text itself.

560 Neither as a “full stop” separating sentences nor to set off numbers from words, cf. above, note
354.
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to be taken of the ensuing power with coefficient.
The Latin Algebra begins (fol. 350r, ed. [Wappler 1887: 11]) by showing how to

reduce equations with two or three members to the lowest possible powers;[561] in this
connection it is explained that three-member equations are not dealt with in the algebraic
rules unless the middle [power] is equally long from the extremes (as we have also seen
in Pacioli).

Then follow rules for how the reduced equations are to be solved [ed. Wappler 1887:
11]:

When are made equal[562] to , then the [563] is divided by the , the cube root
of the outcome is the value of the thing [res ].

When are made equal to , then the is divided by the , the square root of the square
[root] of the outcome is the value of the thing.

When two neighbouring signs [signa, i.e., powers] are made mutually equal, then the minor
sign is divided by the major, and the value of the thing will be known.

When two signs are made mutually equal, between which one sign is in between in the
series of signs, then the minor is divided by the major, the square root of the outcome
is the value of the thing.

[similarly for two or three intervening powers]
When three signs are made mutually equal, that is, when three signs are put into an

equation, then they are divided singly by the maximal of the three signs, and the
medium sign afterwards is halved; and the half is multiplied in itself. This, however,
is done in three ways [...].

[these are then explained[564]].

Paradigmatic examples for 18 rules with indicated solutions follow on fol. 350v–351r [ed.
Wappler 1887: 12f ] (the six basic cases are omitted) – in order to facilitate comparison
I shall use the same notation as above (conserving the explicit dragma; the indication
of addition by “+” belongs in the manuscript[565]) and start numbering with 7:

561 Evidently, this insight had been present in abbacus algebra since the very beginning – but making
it explicit was fairly new. It is also done in Modena, Biblioteca Estense, Ital. 578, fol. 7v–8r (dated
ca 1485 by Van Egmond [1980: 171] on the basis of watermarks). See [Høyrup 2019a: 858–860].

562 assimilatur, a term not borrowed from any of the Latin translations of al-Khwārizmı̄’s algebra,
but shared with the appendix added to the Robert translations [ed. Hughes 1989: 67], which also
makes use of the same abbreviations.

563 As we see, the coefficients are understood in the expressions like “the ” (where the article,
expressed in Italian works, is by necessity absent in this Latin text); on this account, Dardi was
more explicit than the present writer.

564 In the fifth case the double solution is forgotten.

565 From now on, + (as also –) became standard in German writings, not least perhaps because of
use in Widmann’s Behende und hubsche Rechenung auff allen kauffmanschaft from [1489].
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LA17 ZZ = 3K; t = 3
LA18 1CC = 16C; t = 4
LA19 1CC = 8t; t = 2
LA110 1CC = 81Ø; t = 3
LA111 1K = 6C; t = 6
LA112 1K = 25t; t = 5
LA113 1K = 64Ø; t = 4
LA114 1K+2C = 15t; t = 3
LA115 1K = 3C+4t; t = 4

LA116 1K+5t = 6C; t = 5
LA117 CC+3K = 10t; t = 2
LA118 CC = 5K+6C; t = 6
LA119 CC+3C = 4K; t = 3
LA120 2C = √(16C); C = 4, t = 2
LA121 1C = √(8t); t = 2
LA122 1CC+3C = 108Ø; t = 3
LA123 1CC+16Ø = 17C; t = 4
LA124 1CC = 8C+9Ø; t = 3

The copyist (thus informing us that he is a copyist mainly following a model) next explains
to have found elsewhere as no. 15 (with subsequent numbers thus increased by 1) a case
“..12 = 1 +3 ”, with solution = 3 – later when explained instead appearing as “.12 =
1 +3 ”; the solution should obviously be = 3, as found correctly but restated wrongly
in the explanation that follows.

An explanation is given not only for this extra case but also for cases 14 and 15 –
those where square roots appear and which therefore cannot be reduced directly to one
of the six fundamental case.

This sequence of cases seems not to be known as a whole from Italian sources; the
basis idea to let “αCC = βK ” precede “αCC = βC ”, etc., is shared with Biagio (above,
p. 206); Benedetto follows the principle for the cases involving CC but not for those
involving K, see note 293 – the similarity may hence be accidental. Equations with radicals,
on the other hand, might make us think not so much of Dardi’s awesome exploration of
that topic as of the scattered examples of simpler cases involving radicals found in other
Italian manuscripts (above, p. 220). However, even on this account there is no strong
evidence for any link, independent exploration of such possibilities after the migration
of the algebraic technique is quite possible.

After this comes, on fol. 351r–v [ed. Wappler 1887: 13–15], a different set of 24 rules –
even this one different from anything known from the abbacus traditio. This set (now
including the basic six cases) is stated as explicit rules and initially explains what would
have belonged at the very beginning if this Latin Algebra had been coherent treatise and
not a conglomerate: namely the meaning of numerus, cossa and census (not, however,
identifying the appurtenant abbreviations but going on using them afterwards).

However, we should not fully identify + with the modern arithmetical operator; it also functions
as an abbreviation for et, “and”, as we can see from these passage on fol. 352r of the Dresden
manuscript: resultans in se multiplicare + a subtrahere, “multiply the outcome in itself + from
subtract”, and multiplica in se, + sunt 25/36 , “multiply in itself, + they are 25/36 ”.
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LA21 N = αt
LA22 N = αC
LA23 βt = αC
LA24 N = αC+βt
LA25 βt = αC+N
LA26 αC = βt+N
LA27 αK = βC
LA28 αK = βt
LA29 αK = N
LA210 γt = βC+αK
LA211 βC = γt+αK
LA212 αK = γt+βC

LA213 αCC = βK
LA214 αCC = βC
LA215 αCC = βt
LA216 γC = βK+αCC
LA217 βK = γC+αCC
LA218 αCC = βK+γC
LA219 αC = √(βt)
LA220 αC = √(βC)
LA221 αCC = N
LA222 N = βC+αCC
LA223 βC = N+αCC
LA224 αCC = N+βC

While the preceding examples were all normalized, the present rules presuppose (in
abbacus style) that the equations are non-normalized, and therefore have a division as
their first step. The first six cases, we observe, are in abbacus order. LA25 contains a
strange mistake: instead of explaining the double solution, it states that the solution
(presupposing α = 1) is

= – ,
β

2

β

2

2
Ø

adding afterwards that “if cannot be subtracted it should be added”. Similarly in the
derived cases LA211 and LA217.

Then, fol. 351v–352r [ed. Wappler 1887: 15f ], follows yet another set of rules, now
16, under the title Compendium de et re, “compendium about and thing” – now with
numerical examples:

LA31 αt = N
LA32 αC = N
LA33 αC = βt
LA34 αC+βt = N
LA35 βt = αC+N
LA36 αC = βt+N
LA37 αK = N
LA38 αK = βt

LA39 αK+βC = γt
LA310 αK+γt = βC
LA311 αK = βC+γt
LA312 αCC = N
LA313 αCC = βt
LA314 αCC = βC
LA315 αCC = βK
LA316 βK = αCC+γC

This time the selection and the order are extremely traditional. The list coincides with
Jacopo’s cases Ja1–Ja18 (above, pp. 184 and 187), omitting only Ja9 (αK = βt ) and Ja17
(αCC+βK = γC ).

Fol. 352v–364v [ed. Wappler 1887: 16–30] contain illustrating examples
(aporismata ) for the set LA2. The first case gets no less than 29 – all traditional
recreational or number problems, many of type “divided 10”, also some give-and-take.
For the remaining basic cases, 4 to 8 examples are offered. Two of the illustrations of
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the fourth case deal with compound interest. Many of the solutions make use of formal
fractions. After the examples for the fifth case comes (fol. 359r, ed. [Wappler 1887: 26])
a somewhat better formulation of the principle of double solution: “observe that the fifth
rule has this privilege over the others that when the root cannot be subtracted, then it
should be added”.

The following cases get one illustration each. LA219 is merely illustrated by the simple
equation, “1 is worth .8 ”; similarly LA220. All the others are formulated around the
volume, surfaces and sides of a cube. There is nothing similar to the Italian construction
of intricate versions, for example, of give-and-take problems (involving square roots or
products) that lead to higher-degree problems, nor even examples of the fake-intricate
problems around numbers with given ratio. It seems a reasonable assumption that the set
of problems illustrating LA27–24 have been newly produced in an environment that did
not have access to Italian material – that is, in German area. It is thus the first evidence
of independent productive work within the new discipline.

After two pages (fol. 365r–v ) with further algebraic calculations follows (fol. 366r–v)
an extract from what is claimed to be from “Master Campanus’s cautions [cautele ] from
the book about Algebra or about cossa and census”, making use of the same abbreviations
for powers and likely to be linked to the rule set LA2. The ascription to Campanus can
be safely discarded – in his times (the mid-13th century), nobody would have referred
to neither cossa nor cosa. After these two pages comes the German Algebra, already
discussed.

The manuscript Vienna, Österreichische Nationalbibliothek Pal. 5277 contains on fol.
2r–33r a section Regolae Cosae vel Algebrae, which has been edited by Kaunzner [1972]
and was already presented by Gerhardt in [1870: 143–153]; its original predates
1521,[566] we do not know by how much. It makes use of the same abbreviations as
the Dresden algebras until (except at times using N instead of , at others writing it
rather as φ), also within a systematic exposition of the arithmetic of polynomials (including
that of formal fractions), that is, as genuine symbols on which the operations are
performed. It also introduces a numbering of powers (identical with exponents, being
the first, etc.[567]) and shows in a scheme how products of powers can be calculated
from these. It uses + and – systematically, but not quite as we would do it – after the
sequence of powers go on alt (for numerus altiore ), + and + (which does not make
much sense, unless we consider + an unfortunately systematic mistake for + ). At

566 Errors that were subsequently corrected leave no doubt that the text is a copy – thus a meaningless
docebunt which has then been rectified as valebunt [Kaunzner 1972: 130 n. 44].

567 This is thus more “modern” than Pacioli’s Summa, but could still be a fresh inspiration from
Italy: the same principle is found in the Modena manuscript referred to in note 561. Independent
invention is just as possible.
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the end of this section (fol. 11r, ed. [Kaunzner 1972: 136]), the rule of three is presented,
referring to the quantities involved as the third, the middle, and the first (nothing is said
about similarity, which would indeed be out of place when these quantities are
polynomials); a counterfactual example is given, “3 +4φ are 6 –4 , what are 5 –6φ ?”;
the outcome is given as an unreduced formal fraction, (30 –20 –36 +24 )/(3 +4φ).
I have never noticed anything similar in Italian sources (the closest being Dardi’s use
of the rule of three for computation with arithmetical, not algebraic binomials – above,
p. 213) and suppose we are confronted here with another innovation produced in the
German environment.

Then, like the beginning of the Latin Algebra, the present treatise explains (fol. 11v,
ed. [Kaunzner 1972: 136]) how to reduce two- and three-member equations to the basic
cases. A section with eight rules with examples follow, taking advantage of these
reductions; for each rule, various cases that can be reduced to the basic type are included –
for the first thus 3 = 6φ, 4 = 8 , 5 = 10 , and three more. The rules thus reduced
lead back to these:

Wi11 αt = N
Wi12 αC = N
Wi13 αK = N
Wi14 αCC = N

Wi15 αC+βt = N
Wi16 αC+N = βt
Wi17 βt+N = αC
Wi18 βC+N = αCC

The rule for Wi6 identifies the double solution correctly. As in the Dresden manuscript,
many examples (no less than 27) are provided for the first rule, much fewer for the others
(some in Latin, some in German, the latter almost exclusively about commercial problems).
At the end of this section (fol. 30r–31v, ed. [Kaunzner 1972: 154–156]) we find examples
for two rules that have not been enunciated in the previous scheme, αC = √(βt ) and αC =
√(βC ) (which we have already encountered as LA219 and LA220); a general formulation
for three-member equations similar to what is found early on in the Latin Algebra (above,
p. 356); and a rule for (n+αt )/(βt ) = m.

And then at the end (fol. 32r, ed. [Kaunzner 1972: 156]), a list of 24 Regulae cosse,
apparently different from any of the lists found in the Latin Algebra:
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Wi21 N = αt
Wi22 βt = αC
Wi23 βC = αK
Wi24 βK = αCC
Wi25 N = αC
Wi26 βt = αK
Wi27 BC = αCC
Wi28 N = αCC
Wi29 N = αt+βC
Wi210 γt = βC+αK
Wi211 γC = βK+αCC
Wi212 αC = βt+N

Wi213 αK = βC+γt
Wi214 αCC = βK+γC
Wi215 βt = αC+N
Wi216 βC = αK+γt
Wi217 βK = αCC+γC
Wi218 N = βC+αCC
Wi219 αCC = βC+N
Wi220 βC = αCC+N
Wi221 N = αK
Wi222 βt = αCC
Wi223 αC = βt
Wi224 αCC = βCC

As they stand, Wi223 repeats Wi22, while Wi224 is either trivial or impossible, depending
on the values given to the coefficients. Gerhardt [1870: 146 n.1] is doubtlessly right that
Wi223 is a mistake for αC = √(βt ), while Wi224 should have been αCC = √(βCC ).[568]

Once more we thus see LA219 and LA220 repeated, and with this repair the list Wi2

coincides with LA2 yet with a new ordering where equation types that coincide after
reduction (in agreement with what was taught on fol. 11v ) are brought together.

Fol. 379r–384r contains treatises about the arithmetic of roots and of binomials – not
reaching the depth of what we find in the Florentine encyclopedias but rather similar to
Ghaligai’s briefer exposition of what he has learned from his master del Sodo and from
Benedetto (above, p. 326).

Taken together, however, the algebraic treatises contained in the Vienna manuscript
offer evidence of a development from the algebraic eclecticism of Clm 14908 and the
Dresden manuscript toward coherence and agreement about notations – not only can the
first five “cossic numbers” (as they were to be called) φ, , , , and now be
considered established; so were + and –. Moreover, the use of the algebraic notation within
formal calculations – as a genuine though still incomplete symbolism – was approaching
the Italian level.

All of this concerns manuscripts and thus private study. In 1486 Widmann proposed
and held a series of lectures over algebraic and related topics at the Leipzig university
[Gärtner 2000: 6, 34f ]. According to the announcement, it covered “the 24 rules of algebra,
and that which they presuppose” – specified to include algorism for fractions, ratios and
surds. Since Widmann possessed and annotated the Dresden manuscript we may safely
assume that the lectures were based on the Latin Algebra but also drew on other topics

568 Another piece of evidence that what is contained in the Vienna manuscript is a copy – the small
dots standing for square root would easily be overseen.
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covered in the codex.[569] Judging from what he was to publish in print we may also
be confident that he presented the matter coherently.

Widmann was indeed to become one of the first to publish within the new
Rechenmeister area. Not the first, however. The probably earliest “book” to survive[570]

is the anonymous “Trento algorism” printed in ca 1475 in Trento in Südtirol (annexed
by Italy as war booty in 1919, but definitely of German culture in the 15th century) –
that is, some 75 kilometres from Treviso, where the first Italian abbacus book was to be
printed three years later, and on the trading route connecting Nürnberg, Regensburg and
Bamberg (and further north Leipzig) to Venice.

It consist of six sheets; an edition repairing some disorder in the surviving specimen
was made by Vogel in [1963]. Strictly speaking it is no algorism at all, in spite of
presenting its topic as Algorisimus – all its numbers are expressed in words or in Roman
numerals. Instead of the algorithms for calculation by means of Hindu-Arabic numerals
it teaches the use of a line abacus and Rechenpfennige (counters), the habitual tool of
German merchant-calculators, for addition, subtraction, halving, doubling, multiplication,
division and (on two lines) arithmetical progression.[571] The inclusion of halving and
doubling shows influence from the Latin algorism tradition – they are treated, in the same
order, for example in Sacrobosco’s Algorismus vulgaris [ed. Pedersen 1983: 181–190].
Together with a number of interspersed Latin phrases pointed out by Vogel [1963: 184
n. 8], this awakes the suspicion that the author came from clerical or university culture
rather than being a Rechenmeister.

This introduction of numerical techniques takes up three of the 12 pages. What follows
confirms that Hindu-Arabic numerals were no necessary tool for abbacus-like merchant
calculations, as said above (p. 173). Here comes indeed an explanation of the rule of three,
called regula ternari, followed by four examples. The formulation of the rule is somewhat
corrupt, but it is clear that like the probably later Vienna manuscript (above, p. 360) it
refers to the given numbers as first, last and middle; but it also points out that the first
and last must be similar, gleich.

A number of ten more “rules” follow – mostly problems, which however illustrate
a principle and can in this sense be considered rules. To these belong partnership with
identical or different durations of the participation (rules 2 and 3), summation of an

569 Widmann is not likely to have known the Vienna manuscript, which however does not exclude
familiarity with material that was copied into it, unless the influence goes the other way; suspicious
is at least the shared notion of an “algorism of surds”.

570 In a single copy, a fact that (together with what se shall se concerning the Bamberger Blockbuch,
and the first edition of the Bamberger Rechenbuch ) warns us that others may well have existed
but gone lost.

571 On this line abacus, the levels of the lines and of the spaces between them (also used) are 1,
5, 10, 50, 100, etc. That is, they are adapted to Roman numerals.
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arithmetical progression (rule 5), meeting or pursuit with given constant speeds (rules
6 and 8), a “tree problem” about a tower introducing the single false position without
giving it a name (rule 9); the rest are applications of the partnership rule, for instance
to the twin inheritance problem (rule 4) or to “fallacious” proportional sharing with relative
shares that do not add up to 1 (rules 7, 10 and, in general formulation, 11). We may notice
a certain similarity with Wolack’s lecture.

Slightly longer is an arithmetical block book (a book printed from woodcuts and not
from movable type) [Wagner(?) 1475(?); ed. Vogel & Schemmel 1980]. It is undated
but almost certainly precedes 1482 – Eberhard Schröder [1988: 303] assumes a date around
1475 and finds it plausible that it was written by Ulrich Wagner, one of three Rechen-
meister attested in Nürnberg in 1457, remaining active there until his death in 1489/90.

The mathematical substance of this “Bamberger Blockbuch”[572] is still modest,
in no way going beyond the immediate basic needs of the students of a Rechenmeister –
except in one respect: Wagner (assuming he be the author) uses exclusively Hindu-Arabic
numerals and does not touch at the use of a line abacus. The first two of its 24 pages
(13–15 lines each) contain the multiplication table (going until 10×10). Monetary and
metrological conversions follow (3 pages), after which the regula von dre is introduced.
As does the Trento Algorisimus, the Blockbuch refers to the given numbers as first, last
and middle and also points out that the first and last must be similar, gleich; since there
are no traces of copying one way or the other, this formulation can be supposed to have
circulated. The Blockbuch adds that the outcome will be as the middle.

The rest of the book is dedicated to problems to be solved by means of this rule. All
in all, much less than the basic curriculum of an abbacus school, even if we disregard
that the Blockbuch does not use space on prescribing how to calculate with the Hindu-
Arabic numbers; even the Trento Algorisimus has a wider range.

In [1482], Wagner (now identified) published another Rechenbuch, of which only
a fragment of a single copy survives – just extensive enough to tell the authorship and
to show that it is substantially identical with a second edition published anonymously (and
unpaginated) in [1483]. This latter Bamberger Rechenbuch was published in facsimile
with a slightly modernized transcription by Schröder in [1988].

Beyond a number of problems and formulations which it shares with the Blockbuch,
the exclusion of the line abacus corroborates the hypothesis that they have the same author.
(It also has much in common with the Regensburg Practica [Vogel 1959: 34], thus
demonstrating that shared problems alone is no proof of shared author.) Being around
six times as long (156 pages of some 16 lines each), it evidently contains much more
material than the Blockbuch.

After an initial introductory passage about why number is important (referring to

572 Thus called after the city where a copy has survived. The book is likely to have been produced
somewhere in Franconia, which encompasses Nürnberg as well as Bamberg.
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Solomo’s Wisdom, not to philosophy nor to Boethius), Wagner shows how to calculate
in the place-value system and, related to this, with multi-level metrological numbers;
difficult matters like casting out sevens, fractions and divisions are included.

About the rule of three – here called “golden rule”, though with a reference to Italian
usage – it is once more said that the first and third must be similar. The rule is taught
with a large number of examples, separated in chapters according to the type of goods
dealt with – quite reasonable from a tradesman’s point of view, since it determines the
metrologies to be used, each with its own peculiarities, and also whether impurities are
to be taken into account. For instance (chapter 12), cloves come with a certain fraction
of stalk (mathematically of course no different from the loss of weight of wool when
washed, or from calculating with tare). Chapter 13, about partnership, transforms the twin
problem into a triplet problem, and also has a colourful story about a debtor who runs
away from his debts but still leaves behind something to be shared between the creditors.
Chapter 14 takes up tollet calculation, a method (related to the welsche Praktik ) allowing
to reduce the intricacies arising when a rule-of-three calculation involves different
metrologies for the numbers supposedly “the same” – for the first time described in print
in the Wagner’s book, but certainly a practice current among merchants – also, since tollet
comes from tavoletta, among Italian merchants.[573] The Germanized name indicates,
however, that Wagner and his Rechenmeister successors have adopted the technique from
the practice of Germanic-speaking merchants, not from Italian traders or books (when
speaking of the rule of three, they manage better to render the Italian expression).

Chapter 15 deals with barter, taking into account the different values of goods when
sold cash or in barter. Chapter 16 first speaks about gold, explaining how German
metrology for gold relates to the Venetian carat system; afterwards it presents four
recreational classics: a “tree” problem (here as in Wolack’s lecture and the Trento
Algorisimus about a tower), used to introduce the single false position; two pursuit
problems, one with constant speeds and one with an arithmetical increase; and a cask
emptied through three taps. Chapters 17–21 deal with metrological and monetary
conversions.

So, apart from adding tollet calculation, Wagner’s book stays strictly within what
could be taken over from the Italian tradition. But it speaks solely of what is relevant
in commercial life (though sometimes in recreational dress), excluding all mathematical
extravagances. The Nürnberg Rechenmeister might compete, as we have seen, to the point
of ending up in court; but they do not appear to have engaged in the more civilized
competition by means of intellectual challenges.

573 The method is explained in [Tropfke/Vogel et al 1980: 365]. We have already encountered the
habit to calculate separately with the different levels of a composite entity in the Italian material,
though without the scheme introduced here – for instance when presented by Fibonacci as the
“vernacular way” (above, p. 62; cf. also note 36). The complications it eschews can be understood
from note 88 above.
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Apart from the appearance of a second edition, there are no traces that Wagner’s book
was a great success – extremely few copies survive, and there were no further editions.
The next Rechenbuch was more fortunate. It was published by Widmann in [1489],[574]

with new editions in 1500, 1508, 1519 and 1526; [Gärtner 2000] contains a modern edition
based on the first edition.

Wagner shows himself so familiar not only with the mathematics of merchants but
also with the goods they were trading in that Schröder [1988: 302] suspects him of having
been an merchant himself before becoming a Rechenmeister. Widmann, instead, as we
have seen, was a university scholar.

His Behende und hubsche Rechenung auff allen kauffmanschaft (“Skillful and Pretty
Calculation for all merchantry”) is at least three times as long as the Bamberger
Rechenbuch – 471 pages, each of which contains somewhat more typographical units than
those of Wagner’s book.

As we are accustomed to, a part 1 (fol. 8r–38v ) introduces the Hindu-Arabic number
system together with its use – in addition, subtraction, doubling, halving, multiplication,
division, arithmetical progressions and extraction of square and cube roots. Inspiration
from Sacrobosco is not only visible in the substance, he is also referred to twice (fol.
5r, 27r ). The line abacus is not mentioned.

Part 2 is subdivided into three chapters. The first (fol. 39r–56v ) teaches the algorism
of fractions – finding no place for progressions but adding tollet calculation at the end.
The second chapter (fol. 56v–73v ) deals with “proportional number” (pointing also to the
connection to the rule of three); after a reference to the treatment of the topic in
Campanus’s Elements (and even an off-hand reference to the binomials of book X) it
introduces the Boethian names for ratios, and teaches the reduction to smallest terms and
shows how to “add” and “subtract” ratios. At the end come hubsche Fragen, “pretty
questions” – six of which ask for two or three numbers in given ratio that fulfil some
other condition, five for the division of a given number into three or five parts; three ask
other number questions.

“The third and major chapter of the second part” (fol. 74r–203v ) speaks of “number
directed at merchantry”. At first comes the Regula Detri, the rule of three, presented more
or less as by Wagner, though omitting the name “golden rule” and explaining matters
more broadly, also with reference to proportions and to Elements VI and VII. A large
number of examples are organized under separate rules (often, once again, determined
by the kind of merchandise dealt with). These are followed by exchange of monies, barter
and partnership. Intermingled with these we find a number of recreational classics – lazy
worker, twin and unknown inheritance, purchase of a horse etc. In the very end of the
second part the regula falsi is explained and exemplified – that is, the double false position.

574 Still unpaginated; I shall refer to the foliation added in pencil in the specimen in the Bayerische
Staatsbibliothek, the title page being fol. 1r.
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The third part (fol. 203v–234v ) mainly deals with geometry, but at the end (fol.
234r–v ) come select recreational problems meant to refresh the reader who by now,
Widmann supposes, must be “bored and exhausted by heart”. As discovered by Kaunzner
[1978], the geometry as well as the recreational coda are translated uncritically from a
Latin precursor conserved (in original or copy) in the manuscript Munich, Clm 26639 –
the section in question almost certainly to be dated to the outgoing 15th century [Kaunzner
1978: 7f ]. It thus illustrates – like the inclusion of tollet Rechnung – that the Rechenmeister
did not restrict themselves to importing abbacus material, they combined these imports
with what else they found pertinent for their public (such as tollet ) of from their own
background (the present geometry, Widmann being a university scholar). As pointed out
above (note 50), the Latin text which Widmann uses also elucidates some of the puzzling
influences in early abbacus geometry.

Since even my present reader may now be “bored and exhausted by heart”, I shall
allow myself another frivolous association. My maternal grandfather Frederik Frederiksen
was a brick mason, and in cold and rainy weather he might ask “wasn’t it a bright idea
that the masons built the houses hollow?”. It would appear that this bright idea had not
dawned on German masons five hundred years ago. On fol. 226r Widmann at least asks
for the comparison of the costs for building two houses in a way that presupposes them
to be solid.

Rechenmeister culture attains maturity

The next generation of Rechenbücher, produced by Rechenmeister proper (some with,
some without a university education) went further in the inclusion of local material and
adaptation to local needs, by teaching also the use of the line abacus and describing the
welsche Praktik and visieren (doliometry, the measurement of wine barrels)
systematically[575] – thus Heinrich Schreyber, Latinized Grammateus [1521: Biiiv–viiir,
Eiir–Fvv, Ovr–Qir].

From then on, we may understand the German Rechenbücher as expressions of a new
mathematical culture, developing on its own and spreading in the course of the 17th
century to the whole archipelago of German commercial centres, from the south where
it originated to Emden in Nordfriesland and Riga at the Baltic.[576] This culture was
not borrowed as such from the abbacus tradition but was a local development based in
the local socio-economic and commercial situation in southern and Hanseatic Germany;
obviously it borrowed material and inspiration from Italy, together with the borrowing
of commercial techniques. It would thus be a parallel to, not a descendant of the abbacus
culture – even this not borrowed in toto from Iberian or North African commercial partners

575 On the latter topic, see [Röttel 1996].

576 The distinctive Riga variant, surviving into the 19th century, is presented in [Deschauer 2010],
cf. summary in [Høyrup 2011b].
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though adopting commercial as well as mathematical techniques.
Obviously, there was much communication and much travel between the homeland

of abbacus culture and that of Rechenmeister culture – both as the latter emerged and
later on. That we still encounter a new mathematical culture should merely remind us
that a culture – even a mathematical culture – is always formed on local conditions, in
processes that involve digestion and assimilation of whatever foreign information is at
hand and accepted as relevant. The digestion, however, is performed by the local stomach.
Even “Northern Humanism” (that of Jacques Lefèvre d’Étaples, Thomas More and
Erasmus) was something quite different from original, Italian Humanism – and
Melanchton’s successful Lutheran-orthodox Humanism still something quite different from
the Northern Humanism of an Erasmus and a Thomas More.

The independence of Rechenmeister culture may be illustrated by the balance between
line abacus and written calculation. Adam Ries’s first Rechenbuch, written in 1518[577]

carries the title Rechnung auff der Linien, “calculation on the lines”, and teaches the
technique extensively; the second, from 1522 [ed. Deschauer 1991], is called Rechenung
auff der linihen und Federn, “calculation on the lines and [with] pen”, and explains the
line technique less thoroughly and together with Hindu-Arabic algorithms. The third [Ries
1550] presents itself as Rechenung nach der Lenge, auff den Linihen und Feder,
“calculation [explained] at the length, on the lines and [with] pen”. After four pages’
dedication to Moritz, Duke of Saxony, crammed with learned references to the seven
Liberal arts, to Plato and Aristotle, to arithmetical and geometric justice, to Vitruvius,
etc., and two pages of table of contents, Ries addresses the reader on fol. 1r–v, explaining
that he will first present at length the use of lines in all kinds of mercantile and domestic
calculation, and in this way prepare and facilitate the teaching of the use of numerals.
Indeed, fol. 2r–47r are centred on the line abacus – beginning, however, by explaining
how to write numbers in the place-value system (Roman numerals are absent). Three-
fourths of the section are dedicated to the rule of three, tare, profit and loss, exchange
of monies, conversion between metrologies in use in different places, silver-, gold- and
copper-metrologies, partnership, inheritance and tutelage (genuine, not recreational as in
the abbacus books), and barter. All supposed to be calculated by means of the line abacus.

Jakob Köbel’s Rechenbuch auff Linien und Ziffern, “on lines and by digits” from
[1549],[578] after a thorough description of the algorithms for the line abacus explained
with the assistance of Roman numerals, also illustrates (fol. 54v–56r ) how the regula de
Tri should be laid out on the lines; after that, the lines only reappear when a technique
for finding the day of the new moon is illustrated on lines. Throughout the work, however,
no Hindu-Arabic but only Roman numerals appear, showing that the line technique is
presupposed everywhere in spite of the Ziffern of the title.

577 Since no copy seems to survive of the first edition, we do not know when it was printed.

578 Shorter Rechenbücher from Köbel’s hand had appeared in [1514], [1531], and [1537].
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Köbel had already used Roman numerals in his much shorter book from [1514]. After
him, they become rare. In [1565: Avr], the Leipzig Rechenmeister Matthaeus Nefe (who
demonstrates Humanist inclinations in the dedication and introduction) presents them (after
the Hindu-Arabic numerals and before the line technique) under the names “German
numbers” (deutsche Zalen ) or “imperial numbers” (Keyser zaln ) since they are sometimes
used – also in registers and accounts – because they are difficult to change; but that takes
up only 2 of 596 pages. And then – the last example I have noticed – Roman numerals
are presented by Johann Weber in his New Künstlich und Wolgegründt Rechenbuch, Auff
den Linien und Ziffern [1583a: 4v–5v] after the explanation of the line algorithms (where
number words are used) as “letter numbers, or as some call them, the numbers of the
ancient Emperors and Romans” (Buchstaben Zal, oder wie si etliche die altern Keyser
oder Römer Zal nennen ) – 2 pages out of a total of 535.[579]

The line technique, though gradually becoming less conspicuous, does not disappear.
Yet of the 30 German Rechenbücher from the 16th century I have inspected closely (not
counting re-editions), only three present the line technique without offering also the paper
algorithms: Johannes Albert’s New Rechenbüchlein auf der Federn, gantz leicht, aus
rechtem grund, inn Gantzen und Gebrochen from [1541],[580] which in spite of its title
teaches only the line technique “to the benefit of the simple common man as well as the
novice lovers of arithmetic” (thus the title page); Johann Ober’s Newgestelt Rechenbüchlin,
mit vil schönen exempeln und proben from [1545]; and Michael Stifel’s Deutsche
Arithmetica, equally from [1545], which however should be thought of together with the
counterpart Rechenbuch von der Welschen und Deutschen Practick, which he published
in 1546, and which starts by presenting the paper algorithms and does not teach the line
technique.

Even authors with theoretical pretensions continue to present the lines. The Ramist
Georg Gleydtsmann [1600: Air] explains to do it for the sake of the Teutschen
Rechenschülern, the “German Rechenschul students”, not however “for those ostentatious
persons who pretend to be masters”. For the same reason, the line technique did not
disappear at the end of the 16th century. I have not looked systematically at the following
generations of Rechenbuch authors, but it is taught “at the request of the young” at least
as late as [1674] by Christian Trabeth (auf Begehren der Jugend, thus the title page). Both
explanations illustrate how and why the social basis – the common students, not the
ostentatious would-be masters – shaped Rechenmeister mathematics as something different
from abbacus mathematics.

579 They are not mentioned in Weber’s much shorter Gerechnet Rechenbüchlein Auff Erffurdischen
... [1583b], which starts directly with metrological and commercial matters.

580 Actually a second, enlarged and improved edition according to the title page. According to [Smith
1908: 178] the first edition was printed in 1534; I have not been able to trace it, and what Smith
describes is the third edition.
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Tollet as such seems to disappear rather soon, but its cognate welsche Practik also
survived the 16th century in spite of the objections of certain writers to a technique which
in their view was merely a more longwinded way to calculate by the rule of three[581] –
maybe also because even teachers who had to teach the application of the rule of three
to problems dealing with three-level metrologies found this method more convenient at
least when teaching.

The welsche Praktik is one example of a field which the Rechenmeister shaped as
a discipline (probably more than we can say about the continued teaching of line
calculation) while in Italy it had been nothing but an informal merchant practice, reflected
only occasionally in the abbacus books. But there are more. One is Faktor Rechnung,
“agent calculation”. It is a cognate of partnership calculation, dealing with the situation
that a merchant and his agent (Faktor ) enter into a partnership, the agent investing not
only a capital of his own but also his work. Such problems are regularly dealt with in
abbacus books, where the role of the partner who invests his person is not specified –
but dealt with just as a particular case of the partnership problem (one partner might also
have invested florins, the other florins and ducats, at an unknown relative rate). We may
presume that the crystallization of a new discipline did not depend so much on internal
mathematical dynamics as on a different configuration of commercial arrangements, where
precisely the master-Faktor combination became important.[582]

Another new incipient “discipline” (which however did not go far) was an evident
outcome of internal mathematical dynamics. As mentioned above (p. 365), already
Widmann had included arithmetical progressions among the basic arithmetical operations,
and early 16th-century presentations of the line abacus had followed him.[583] The
theoretically more ambitious writers of the later 16th century (who only deal with
progressions when speaking about paper algorithms) include geometric progressions, which
similarly ambitious abbacus writers had dealt with in different contexts. More striking,
at least two German books also include the harmonic progression, likely inspired by
Boethius’s De institutione arithmetica II. In [Weber 1583a: Civr, Fiiir] this is explained
as a progression where the first number is to the third as the difference between the first
and the second is to the difference between the second and the third. So far this could
be taken from Boethius’s De institutione arithmetica II.47 [ed. Friedlein 1867: 152; trans.

581 For instance, [Gleydtsmann 1600], 9th page of the unpaginated Vorrede. On the other hand Simon
Jacob [1565: 89r] (certainly mathematically ambitious and competent), speaks of the advantages
of the welsche Practick as unendtlich, “infinite”.

582 Another example is Bergwerk Rechnung, “mining calculation”, found for instance in [Nefe 1565:
Sir], dealing with the specific distribution of profit between the miner and the owner of the ground –
in mathematical principle no different from partnership calculation.

583 Thus [Köbel 1531: Fviv] and [Ober 1545: Ciiiir].
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Masi 1983: 174], even though Weber’s numerical example (3–5–15) differs from what
is proposed by Boethius. Then, however, Weber generalizes to longer sequences, and gives
the examples 3–4–6–12 and 12–15–20–30–60, and later explains that a harmonic
progression can be created by division of the product of all numbers in an arithmetical
progression by these numbers singly.[584] A likely source is Stifel’s Arithmetica integra
[1544: 57r–v],[585] which gives the same rule for producing a harmonic progression
together with examples similar to those of Weber – though not quite the same, so common
inspiration cannot be excluded. A background could be Jordanus’s De elementis arithmetice
artis X.34–51 – well known from Jacques Lefèvre d’Étaples’ printed version of that work
[1496; 1514]; on fol. 79v Stifel refers to Jordanus as well as Jacques Lefèvre d’Étaples.

The explanation given by Caspar Thierfelder in the Arithmetica oder Rechenbuch,
auff den Linien und Ziffern [1587: 337] is independent of Weber. According to this book,
a harmonic progression involves only three numbers. He repeats the Boethian definition,
and teaches to find the last number in a harmonic progression (say, a–b–c, a < b ) as
ab/(b–a ). Thierfelder also claims no originality; if he drew on the same source as Weber,
he drew differently.[586]

Retrospectively, after another generalization harmonic progressions (more precisely,
their generalized sum, which for harmonic progressions proper is divergent) became
important in modern mathematics – in the shape of Riemann’s ζ-function ζ(x ) = Σ(n–x);
but that was far in unforeseeable future. Another rudimentary discipline borrowed from
a Latin (but Neolatin) source had absolutely no future, but for a while the mathematically
more advanced Rechenbuch writers felt obliged to present it – in this case certainly not
“to the benefit of the simple common man”; cf. the analysis in [Smeur 1978]. In his
Coss,[587] on which more below, Christoph Rudolff [1525: Hviv] had pointed out that
the regula falsi only solves problems of the first degree – in the formulation that it is
restricted to the “first coß ”.[588] In his Arithmeticae practicae methodus facilis, Rainer

584 The modern explanation would refer to the reciprocals of the members of the arithmetical
progression, but dividing the product allows Weber to avoid fractions.

585 A German translation of the whole work can be found in [Knobloch & Schoenberger 2007].

586 There is some evidence that his source was different. In his Algorithmus [ed. Tannstetter 1515,
unpaginated but p. 85 beginning with the title page], Georg Peurbach also includes the harmonic
progression, and states that it has only three members. Since he does not give the formula for finding
the third term from the first two, Peurbach cannot be Thierfelder’s direct source; but Peurbach’s
treatise had circulated in Vienna for well over a century when Thierfelder wrote.

587 Thus the writing on the title page. I shall use it consistently when citing Rudolff’s book, and
speak instead of coß when referring to the algebraic discipline of the Rechenmeister (in agreement
with the prevailing orthography).

588 Taking advantage of reducibility, Rudolff [1525: fol. Gvir] makes fun of the famous 24 rules
and says that he could create 100. Instead, he operates with these eight cases only:
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Gemma Frisius [1540: XXIIIv] shows that with this precise formulation Rudolff is
mistaken. The trick is simple – for instance, a problem αC = β can be solved as a first-
degree problem with unknown C, and once C is known, the square root can be extracted.
The first example (fol. XXXr ) runs like this:

There is a certain quadrangular area containing a surface of 200 square cubits, whose length
exceeds the width by half; both length and width are asked for. Thus by the rule of false,
posit the width to be 4 cubits, the length will be 6, multiply in each other, 24 results, they
should be 200, we are thus 176 below the aim. Then posit the width to be 20, the length
will be 30, multiply in each other, 600 result, which are 400 above the aim. Until here
every rule of false agrees. But now multiply the hypothesis in square, that is, namely 4
and 20, they will be 16 and 400, let these squares be hypotheses for you. [...]

So, in reality, the square of the width is posited first to be 16, next to be 400; we may
call these the proper positions. In this way, the problem is of the first degree.

After this exercise in superfluous complication Gemma then explains that the problem
is easily solved by a single false position, which is indeed how Pharaonic and Babylonian
calculators would have solved the problem 3000 years before; this is then how Gemma
deals even with cubic and quartic homogeneous problems. He wisely abstains from problem
leading to mixed second-degree equations. In an appendix to book I of his Arithmetica
integra, Stifel [1544: 98r–100r] reports the method, pointing out that it applies to higher
degrees too in infinitum.

Gemma’s insipid correction of Rudolff was taken up creatively by Jacob [1565: 251v],
who refers to it as einen lustigen Weg, “an amusing way”, and takes it as a challenge
to find a similar way to deal with Rudolff’s remaining cases.[589] Before he presents
his findings he states to do so mainly to avoid that common calculators waste much time
with them, and also that he does not intend to compare them to the much faster rules of
the coß. Then (after having shown the application of the regula falsi to first-degree and
homogeneous higher-degree problems) Jacob explains on p. 276r why Gemma’s method
works.

Ru1 αtn+1 = βtn

Ru2 αtn+2 = βtn

Ru3 αtn+3 = βtn

Ru4 αtn+4 = βtn

Ru5 αtn+2+βtn+1 = γtn

Ru6 αtn+2+γtn = βtn+1

Ru7 βtn+1+γtn = αtn+2

Ru8 αt2n+p+βtn+p = γtp

589 [Jacob 1565] is a posthumous re-edition of a book generally supposed to have been first published
in 1560 (Jacob had died in 1564) – thus [Smith 1908: 295]. Neither Smith nor anybody else I know
of appears to have seen that edition, which however can hardly be the first – [Jacob 1557: 110v]
states that the further elaboration of Gemma’s idea was presented im andern theyl meiner
Arithmetick, “in the second part of my arithmetic”, which must precede 1557 and can hardly be
anything but a first version of the new und wolgegründt Rechenbuch. [added: combination of
information given in the prefaces to [Jacob 1557]} and [Jacob 1565] shows that the first edition
was given to the printer in 1552 but then for unexplained reasons not printed by then.]
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The examples offered for the mixed cases are quite complex, so I shall just show
in modern symbols the mathematical principle of an illustration of the case Ru6 (al-
Khwārizmı̄’s fifth, and also the fifth of the main abbacus tradition; fol. 277v–278r ). The
age of a son is half of that of his father, and the square root of the age of the father is
1/4 of the age of the son diminished by 10 years – thus, if x represents the age of the son,

x–10 = 4 ,2x

which reduces to

x2+100 = 52x .

The usual way to solve this equation transforms it into

(x–26)2 = 476 ,

which is an linear equation with unknown (x–26)2. That means that the primary positions
30 and 40 for x, the age of the son, must be transformed into the proper positions
(30–26)2 = 16 and (40–26)2 = 196. But this implication can only be known when one
has already produced the algebraic equation, or at least its left-hand side. At the end (fol.
279r–v ) Jacob therefore warns against the risk to err, and says that he much prefers to
teach the coß rather than the falsi.

In [1564: b vivff ], Oswald Ulman and Caspar Thierfelder took up Jacob’s idea, without
his warning and without pointing out that coß would be much better. For the mixed cases
they prescribe a way to find the proper positions which depends on the particular structure
of the problem that serves as example, without explaining why this should work and thus
also without any hints at how to deal with problems of a different structure. How much
they understood themselves may be questioned; but their text certainly would not help
the reader to understand.

They are an exception, however. Weber, also speaking of Gemma’s invention as lustig
[1583a: 161vf ], chides Ulman and Thierfelder and promises to explain better than Jacob.
Whether he succeeds better can be debated, but at least he explains when discussing (fol.
108v ) the first mixed case (Ru5) that the solution builds on the algebraic equation.

Bunglers can be found everywhere (even such as are bunglers only occasionally);
and we may take Jacob and Weber as representatives of what the Rechenbuch tradition
at its best could accomplish in this field.

So much about the mathematics of the Rechenmeister culture. Remains the why.
Firstly, and primarily, it grew out of the commercial life of the southern German area

(Nürnberg, Bamberg, Leipzig, Vienna, etc.) of the late 15th and the 16th centuries and
its social base. That explains much of the basic level – the importance of line algorithms,
tollet and welsche Practick – and the creation of new fields like Faktor Rechnung and
Bergwerk Rechnung (there are more) alongside those which were taken over from the
Italians because of their links to shared commercial practices (alligation, partnership, barter,
etc.). The seminal role of university-educated mathematicians (for instance Widmann,
but also Adam Ries and many others) explains the adoption of fields of no commercial
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importance (doubling, halving, progressions, Boethian names for ratios).
Remain the attempts to develop new theoretical domains (harmonic progressions, more

or less successful application of the double false to higher-degree problems). The agonistic
culture of abbacus culture, with mathematical challenges directly or indirectly linked to
professional competition, explains the proliferation of false algebraic rules as well as the
invention of specious “roots” in Italy. The Rechenmeister writers apparently did not live
in a competitive culture determined by these parameters. Theirs was a print culture; an
ever-returning element of their titles is that the book is new – at best containing matters
or methods never seen before (book titles were long and descriptive, leaving ample space
for such claims – those I list in the bibliography are shortened). The closest parallel to
the Italian situation may be the (modest) unfolding of the inspiration from Gemma’s
application of the double false to higher-degree problems; what we are presented with
by Ulman and Thierfelder can perhaps be seen as a parallel to the proliferation of false
algebraic rules in Italy; but the cautious approach of Jacob and Weber, being
mathematically sound, is best compared to the Italian introduction of ad-hoc “roots”:
mathematically sound but rather pointless – as Pacioli as well as Jacob and Weber knew
and explained.

Coß

Southern Germany was not the only area where new social and commercial patterns
assisted by borrowings from Italy and southern Germany (and by printing) led to interest
in commercial arithmetic. Nowhere, however, is the number of surviving books (and, we
have reasons to believe, of books produced at the time) large enough to allow us to identify
and characterize new local unified mathematical cultures (I am quite willing to be
corrected). So, instead of pursuing these transmissions, adoptions, transformations etc.,
we shall return to the fate of algebra within and in the vicinity of the Rechenmeister world.

So far we have traced the algebra of the German area until Widmann’s lecture. A
long algebraic Latin algebra is contained in the manuscript Munich, Clm 1696. As argued
by Menso Folkerts [1996], it was almost certainly written by Andreas Alexander, one
of the first specialized mathematics lecturers in Leipzig, which should probably date it
no later than 1504 (after which traces of Alexander disappear). The related German text
“Initius Algebras” [ed. Curtze 1902: 435–609], known from four manuscripts, may also
have been produced by Alexander; what is certain is that the earliest of the known copies
was written by Ries. Probably both texts served Ries for his Coß, which however also
remained in manuscript and did not circulate. Their role in the historical process is
therefore restricted to likely influence on Rudolff’s Behend unnd hübsch Rechnung durch
die kunstreichen Regeln Algebra, so gemeincklich die Coss genennt werden (“Skilfull and
Pretty Calculations by Means of the Artful Rules of Algebra, Commonly Known as the
Coss”) – Coss for short, from [1525]. The two manuscripts deal with the same eight basic
cases as Rudolff (above, note 588), and thus had already left behind the tradition of “24
rules”. At the same time, references to algebra in Rechenbücher later in the century (for
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instance, those that apply the regula falsi to higher-degree problems) all have Rudolff
as their fundamental reference.

So, as a discipline, Rechenmeister algebra came to be based on Rudolff’s book. Before
analyzing it, however, we shall observe that Rudolff was preceded by his teacher Heinrich
Schreyber, whose Ayn new kunstlich Buech, welches gar gewiß und behend lernet nach
der gemainen regel Detre, welschen Practic, regel falsi unn etlichen regeln Cosse was
referred to above (p. 366). Schreyber deals with “regula falsi together with several rules
of coß” in [Grammateus 1521: Gvir–Livv]. This inclusion of algebra in a general
Rechenbuch is not Schreyber’s only deviation from what was to become the general style.
Fol. Lvr–Mvv deals with “arithmetic applied to the noble art of music” (starting with the
anecdote about Pythagoras and the anvils, here becoming hammers), fol. Mvir–Oivv with
bookkeeping, and fol. Ovr–Qiv with the preparation of the ruler used in doliometry (which
involves the “Delic problem” of finding two intermediate proportionals, which is provided
with the familiar geometric proof). Music appears in no other general Rechenbuch I have
inspected, and book-keeping I have encountered in [Schulz 1600: Vuu ir–Bbb iiiv]
alone.[590] Only doliometry appears regularly. Schreyber seems to have written at a
time when norms had not yet crystallized deciding what belonged in which kind of book.

The regula falsi is presented on two pages only in the chapter in question; coß, dealt
with on 76 pages, is evidently what really interests Schreyber. Before the rules, he offers
a thorough introduction, beginning with an explanation of radix, census and cubus in terms
of numerus linealis, superficialis and corporalis and correlation of the algebraic powers
with geometric progressions and a numbering of the powers corresponding to exponents.
This is followed by the arithmetic of algebraic expressions, when adequate making use
of computational schemes; remarkably, these identify powers by means of their number
exponent) and do not apply the “cossic symbols” used in the manuscripts we have
discussed as well as in the later coß tradition – for instance (fol. Gvir ):[591]

590 And of course in later editions of Schreyber’s book. Smith [1908: 123] list editions from 1535,
1544 and 1572, of which I have inspected those from [1535] and 1544. It is indeed the bookkeeping
chapters that shows the first edition to have been published in 1521 even though the privilege is
dated in 1518 and the text thus no later; bookkeeping chapters also show the undated second and
third editions to be from 1535 and 1544.

591 1st and 2nd correspond to pri and se in the text. In a scheme showing the products of powers,
these are written 1a, 2a, 3a, ... .
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Similar schemes we know from the abbacus tradition since the Florentine Tratato sopra
l’arte arismetricha – see above, p. 238; but the whole preceding context as well as the
designation of the powers by their exponents show that Schreyber or those who inspired
him, if he/they did not reinvent then at least reformulated; with Schreyber we are clearly
well beyond the phase of eclectic reception. We also find a systematic explanation of
the division by an algebraic expression through formal fractions – for example (fol. Hiv)

. Even this is certainly not new when compared to what Italians had long since
4 3rd 5 2nd

2 1st 4 N

done, but once again it is re-expressed. New when compared to Italian algebra is instead
the explanation of how to extract square and cube roots – the abbacus tradition, as we
remember, dealt with root extraction solely in the context of geometry. It is taken from
the Latin algorism tradition.

From fol. Hviiiv onward, seven rules for basic cases are presented, coinciding with
Rudolff’s first seven rules (above, note 588), and thus also with the first seven rules of
Alexander’s Latin manuscript and the “Initius Algebras” (above, p. 373). These seven
rules are initially presented in a format where equations that can be reduced to the same
basic equation are put together as a single rule; on fol. Iiiiir they are recapitulated in lowest
powers. In all cases the powers are designated as 1st, 2nd, etc. At the end of the chapter
come examples, those corresponding to the first rule are solved by regula falsi as well
as by coß, the others by coß alone.

Rudolff’s Coss, as said, was the book that so to speak came to define the field. All
those who generalized the rule of false refer to that book, not to Schreyber. Moreover,
after Stifel had published the German Deutsche Arithmetica in [1545] and Rechenbuch
von der Welschen und Deutschen Practick in [1546] (above, p. 368), based respectively
on line and paper algorithms he did not complete the German triptych by a book wholly
of his own drawn from his own Arithmetica integra from [1544] but instead by producing
an “improved much augmented” version of Rudolff’s work [Stifel 1553].[592]

592 It is probably only in our perspective that the re-edition of Rudolff’s book was part of a triptych.
According to Stifel’s Vorrede he had been asked to undertake the work because Rudolff’s book
was no longer to be bought “even if one wanted to pay three or four times” the price.

Actually, already one of the three parts of Stifel’s Deutsche Arithmetik is “coß or artful
calculation”. Part of it, however, is an algorism for fractions; even the rest is a rather rudimentary
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Rudolff’s Coss is divided into two parts, further subdivided into chapters. Part I can
be described as providing general and specific foundations:

Ch. 1 is a Hindu-Arabic algorism for integers, leaving out doubling and halving and
going on until arithmetical and geometric progressions.

Ch. 2 is “the common algorism for fractions”, starting with a distinction between
“simple fractions” (schlechte prüch ) like 2/5 and “part of parts” (teil von teilen ) like
3/4 of 5/7 . It further teaches how to reduce the latter to the former and how to perform
all arithmetical operations on them.

Ch. 3 presents the rule of three in integer and broken numbers, illustrated by an
abundance of mercantile examples.

Ch. 4 teaches how to extract square and cube roots.
Ch. 5 presents the “algorism of the coß”, organized after the model of the common

algorism: numeration explaining the names and symbols for the algebraic powers (quite
justified, since these were spoken of as “cossic numbers”); addition, subtraction,
multiplication and division of algebraic monomials and binomials (and trinomials under
addition and subtraction). All calculations with bi- and trinomials are made in schemes
similar to those of Schreyber (and Italian predecessors), and everywhere the symbolism
we know from the Vienna manuscript Pal. 5277 is used: firstly, + and –. For the powers
(with a new symbols ß for the fifth power) the sequence is extended

φ dragma or numerus
radix (henceforth I shall use r )
zensus (henceforth z )
cubus (henceforth c )
zensdezens

ß sursolidum
zensicubus

bß bissursolidum
zensdezensdezens
cubus de cubo

As we see, names are now (as in Pacioli’s Summa, above, p. 330) made by embedding –
zensus and cubus are functions, cc means c(c ). These symbols were used by Stifel, taken

presentation, and has the double purpose (thus explained on fol. 17r–v ), on one hand, to show that
what Adam Ries solves by means of the regula falsi is solved more conveniently by coß (evidence,
byt the way, that Ries’s Coß did not circulate – Stifel does not know about it); on the other, to
replace the Latin loanwords used by Rudolff by terms used currently in other Rechenbücher – thus
sum instead of radix, sum.sum instead of zensus, sum.sum.sum instead of cubus. The first purpose
leads to first-degree problems only; the second confirms the role of Rudolff’s book as defining
the field. No symbols are used beyond + and –.
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over by Clavius, and encountered by René Descartes in the Jesuit school (he did not like
them and preferred to make his own, indeed much more flexible and still with us – cf.
below, p. 405). Last in the algorism comes “the rule of three in integer numbers” – that
is, involving binomials with integer coefficients.

Ch. 6 is the “algorism for added and subtracted in [formal] fractions” – once more
going until the rule of three.

Ch. 7–11 are dedicated to radicals: the extraction of square, cube and fourth roots,
“algorism” for binomials and apotomes, and finally the extraction of the square root of
“binomial numbers”, that is, arithmetical binomials and apotomes (nothing approaching
Elements X, to be sure).

Ch. 12 presents the Boethian classification of ratios – going beyond the tradition only
by considering the ratios between broken numbers.

Part II is the algebra proper:
Ch. 1 presents “the 8 rules of the coß ” together with a few examples. They were

already listed in note 588, and there is no need to repeat.
Ch. 2 teaches the reduction of equations – also equations involving roots and formal

fractions – for example
φ8

5
896φ

48r 1z
(as in many late-15th-century Italian works there is no symbol for equality).

Ch. 3 (70% of the whole work) is a collection of examples for the rules, subdivided
after which powers are actually involved. For the fifth rule, for instance, 33 examples
are of type z+r = φ, 5 of type c+z = r, and two of type zz+c = z. For the first rule, the
first 39 examples are pure-number problems, afterwards 7 deal with “binomial numbers”.
Then come 141 problems of commercial character, divided as in other Rechenbücher:
purchase; mixing; exchange; testaments; money; profit and customs; barter; partnership
and similar partition; and alloying.

Then the regel quantitatis is taught, that is, how to introduce a second unknown
designated quantitet – sometimes abbreviated quant, quantit or q in equations). This rule
is presented on fol. I.viv as “a completion of the coss, indeed in truth a completion without
which it would not be worth much more than a trifle [pfifferling ]”. Although this name
of the rule is not found in Pacioli’s Summa it must have circulated. It is spoken of (as
regle de la quantite ) by Étienne de la Roche in his Larismethique nouvellement composée
[1520: 42r, 61r], printed in Lyon in [1520], and is also referred to as a name currently
used in a marginal note in Chuquet’s Triparty, apparently in the hand of de la Roche
[Heeffer 2012: 134].[593]

593 Paris, BNP, français 1346, fol. 169v. Because of a number of similarities, Heeffer supposes Rudolff
to have borrowed from de la Roche. In view of the way both refer to the phrase as already existing
and of the demonstrably vast lacunae in the surviving record I have my doubts.

Since de la Roche uses the “Florentine ρ” as basic unknown, he can be assumed to known
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The first rule is illustrated by 30 first-degree examples, mostly with commercial (but
recreational) themes. 23 further examples cover the equation types z = r, c = z and zz =
c. Many make use of the regula quantitatis – many even deal with three unknowns, but
as Pacioli (above, p. 343) in a way that allows Rudolff to operate with only two at a
time.[594]

If we leave aside the problems illustrating the first rule, the problems purportedly
dealing with commercial life are often quite complex and highly artificial – how else to
transform situations where everything can be solved by first-degree methods (occasionally
a root extraction when compound interest is the theme) in such a way that they give rise
to higher-degree problems? The number problems are also often constructed with great
fantasy.

If this is considered together with the very orderly organization of the book and its
resonance with prevailing mathematical interests it is not strange that is came to define
the field.

Stifel’s Arithmetica integra

Nine years before publishing his “improved much augmented” edition of Rudolff’s
work, Stifel had produced the amply more extensive Latin Arithmetica integra – that is,
in [1544]. Stifel knows Rudolff, acknowledges the importance of the work, and takes over
Rudolff’s symbolism; but he knows much more, for instance Elements X, which he deals
with in depth in Book II (fol. 103r–223v ) – reordering the material under the conditions
of arithmetization; Euclid’s order, indeed, “now nobody can present in a satisfactory
manner” – thus the beginning of chapter 13, fol. 143v ). Stifel also knows what had been
made recently in Italy: Cardano is referred to repeatedly (fol. 101r, 251v, 252r, 256r and
301v ) – evidently not the Ars magna, which was only printed by the Stifel’s Nürnberg

Italian material (beyond Pacioli’s Summa, where it does not occur).

594 The first instance is a horse purchase with three participants, which may be summarized
A+ 1/2 (B+C ) = 34 , B+ 1/3 (A+C ) = 34 , C = 1/4 (A+B ) = 34 .

Identifying A with r allows Rudolff to conclude that
B+C = 68–2r .

Identification of B with the quantity (q ) then leads in several steps to
q = 17+ 1/5 r .

Now C is identified with the quantity (for clarity I shall use Q ). Then tacit use of the first equation
changed into

2A+B+Q = 68
leads to

A+B = 68–r–Q ,
which is inserted in the third original equation, whence

C = Q = 1/3 r+22 2/3 ,
etc.
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printer (Petreius) the following year, but his Practica arithmetice, et mensurandi singularis
from 1539. Stifel combines Rudolff’s systematic approach with matters far beyond what
Rudolff had dealt with, and almost everything advanced that had been developed in Italian
algebra.

Almost only, however. Scipione del Ferro’s solution of certain irreducible cubic
equations was as yet a secret, only to be divulged by Cardano in the Ars magna – cf.
[Masotti 1971]. Nor does Stifel present anything similar to the equation transformations
hidden behind Dardi’s four rules of limited validity (above, p. 218) or those (equally
hidden) in the Tratato sopra l’arte della arismetricha (above, p. 241).

On the other hand, Stifel presents something like an innovation. He solves a number
of problems making use of several algebraic unknowns under the heading “on second
roots”. He knows Rudolff’s (and Cardano’s) use of quantity abbreviated q for the second
unknown but describes (fol. 251v–252r ) a way to give names to as many unknowns as
wanted. The unknowns beyond r, the res, will be “1A (that is, 1Ar ), 1B (that is, 1Br ),
1C (that is, 1Cr ), 1D etc”, their second powers 1Az etc. For the product of r and A he
suggests rA, while that of A and B will be written AB. His first example is borrowed from
Rudolff and thus only uses r and A, the next is a variant. The third (fol. 253v, however,
is an all-less-each problem and thus superficially similar to what we have encountered
in Benedetto’s Praticha:

Seven men owe me money in this way. The first and second, third, fourth, fifth and sixth
owe 142 florins. (Here observe, that only the debt of the seventh debtor is excluded from
this amount of florins.) I posit therefore that the amount of the seventh is 1r, and thus
that the amount of all the debts will be 142+r.) The second, third, fourth, fifth, sixth and
seventh owe 126 florins. (Here the debt of the first is excluded.) I posit therefore for the
amount of the first is 1A florins. And thus again the amount of all results, making 126+1A.
[...].

As we have seen numerous times, the problem formulation is cyclical. Therefore, the
following numbers are equal:

142+1r
126+1A
136+1B
128+1C
130+1D
120+1E
148+1F

At first, from the equality of the first two amounts follows A = 16+1r. Similarly, B =
6+1r, C = 14+1r, D = 12+1r, E = 22+1r, F = 1r–6. Therefore A+B+C+D+E+F+r = 7r+64,
which must therefore equal 142+1r. The calculations are much simpler than those of
Benedetto; the writing of the equations also more rudimentary, and the reasoning closer
to rhetorical algebra; but what we see is indubitable algebraic reasoning with seven
unknowns. However, only one unknown beyond the res is made use of at a time – Pacioli’s
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and Rudolff’s method would have sufficed.
The problem is indeed so simple that it is easily solved without the use of algebra,

as done time and again in abbacus books, with the only difference that their problems
speak about possessions and not about debts. We encountered the type already in the Liber
abbaci (above, p. 94), and again in the Ottoboniano and Palatino Pratiche (above, p. 256).
Fibonacci as well as the abbacus writers would have observed that
142+126+136+128+130+120+148 = 930 corresponds to all debts taken six times, whence
the sum of the debts is 155. Therefore the seventh debtor owes 155–142 = 13 florins,
etc. Stifel evidently knows. Fibonacci and the abbacus writers had introduced extra
algebraic variables to solve intricate problems sometimes presented as challenges,
sometimes perhaps only imagined as possible challenges. Stifel instead uses a simple
situation to illustrate the method; his aim is pedagogical, and the agonistic character of
abbacus mathematics had not survived the transfer to the Rechenmeister environment and
its expression in printed books.

The last problem presented in the section (fol. 254v ) uses three unknowns in a
(reducible) quartic problem. Stifel asks for two numbers P and Q fulfilling (in our
symbolism) the conditions that

P 2+Q 2–(P+Q ) = 78 , PQ+(P+Q ) = 39 .

He identifies the first number with the unknown r and the second with A, and for
convenience their sum with a third unknown B. His argument, however, is based on a
geometric diagram and not algebraic; the introduction of the seemingly superfluous
“variable” B thus illustrates that in a geometric diagram there is no need to determine
a minimal set of unknowns, all entities that are present serve on an equal footing. Antonio’s
use of two algebraic unknowns in second-degree equations has no parallel in the
Arithmetica integra.

Fol. 292r–301r bring another batch of problems using several unknowns. Most are
of the first degree (for instance, give-and-take). One (fol. 300v deals with a rectangle and
looks at first as if it were of higher degree and is solved by algebraic methods. During
the procedure, however, it turns out to allow the elimination of the second unknown via
a linear equation; the problem remains quadratic, but only in one unknown. Only one
(fol. 292r ) is properly of higher degree in two unknowns, and even this one is solved by
geometric arguments, not by any algebraic method.[595]

595 In his re-edition of Rudolff’s Coss, Stifel makes use of his new notation. In the problem that
was summarized in note 594, he still [Stifel 1553: 309v–310v] uses r for the possession of the first
participant, but 1B and 1C for the possessions of B and C, and thus avoids the recycling of the
same name.

At times he also uses several unknowns where Rudolff does not – thus fol. 446r, with three
unknowns. More interesting is an Anhang containing examples not borrowed from Rudolff. Nine
of these (fol 465v–472r) are higher-degree problems about two numbers fulfilling certain conditions,
and all but two of which are solved by algebraic methods. The first of them (fol. 465v), pq = 96,



– 381 –

Also innovative is Stifel’s discussion of negative (“absurd”) numbers (fol. 248v–250v);
not because the acceptance of these was unprecedented (cf. above, p. 340); but Stifel
explores these numbers systematically in a new way.

So, without going through the book in detail we may summarize that the Arithmetica
integra integrates everything that was publicly known in algebra and related topics
somewhere and brings it to order in a way that was found nowhere. This work may thus
be regarded as the starting point for the next phase, and at the same time be taken as an
adequate point to stop the story about the transforming afterlife of abbacus algebra. The
year after the appearance of the Arithmetica integra Cardano published his Ars magna
which, as can be argued, set the stage for the development of equation theory for at least
two centuries, In the words of the late Jacqueline Stedall [2010: 207f ]:

When Cardano in 1545 turned his attention to the problem of transforming equations
without actually solving them, he too had been engaging in a process of generalization,
from particular techniques of solution to a more all-embracing vision of equations as
mathematical objects in their own right. In the centuries between Cardano and Lagrange,
algebra took on a variety of names, forms, and applications, but always one of its
characteristic features was the process of increasing abstraction from one level of thinking
to another. Cardano, in embarking on that path, transformed not just equations but algebra
itself. Lagrange two centuries later looked back to Cardano and his successors, and in
doing so he too produced ideas that were again to change the nature and scope of algebra,
this time from the study of equations to the investigation of the abstract structures that
later became known as groups. Lagrange rightly recognized Cardano’s work as the
beginning of a key period in algebra; his own work in turn initiated another.

This (together with what was done by Tartaglia and Bombelli) is clearly a new story, which
should not be pursued within the present framework (though the final section will look
at some aspects in generalizing perspective). Nor is there any reason to analyze Scheubel’s
integration of coß in his edition of Elements I–VI [1550] or such French algebraic writers
as Jacques Peletier [1554] and Buteo [1559], both building on Stifel and other German
writers though only the former recognizes it; even Pedro Nuñez can be left in peace in
spite of his Libro de algebra in arithmetica y geometria from [1567]; all were direct or
indirect descendants of the abbacus algebra and the coß traditions, but none of them
contributed to creating a new synthesis like the coß tradition, nor did they have much
influence on what happened from Viète onwards.

p2+q2 = 292, is a numerical variant of the problem which Pacioli uses to illustrate that sometimes
a second unknown has to be introduced (above, p. 341); as Pacioli, Stifel represents the first number
by r+A, the second by r–A. In another one (fol. 469v), (p+q)(p2+q2) = 539200, (p–q)(p2–q2) = 78400,
powers until K, rAA, zA and AAA enter the calculations (that is, Stifel has now dropped the
cumbersome use of Az for the second power of A).

At the end of the Anhang (fols 472v–474v), three problems treat of three numbers in continued
proportion; in the last of these, powers until rA, AA and BB occur.
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Nor will we learn much of general interest from looking at the influence of the
abbacus and Rechenmeister traditions in other regions (the Iberian peninsula, England,
etc. – my apologies to patriots of bygone world empires). We shall therefore now return
to abbacus mathematics but in new perspectives.



VI. A double conclusion

Chapter IV told the story of abbacus mathematics until the later 15th century in
chronological order and in details – not all details, for sure, but enough perhaps to cloud
the general view. Though in less detail but still with many details, chapter V dealt with
how it was transformed when going into print and when re-emerging as Rechenmeister
mathematics. This final chapter, drawing on these, presents a kind of summary and a
perspective. The summary, synchronous, deals with the global “anthropology” of the
abbacus endeavour – how can it be understood in its own world? The perspective,
diachronic, looks at the role, not of abbacus mathematics as a whole but of abbacus
algebra – its mathematically though not socially and economically most consequential
component – in the longer historical process.



A mathematical practice sui generis

Mathematics, as anything produced by human beings, is made not in a void but within
a particular practice, within a particular socio-cultural space and with particular aims and
norms. What was the mathematical practice of abbacus mathematics?[596]

Different from ours, though perhaps not as different as we might at first believe
(provided that ours be a single practice, which is hardly the case – at least it is not the
practice which post-Weierstraß ideology prescribes). Yet on the other hand not so different
that we cannot recognize the undertaking as mathematics.

At a first glance, this similarity might be doubted. How does it fit the production and
lasting transmission of false algebraic rules from Gherardi onward (above, p. 195)? How
does it fit Giovanni di Davizzo’s use of roots as negative powers (above, p. 203)? Our
present mathematical practice does not accept the principle anything goes and ostracizes
those who insist that it does.

For the moment we shall observe that false solutions as well as the conflation of roots
and negative powers belong within algebra, a prestige but marginal topic not taught in
the abbacus school. There is more to say about this, but at first we shall concentrate on
the “practice of the practical”, the level connected to commercial life and to the teaching
of the school.

Even here we seem to encounter phenomena that modern mathematics would find
unacceptable. Certain rules are mostly presented just as rules, without any explanation.

This is first of all the case of the rule of three. Abbacus writers with scholarly
ambitions (the authors of the Florentine encyclopedias and Pacioli) might connect it to
proportion theory, but Jacopo’s presentation (above, p. 17) corresponds to the way of the
overwhelming majority of abbacus books. The presentation of the partnership rule is
similar, and so is that of the determination of circular circumference and area from the
diameter. Here, however, the passage from the Vatican manuscript of Jacopo’s Tractatus
algorismi that was quoted on p. 34 is illuminating:

And if you should want to know for which cause you divide and multiply by 3 and 1/7,
then I say to you that the reason is that every round of whatever measure it might be is
around 3 times and 1/7 as much as is its diameter, that is, the straight in middle. And for
this cause you have to multiply and divide as I have said to you above.

That almost amounts to the statement of an axiom, and this axiom indeed serves in other
geometric calculations. In the same vein, the rule of three is also used axiomatically as
the foundation for other explanations – for instance, as we have seen (above, p. 214),
by Dardi when he explains how to divide 8 by 3+√4. Similarly, the Istratti di ragioni
(above, note 382, ed. [Arrighi 1964: 26]) uses the rule of three to perform the division
of 4/5 by 1/3 .

The partnership rule too, itself mostly unexplained, often serves as a tool for other

596 This section is largely a summary of [Høyrup 2009].



– 385 –

proportional sharings; on p. 23 we have encountered its use in the twin problem.
Evidently this does not amount to an axiomatic system. But there is no doubt that

abbacus mathematics was generally reasoned, taking certain truths as secure foundations
on which further arguments could be based. Such truths tended to be those which oft-
repeated use had made extremely familiar.

Abbacus mathematics was also expected to give true answers that would not have
been different if a different but still valid way for the calculations had been chosen. The
truth of abbacus mathematics thus included coherence. Often proofs (in the sense of
“verifications”) are offered showing that a result that has been obtained fulfils the
conditions of a problem; but not rarely, proofs are given that show the same outcome
to result from a different procedure (or a reverse calculation is made that does not reverse
the steps performed but goes a different way). From p. 53 we remember this charming
commentary to such a proof in the Milan-Florence version of Jacopo’s Tractatus:

We have thus alloyed well, since we precisely found again the said 700 δ. It would have
been a pity if we had found more or less.

Since abbacus mathematics used true, not rounded decimal fractions when leaving the
integer domain, proofs could mostly verify absolute agreement of results with what was
requested. At times absolute precision could not be achieved, and approximations had
to be introduced. That happens, for example, when an iterative procedure is used to solve
a discounting problem (above, p. 30) that stops when the last contribution is either
negligible or invisible; similarly in geometric calculations where a “closest root” has to
be taken. In such cases I do not remember to have ever seen a proof. It appears that the
request of absolute truth was recognized to belong within mathematics, and that a similar
imperative could not be imposed once the conditions of real commercial life had inserted
themselves in the considerations.[597]

Consistency was not only a norm imposed on those who practised abbacus mathematics
but also expected to characterize its object (the latter an obvious precondition for the
former). That is why formal fractions could be introduced and expected to behave just
like ordinary fractions (cf. the explanation of the Trattato dell’alcibra amuchabile on p.
223), and that is what Dardi presupposed in his demonstration that less times less makes
plus (above, p. 213). Somehow, even Giovanni di Davizzo’ mistaken intuition (p. 203)
probably depends on that expectation.

We may summarize the norms or expectations which characterized abbacus
mathematics:
– it should, in so far as authors and users could do it respectively follow it, be argued;

597 Another frivolous personal aside inserted as an interruption of the all-too-serious: When teaching
physics to future building engineers half a century ago I learned the principle that “the difference
between theory and practice is condensed water” – also outside what could be calculated by the
mechanical physics we were teaching.
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– it should be consistent, in agreement with the consistency of its object;
– and it should be exact, unless some real-world application asked for approximation.

This does not fit the false rules too well, so we need to return to them. One can doubt
(but not be sure) that the one who invented Gherardi’s false rules believed that they were
true, and also that those who added similarly false rules did so. The inventor of the rules
for Dardi’s irregular cases certainly knew why they were true for the specific situations
from which they were derived; less certain is that he was aware of their limited validity
(Dardi knew, though he probably was not able to describe precisely when they the rules
would be valid). But we should remember that abbacus teaching was a liberal profession,
where competition for jobs and students decided who could earn a living and who not.
In that situation, anything goes as long as it goes, and the commands derived from the
conditions of survival might easily overwhelm those derived from professional norms
(a familiar situation known from other epochs and norm systems – cf. [Høyrup 2000:
351]). This is as true in the present century as in the 14th-15th centuries – and as true
then as now, vide the conflict between the condemnation of usury and the eager teaching
of the topic. In itself it tells nothing specifically about mathematics.

Yet the specifics of the use of false rules and of Giovanni di Davizzo’s wonderful
inventions does tell something.

Firstly, norm systems are double-edged. Most participants in a social system obey
the norms, if not in all respects then largely; if not, norms would have no effect. If
everybody was always lying, everybody would soon learn that words are not to be trusted,
and lying would be nothing but futile sounds. Thus, a competitor presenting a false solution
involving radicals (never approximated, as we remember) at a competition or in an
exchange of challenges would not be exposed unless he had the unexpected bad luck to
encounter an opponent who really understood algebra. So, just as physicians are supposed
to obey professional ethos and to care for their patients (and fortunately do so generally),
abbacus masters were supposed by those who were unable to control to pursue
mathematical truth and consistency. Norms regulate the behaviour of most of us but protect
the cheats.

Even this is not specific for mathematics, even though it explains some of the specifics
of the invention and survival of the false roots.[598] But there is more to the matter,
better illustrated by Giovanni di Davizzo.

Solving problems which opponents could not solve might already carry a personal

598 It goes by itself that the introduction of printing was to change the situation. There were always
some who understood the false rules to be false, and once communication became more dense they
might get an audience; in Italy, the false rules were killed if not before then by Pacioli’s Summa,
and they never invaded Germany. Only his being located in the extreme periphery allowed Bento
Fernandes to repeat the false rules and the conflation of roots and negative powers in a printed
book in 1555 (above, p. 196) – probably believing in their veracity and not possessing the
competence to discover otherwise.
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premium. Moreover, after the first introduction of reducible higher-degree problems, for
instance in Jacopo’s algebra, there seems to have been an urge to do better and to expand
the scope of algebra, and that may have carried an extra premium (irrespective of whether
the expansion was fake or not as long as it was believed). Accordingly we see more and
more false solutions propping up over the next 150 years; but we also see writers who
produced true expansions – Dardi, Antonio, the anonymous author of the Florentine Tratato
sopra l’arte arismetricha – and the introduction of special roots (pronic, etc.). So, at its
theoretical level at least (algebra, Pacioli’s Pratica speculativa, see above, p. 339), abbacus
mathematics was seen as an expanding body of knowledge (and a body of knowledge
to be expanded ), at a time where the prevailing general attitude was that the ancients
had known better. But there is evidence that this idea of expansion was not restricted to
those who were engaged in “theoretical practice”. From Jacopo’s introduction (above,
p. 10) we may think of this passage:

As in this treatise the mind and good intelligence grants us to know the great subtlety
of the prophecies and the philosophies and the celestial and temporal writings, it will grant
us to know even more henceforth, since by mind and good and subtle intelligence men
make many investigations and compose many treatises which were not made by other
people, and know to make many artifices and written arguments which for us bring to
greater perfection things that were made by the first men.

This is certainly Jacopo’s own formulation. But no other introduction was copied as often
in other abbacus books, so we may conclude that it was in harmony with widespread
attitudes in the abbacus ambience. Accordingly, somebody seriously engaged in abbacus
mathematics should not only produce true and coherent knowledge, he should also expand
knowledge.

That is also what Giovanni di Davizzo did, or at least tried to do. Retrospectively
we may say that his innovation was futile; but since it went into a direction with no
application, not even within abbacus algebra, he was not forced to discover, nor were
those who copied from him.

All in all, the norms governing abbacus practice were not fundamentally different
from ours – nor, more important when it comes to historical impact, from those governing
17th-century theoretical mathematics.

Different they were, of course. “Precision” in commercial arithmetic is not the same
thing as precision in a world debating which kind of constructions are precise – only those
made by ruler and compass, or also those that can be made pointwise. But the similarity
was sufficient to allow communication – not least of course when mediated by writers
like Schreyber, Rudolff and Stifel, who did not care for virtuosity but rather for agreement
with the norms of university mathematics. Without that communicability, abbacus
mathematics (specifically abbacus algebra) would hardly have made the impact that shall
be the topic of the following section.



The Zilsel thesis and the transformation of mathematics

In [1942], Edgar Zilsel, an Austrian sociologist and member of the Vienna circle and
at the time a refugee in the U.S., published a paper on “The Sociological Roots of
Science”.[599] The abstract runs as follows:

In the period from 1300 to 1600 three strata of intellectual activity must be distinguished:
university scholars, humanists, and artisans. Both university scholars and humanists were
rationally trained. Their methods, however, were determined by their professional conditions
and differed substantially from the methods of science. Both professors and humanistic
literati distinguished liberal from mechanical arts and despised manual labor, experi-
mentation, and dissection. Craftsmen were the pioneers of causal thinking in this period.
Certain groups of superior manual laborers (artist-engineers, surgeons, the makers of
nautical and musical instruments, surveyors, navigators, gunners) experimented, dissected,
and used quantitative methods. The measuring instruments of the navigators, surveyors,
and gunners were the forerunners of the later physical instruments. The craftsmen, however,
lacked methodical intellectual training. Thus the two components of the scientific method
were separated by a social barrier: logical training was reserved for upper-class scholars;
experimentation, causal interest, and quantitative method were left to more or less plebeian
artisans. Science was born when, with the progress of technology, the experimental method
eventually overcame the social prejudice against manual labor and was adopted by
rationally trained scholars. This was accomplished about 1600 (Gilbert, Galileo, Bacon).
At the same time the scholastic method of disputation and the humanistic ideal of
individual glory were superseded by the ideals of control of nature and advancement of
learning through scientific co-operation. In a somewhat different way, sociologically,
modern astronomy developed. The whole process was imbedded in the advance of early
capitalistic society, which weakened collective-mindedness, magical thinking, and belief
in authority and which furthered worldly, causal, rational, and quantitative thinking.

So, according the Zilsel, the university tradition did not give rise to the scientific
revolution – that had, in gross abridgement, been Pierre Duhem’s idea. Nor did Renaissance
Humanism or technicians do so. What was decisive was the interaction between the three
groups, their mutual fecundation.

Zilsel died by suicide in 1944. Inspection of his Nachlass half a century later revealed
that this essay and a handful of others (some published, others not) belonged within a
larger project on “The social roots of modern science” [Raven & Krohn 2000: xxx–xxxiv].
In Zilsel’s outline for this project, mathematics only enters in section IV, “The rise of
the quantitative spirit”, subsection 2, “mathematics and its relation to commerce, military
engineering, technology, and painting 1300–1600”. It might none the less be worthwhile
to ask whether Zilsel’s thesis can be applied to the 17th–18th-century metamorphosis of
mathematics, in which “analysis” (algebra, and soon infinitesimal analysis) replaced Greek-

599 This concluding section could be believed to be a contracted version of an article under way
in a Festschrift – or that article to be an expanded version of what appears here. Actually, both
descend from an article written for a volume that after eleven years remains stuck in editorial process
and may remain so for eternity.
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style geometry as the central discipline.
Applied mutatis mutandis, certainly. Of Zilsel’s groups, Renaissance Humanists can

be taken over directly. Something like his university scholars also recurs – not natural
philosophers like Bradwardine, Swineshead and Albert of Saxony, however, but the readers
of Euclid and of other ancient mathematicians; therefore, the group should be expanded
so as to include also the pre-university translators of the 12th century. The role of Zilsel’s
higher artisans (artist-engineers, surgeons, instrument makers, surveyors, navigators and
gunners), finally, will have to be taken over by the abbacus masters and the Rechenmeister.

The discussion is most conveniently ordered according to gross chronology.

12th-13th-century reception of algebra

Arabic algebra reached the Latin world through a number of channels during the 12th
century:
– The second part of the Liber alchorismi de pratica arismetice (the “Toledan Regule”),

probably compiled shortly after 1150, contains a short fragment on the topic [ed.
Burnett, Zhao & Lampe 2007: 163–165]; it had no influence whatsoever on later
algebra, as can be seen from the lack of emulation of its particular terminology (Arabic
māl is translated res, “thing”, not census ).

– the Liber mahameleth [ed. Vlasschaert 2010; ed. Sesiano 2014], probably a free
translation of a fairly recent Arabic original, made in the Toledo environment around
1160 – see above, note 76. There are cross-references to a systematic exposition of
algebra, which may have been omitted already from the translation; in any case it
is absent from all known manuscripts. A number of problems in the text we possess
are solved by means of algebra; they are so different from anything else we find in
later Latin writings that we may safely conclude that even they had no impact.

– Two translations of al-Khwārizmı̄’s algebra have survived. One, from ca 1145, is
due to Robert of Chester. It is known from three manuscripts, all prepared in south-
German area around 1450 (above, p. 354). It uses substantia for māl, which is found
nowhere else, not even in anything written during the following decades on algebra
in the same area; it may have been read by Widmann, but the main influences on
Widmann’s algebraic thinking point to Italy. It appears to have had no influence on
anybody else, even though at least one copy must have survived the three centuries
between 1145 and 1450.

– The other was made by Gerard of Cremona around 1170. An appreciable number
of manuscripts survive – one was in the possession of Regiomontanus; it was almost
certainly also consulted by Fibonacci [Miura 1981].

– Guglielmo de Lunis also translated al-Khwārizmı̄’s algebra during the first half of
the 13th century (cf. above, p. 306) – whether into Latin or an Italian vernacular we
cannot know. As we have seen, this translation was used by the three Florentine
encyclopedists and seems to have been known to Giovanni del Sodo, but apart from
that we know nothing about it. We may assume its impact to have been rather limited.
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In any case, Guglielmo’s translation belongs to the 13th century.
– In the beginning of chapter 14 of the 1228 version of the Liber abbaci Fibonacci

makes use of a work that uses solidatio for al-jabr. It could be the lost algebra chapter
of the Liber mahameleth, but the only argument in favour of that hypothesis is the
absence of contrary evidence – cf. above, note 149.

– Finally, Fibonacci must have drawn on a Latin or Romance-vernacular collection of
algebra problems using avere for Arabic māl when the word does not serve in its
algebraic function.

Neither of the final two had any influence beyond the Liber abbaci. We may conclude
that algebra reached Latin Europe through Gerard’s translation, and that all other channels
were unimportant.

Even Gerard’s translation, however, made no strong impression – for good reasons
on the receiving side, we may say. There were two main motives for translating
philosophical and scientific works from the Arabic. One was the aspiration to get hold
of those central works that were known by name and fame from Martianus Capella’s
Marriage of Mercury and Philology and other encyclopedias but were otherwise unknown.
This would not call for translation of al-Khwārizmı̄, nor indeed for appropriation of algebra.
The other is “medico-astrological naturalism”, which had astronomy subservient to
astrology as an essential ingredient (other ingredients being medicine, magic and astrology
stricto sensu ). Those who were familiar with the Arabic tradition would know that al-
Khwārizmı̄’s algebra was reckoned among the “middle books” (together with Euclid’s
Data and various works on spherics): those books that were to be read between the
Elements and the Almagest [Steinschneider 1865]. The translators probably knew, and
for them it would be an obvious choice to translate it; al-Khwārizmı̄’s introduction to
the Hindu-Arabic numerals was similarly translated as an essential tool for astronomical
table-making and calculation. There is a difference, however. Work with astronomical
tables was only possible if one was familiar with Hindu-Arabic numerals and algorism.
Algebra, on the other hand, was of no use in astronomical or astrological practice – the
closest we come is Regiomontanus’s 15th-century use of algebra in two demonstrations
in De triangulis (above, p. 351). In consequence university scholars had no reason to be
interested in algebra.

The algebra contained in the Liber abbaci as chapter 15 was discussed at length above.
As we saw, Fibonacci draws to some extent on al-Khwārizmı̄ but also on other works
circulating in the Arabic world. There are no traces, however, of the algebraic symbolism
that was created in the (presumably outgoing) 12th century in the Maghreb, nor of al-
Karajı̄’s elaboration of a theory of polynomials or his approaches to a purely algebraic
proof technique.

Fibonacci, like al-Khwārizmı̄, gives geometric proofs of the rules for solving the mixed
second-degree equations, of a similar kind though not the same. Further on in his algebra
section, geometric proofs abound which have no counterpart in al-Khwārizmı̄. For
Fibonacci, proof was geometric proof, in agreement with his orientation toward Greek
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theory (probably already that of mathematicians from al-Andalus from whom he borrowed).
With one possible exception, we have no evidence that the Liber abbaci was read

outside Italy before Jean de Murs took it up in the mid-14th century.

The just possible exception is Jordanus de Nemore. Perhaps in the later 1220s,[600]

he wrote the treatise De numeris datis [ed. Hughes 1981]. It emulates the format of
Euclid’s Data and applies it to the arithmetical domain. It is deductively organized and
contains propositions of the form “if certain arithmetical combinations of certain numbers
are given, then the numbers themselves are also given”,[601] and formulates the proofs
in an abstract letter symbolism. Jordanus does not mention algebra at all, but he gives
numerical examples that often coincide with what can be found in corresponding problems
in properly algebraic works. He thus leaves no doubt that he had undertaken to reformulate
algebra as a demonstrative arithmetical discipline, leaving so many traces that those who
knew algebra would recognize the undertaking.

In many cases, the numerical examples coincide with those of al-Khwārizmı̄. In others,
they point to either Abū Kāmil or Fibonacci [Høyrup 1988: 310 n.10] – and since the
known Latin translation of Abū Kāmil’s algebra may have been made in the 14th century –
thus the disputed claim of Sesiano [1993: 315–317] – Jordanus may have known the Liber
abbaci (may – but this is not a case of the excluded third). A further suggestion (still
nothing beyond a mere suggestion) in the same direction comes from what Jordanus
presents in II.27 as “the Arabic method” to solve a pure-number version of a problem
of type “purchase of a horse”, which has some similarity (namely non-trivial parameters)
to what we find in the Liber abbaci [B245–248;G400–403].

De numeris datis goes beyond mere reformulation. The quest for deductivity as well
as Jordanus’s general inclinations cause the outcome of his undertaking to be at least as
much of a piece of coherent theory as the Euclidean model. It also goes beyond what
was done in Arabic algebra – book II, starting with what corresponds to the rule of three
(thus the equivalent of the final chapter of Gerard’s translation of al-Khwārizmı̄’s algebra)
develops into a wide-ranging exploration of proportion theory. Book III contains further
elaboration of the same topic.[602]

600 The treatise is written after his De elementis arithmetice artis, to which it refers, and the latter
after the second version of the algorism treatises. Here, indeed, the letter symbolism is first developed
in primitive form which was then used to the full in the De elementis. One of the algorism treatises
was copied (apparently by Robert Grosseteste) in 1215/16 [Hunt 1955: 133f ].

601 For instance, I.17, “When a given number is divided into two parts, if the product of one by
the other is divided by their difference, and the outcome is given, then each part will also be given”.
IV.9 indicates the existence of a double solution to what we would express x2+b = ax as follows:
“a square which with the addition of a given number makes a number that is produced by its root
multiplied by a given number, can be obtained in two ways”.

602 A few of the propositions from book III coincide with what can be found in chapter 15 part 1
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A small circle seems to have existed around Jordanus, comprising Campanus and
Richard de Fournival while being at least known to Roger Bacon [Høyrup 1988: 343–351].
It is regularly claimed that De numeris datis became the standard algebra textbook of
the scholastic university. Unfortunately, there is no documentary basis whatsoever for
assuming that there was any algebra teaching there before Widmann, and a fortiori not
for assuming that Jordanus’s treatise was used. What we know from the 14th century is
that Oresme cites the De elementis and the De numeris datis in three of his works.[603]

Oresme being without competition the foremost Latin mathematician of his century,[604]

his use of another eminent mathematician proves little concerning his contemporaries –
except perhaps that, if even he drew nothing beyond elementary non-algebraic matters
from Jordanus, nobody probably did.

In the 15th century, Peurbach and Regiomontanus demonstrate that they not only knew
the work but also understood in what way it was related to the Arabic art and in which
way it differed. In a poem, Peurbach [ed. Größing 1983: 210] refers to “the extraordinary
ways of the Arabs, the force of the entirety of numbers so beautiful to know, what algebra
computes, what Jordanus demonstrates”. The other is Regiomontanus, in whose Padua
lecture on the mathematical sciences from 1464 [ed. Schmeidler 1972: 46] we read about
the “three most beautiful books about given numbers” which Jordanus

had published on the basis of his Elements of arithmetic in ten books. Until now, however,
nobody has translated from the Greek into Latin the thirteen most subtle books of Diophantos,
in which the flower of the whole of arithmetic is hidden, namely the art of the thing and the
census, which today is called algebra by an Arabic name.

The reference to Diophantos anticipates Regiomontanus’s interaction with the Humanist
current; for the moment we shall take it as another way to specify the relation between
Jordanus’s treatise and the algebraic discipline.

In the list of books left by the later less famous Vienna astronomer Andreas Stiborius
in ca 1500 we find as neighbouring items Euclid’s Data, Jordanus’s De numeris datis
and Demonstrationes cosse (an unidentifiable work on algebra but evidently in Italo-

of the Liber abbaci (e.g., III.14 and III.15). The two contexts are so different, however – both texts
are systematic, but they are organized according to different principles – that this coincidence is
likely to be accidental.

603 The former in Algorismus proportionum [ed. Curtze 1868: 14], in De proportionibus proportionum
[ed. Grant 1966: 140, 148, 180] and in Tractatus de commensurabilitate vel incommensurabilitate
motuum celi [ed. Grant 1971: 294] (merely a complaint that Jordanus’s subtle work is inapplicable
to the presumably irrational ratios of celestial speeds); the latter in De proportionibus proportionum
[ed. Grant 1966: 164, 266] – both passages refer to propositions about elementary proportion theory
and not to Jordanus’s crypto-algebra.

604 Antonio de’ Mazzinghi may have been his mathematical peer insofar as such things can be
measured across disciplines, but he wrote in Tuscan and not in Latin.
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German tradition) [Clagett 1978: 347]. Either Stiborius or Georg Tannstetter (who made
the list) thus understood De numeris datis as belonging midway between Euclid’s Data
and algebra.

Jordanus was certainly an eminent representative of the universitarian mathematical
environment, even if his work had little impact on the further development of university
mathematics. Fibonacci is less easy to categorize. He wrote in Latin; as we have seen,
much of the material he presents is similar to what we find later in the abbacus tradition;
he often applies methods belonging to the “magisterial” mathematical tradition, in particular
geometric reasoning in Euclidean style; and he refers to abbacus-type methods as
“vernacular”.[605] His reception within the university tradition was negligible; and so was
his impact on the abbacus tradition at least until the mid-15th century. It is thus impossible
to locate him within any of the three traditions; what we can say is that he is a witness
of the existence of something close to the later abbacus tradition already around 1200
(though hardly in Italy), and that his book is a first attempt at synthesis between the
practical and the scholarly tradition – an impressive and heroic but premature attempt.

The 14th century – early abbacus algebra, and first interaction

Abbacus teachers and schools are mentioned in the sources from 1265 onward, teaching
young boys a curriculum encompassing the following (cf. above, p. 5) – in summary:
– First the practice of numbers: writing numbers with Hindu-Arabic numerals; the

multiplication tables and their application; division first by divisors known from the
multiplication tables, and next by multi-digit divisors; calculation with fractions.

– Then topics from commercial mathematics: the rule of three; monetary and
metrological conversions; simple and compound interest, and reduction to interest
per day; partnership; simple and composite discounting; alloying; the technique of
a “single false position”; and area measurement.

Everything, from the multiplication tables onward, was accompanied by problems to be
solved as homework. Manuscript books being expensive, the teaching was evidently oral.
The “abbacus books” written by many teachers were thus not meant as textbooks for the
school. Some were written explicitly as gifts to patrons or friends, some perhaps as
teachers’ handbooks (that is at best an educated guess), some claim to be suited for self-
education. They often include topics that go beyond the curriculum, such as the double
false position and algebra. These may have served in the training of assistant-apprentices,
but even this is a speculation with no support in the sources beyond the fact that two
manuscripts that may have been produced in a collective effort by an abbacus master and
his apprentices or assistants (or apprentices/assistants alone) both include algebra (above,
p. 198 and note 284); in any case we know that proficiency in such difficult matters was
important in the competition for employment or for paying pupils.

605 [B63,111,114,115,127,170,204,364;G107,190,198,219,290,342,563,564].
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The probably earliest extant abbacus book (though extant as a 14th-century copy only)
is the “Columbia algorism” (above, p. 166). It reveals some puzzling affinities with Iberian
14th-century material. The Livero de l’abbecho (above, p. 155), probably slightly but not
very much later, claims in its introductory lines to be written “according to the opinion”
of Fibonacci. As close analysis shows, the treatise moves on two levels. One, elementary
and corresponding to the curriculum of the school, borrows nothing at all from Fibonacci;
the other consists almost exclusively of sophisticated problems borrowed from Fibonacci –
but demonstrably often borrowed without understanding, and without the compiler having
followed the calculations. Fibonacci cannot have inspired the actual teaching of the
compiler; his role is that of prestigious decoration. The incomplete Pisan Libro di ragioni
probably belongs to the earliest 14th century. What could at first suggest inspiration from
Fibonacci turns out at closer scrutiny to point instead to the commercial connections of
Pisa in the Maghreb.

Later ordinary abbacus treatises owe no more to Fibonacci; for long they do not even
refer to him. The Florentine encyclopedias do refer to and borrow from him; but they
are not run of the mill but exceptions, and in their own mathematics they are not much
in debt to Fibonacci). The abbacus tradition did not (as often claimed without the slightest
support in the sources) derive from Fibonacci’s Liber abbaci and Pratica geometrie. It
had its roots in the larger Mediterranean tradition for commercial calculation – in Arabic
mu amalāt mathematics, in particular perhaps in Iberian practices; I have suggested the
notion of a “proto-abbacus” community (above, p. 26). Fibonacci had been acquainted
with the same practices a small century earlier, speaking of the community as “we”; but
by presenting what he had learned from it according to scholarly norms he had effectively
barred diffusion to the mathematically humble abbacus teachers.

Further details about the origin of the abbacus tradition are of no concern for the
present question. All that has to be taken note of is that it existed as an independent
tradition.

Algebra was no part of the early abbacus tradition – the compiler of the Livero
demonstrates by occasional misunderstandings of Fibonacci’s words that he has never
heard about it. The earliest abbacus algebra is likely to be the one contained in Jacopo
da Firenze’s Tractatus algorismi, written in Montpellier in 1307 (above, p. 182).

This algebra is very different, both from that of the Liber abbaci and from anything
we know (in the original language or in translation) from the hands of al-Khwārizmı̄, Abū
Kāmil and al-Karajı̄ (although it has more in common with al-Karajı̄’s elementary Kafı̄
than with his advanced Fakhrı̄ and Badı̄ and with the other two authors). Its descent
from Arabic algebra is indubitable, and the use of the term census (Tuscanized as
censo ) for māl is shared by various Iberian 12th-century Latin translations.

Jacopo first presents rules for the six basic cases (those of the first and second degree),
already dealt with by al-Khwārizmı̄. These are provided with examples. Then follow
fourteen that can either be solved by simple root extraction or reduced to one of the initial
six examples.They are not followed by examples.
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The “root” has disappeared from the rules, being everywhere replaced by the thing
(Tuscan cosa ), and all rules are formulated so as to cover non-normalized equations. More
significant, all references to geometric proofs have disappeared.

Finally, Jacopo’s examples not only differ in actual content from those encountered
in al-Khwārizmı̄ (etc.) and the Liber abbaci, many of them also differ in character. Those
of al-Khwārizmı̄ and Fibonacci (and of Abū Kāmil too) are either pure-number problems
or, at most, deal with an unspecified “capital” or with an amount of money divided
between a number of men. Half of Jacopo’s ten examples pretend to deal with real
commercial problems – and one with a square root of real money, not merely a formal
māl.

The further development of algebra was to build on this foundation – not all of it
directly on Jacopo, but on the same background tradition. Within a couple of decades,
however, new elements were added, presumably borrowed directly or indirectly from what
had been developed in the Maghreb and/or al-Andalus in the 12th century: calculation
with “formal fractions” (e.g., + ); use (mostly unsystematic use) of

100

1 cosa

100

1 cosa 5

abbreviations for root, cosa and censo; and schemes for the calculation with arithmetical
and algebraic binomials. More problematic, and probably no borrowing but a local
development furthered by the particular competitive character of the abbacus environment,
is that the field becomes infested with false solutions to irreducible third- and fourth-degree
cases, surviving in Italy until the later 15th, in the periphery into the mid-16th century.

Some authors understood that the false solutions were false. In 1344, Dardi wrote
the earliest extant treatise dedicated exclusively to algebra (above, p. 211). He solves no
less than 194 cases correctly – a huge number he attains by including complicated radicals
(e.g., αc+β√K = γÇ ), whose correct treatment shows that he understood the nature of
the sequence of algebraic powers well. He also includes 4 rules for irreducible cases which
only hold under special circumstances (as he says without specifying these); they are almost
certainly not his own brew, but the one who derived them from obviously reducible cases
by changes of variable must have had a very good understanding of polynomial algebra.

The Florentine Tratato sopra l’arte della arismetricha from the outgoing 14th century
contains a very long chapter on algebra (above, p. 236). Here, the nature of the sequence
of algebraic powers as a geometric progression is set out explicitly, and it is shown how
equations of the types K+βÇ = m, K = βÇ+m and βÇ = K+m can be reduced to the form
K = n+αc. The transformed non-reduced coefficients show beyond doubt that the author
makes the change of variable and the consecutive operations exactly as we would perform
them in spite of not possessing our formalism (quite a feat!). We also find schemes for
the multiplication of trinomials, modelled after the algorithm a scacchiera (“on
chessboard”) for multiplying multi-digit numbers (see above, p. 64).

15th-century copies of Antonio de’ Mazzinghi’s late 14th-century writings show that
his insights went even deeper (above, p. 226). But they were also exceptional and had
no impact of relevance for our theme, and we may leave them aside.

14th-century Humanism, as represented by such outstanding figures as Petrarca and
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Boccaccio (not to speak of the mere teachers of studia humanitatis, good Latin style –
Humanists in the proper sense), was purely literary. It did not make any attempt to get
in touch with mathematics, neither universitarian nor of abbacus type; nor did university
mathematicians or abbacus masters take any interest in what these Humanists were doing.

One well-known university mathematician, however, took up algebra, in part from
Gerard’s translation of al-Khwārizmı̄, in part from the Liber abbaci, in part from familiarity
with unidentified abbacus writings: Jean de Murs, in his Quadripartitum numerorum from
c. 1343 [ed. l’Huillier 1990], which in Regiomontanus’s prospectus of books he intends
to get into print [ed. Schmeidler 1972: 531] stands alongside Jordanus’s De numeris datis.
Regiomontanus does not characterize it as an algebraic work, nor is it indeed one when
taken as a whole. It consists of four books and a “half-book” (semiliber ). Book I is in
a mixed Boethian-Euclidean tradition, whereas book II deals with calculation with the
Hindu-Arabic numerals and with fractions. These two books are thus firmly rooted in
the scholarly mathematical tradition as it had been shaped from the 12th century onward –
the fraction-part of book II, however, rooted in 12th-century works which we know from
annotations to have been consulted by Jean[606] rather than in the university tradition,
which (because Hindu-Arabic numerals served astronomy) was primarily interested in
“physical” or “philosophical”, that is, sexagesimal fractions.

Book III, the first to deal with algebra, is also in the scholarly tradition. At first it
takes up proportion theory (chapters 1–8); next follows an exposition of algebra, not copied
from Gerard yet in its beginning close to him – but omitting his geometric proofs.
However, while writing this chapter Jean must have come across the Liber abbaci: the
first three problems following after the general presentation are from al-Khwārizmı̄, but
the rest are borrowed from Fibonacci, as shown by Ghislaine l’Huillier.

Between book III and book IV, Jean now inserts a semiliber or “half-book”, stated
to be an “explanation of what preceded and presentation of what comes”.[607] Here,
and also in book IV, the inspiration from the Liber abbaci is conspicuous – not only from
its algebra section but also from chapter 12, the collection of mixed predominantly
recreational problems. Even the regula recta turns up under the name ars rei, “the art
of the thing” [ed. l’Huillier 1990: 418, 420f ], mostly but not always in borrowed problems

606 Namely the “Toledan Regule” and a truncated copy of the Liber mahameleth, both contained
in the manuscript Paris, latin 15461 [l’Huillier 1990: 35, 37]. Both deal not only with ordinary
fractions but also with “fractions of fractions”, the Liber mahameleth further with ascending
continued fractions – both types customarily used in Arabic mathematics (and in the Liber
abbaci ). Jean takes up both types [ed. l’Huillier 1990: 204, 250].

607 L’Huillier [1990: 13] argues that from the problem section of book III onward it is far from certain
that things were written in the order they appear in the treatise. For our present purpose, this is
immaterial. In any case, her main argument does not hold water, see imminently.
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where Fibonacci already uses it. Jean also promises to propose many questions in book
IV illustrating the method, but actually does not do so.[608]

But not everything in the Quadripartitum that is new to the school tradition comes
from Fibonacci. Quite striking it the appearance and discussion of formal fractions [ed.
l’Huillier 1990: 468f ], for instance , that is, . Jean even operates

res

10 re diminuta

thing

10 diminished by a thing

on them, adding (using our above abbreviations) and and finding the correct
10–c

c

c

10–c

result – precisely as done in contemporary advanced abbacus algebra. Besides
100–20c 2Ç

10c–Ç

that, we find systematic (but dubious) work on the products of algebraic powers and roots
[ed. l’Huillier 1990: 463–469], going beyond what had been done by al-Khwārizmı̄ (but
related to what Dardi must have known – and known better – a few years before). In
addition, Jean uses the powers of 2 as an explanatory parallel to the algebraic powers –
a device that was to be used commonly in the late 15th century and which may have had
14th-century abbacus antecedents unknown to us.[609]

So, Jean adopts into a scholarly treatise material both from Fibonacci and from what
was produced in his own times in the abbacus environment, and attempts to subject it
to the methodological norms of scholarly mathematics (not always with great success,
he is no outstanding mathematician and tends to err when working on his own on difficult
matters). But he does more. The methods by which “recreational” problems about pursuit
are treated in book IV are applied afterwards to the astronomical problem of conjunctions
(Jean was an eager practising astrologer no less than a mathematician, particularly
interested in conjunctions – cf. [Poulle 1973: 131]). So, his aim is multi-faceted synthesis,
not just incorporation.

According to Regiomontanus’s prospectus, the work was “gushing with subtleties”.
Unfortunately (if we allow ourselves a disputable moral judgement of history – better,
unfortunately for Jean and his project), not many tended to see his work in that way,
neither in his own nor in Regiomontanus’s century. “Time was not yet ripe” – that is,
those who had such interests were too rare to get into direct or indirect contact and to
develop a common undertaking.

The 15th century – the beginnings of a ménage à trois

In the 15th century, some abbacus teachers took over norms both from the Humanist
movement and from scholarly mathematics – a few Humanists showed interest in
mathematics (including abbacus mathematics) – and some mathematicians with university
education and career took interest in “Humanist” (to be explained) as well as abbacus

608 Not noticing that a particular method is spoken of, l’Huillier [1990: 13] believes that the questions
referred to are those actually located at the end of book III, which is one of her arguments for
doubting the order of the material. However, none of these problems make use of the “art” in
question, for which reason this hypothesis must be rejected.

609 Another instance of use by Jean of abbacus material unknown to us is found in his De arte
mensurandi [ed. Busard 1998: 187f ], see [Høyrup 1999].
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mathematics.
Two of the three “abbacus encyclopedias” (above, p. 245) written around 1460 –

Benedetto’s Praticha d’arismetricha and the homonymous Palatino manuscript – show
evidence of Humanist orientation. Both authors, when writing on their own, are fully
immersed in the abbacus tradition – specifically in a particular Florentine school tradition
reaching back over Antonio de’ Mazzinghi and Paolo dell’Abbacho to Biagio “il vecchio”.
However, both also demonstrate Humanist interest in the foundations of their discipline.
In the initial presentation of algebra, they choose not to base themselves on Fibonacci
(whose problems they give later in separate chapters) nor on more recent authors from
their school tradition (equally quoted at length with due reference) but on al-Khwārizmı̄
(in Guglielmo’s version) – according to Benedetto because his proofs are piu antiche.
Their way to render Fibonacci’s algebraic problems is also evidence of Humanistic
deference to a venerated text – no changes are made, no new marginal commentaries are
added, the margins only contain Fibonacci’s own diagrams. Their respectful copying from
predecessors in their school tradition points in the same direction.

But both also have ambitions to wrap their mathematics in scholarly garments. Book
2 of Benedetto’s treatise, dealing with “the nature and properties of numbers” is a
presentation of speculative arithmetic in the Boethian tradition. It also offers an exposition
and explanation of the complicated way ratios are named in this tradition. The first part
of Benedetto’s book 5 (on “the nature of numbers and proportional quantities”) builds
on the Campanus version of Elements V–IX and on Campanus’s De proportione et
proportionalitate about the composition of ratios (the second part treats of metrological
conversions). The first part of his Book XI presents Elements II. The Palatino writer is
less ambitious, but his chapter II.8 still deals with “the way to express as part, and, first,
the definition”, initially quoting Boethius’s, Euclid’s and Jordanus’s definition of a ratio
(proportione ) as a relation between two numbers or quantities, going on afterwards with
the Boethian names. This is not unproblematic: according to the definition a ratio is not
a (possibly broken) number, as is the “part” the author wishes to express. He sees the
difficulty but chooses to regard it as a mere question of language: “we in the schools do
not use such terms [vocaboli ] but say instead [...] that 8 is 2/3 of 12 and 12 is 3/2 of 8”
(fol. 17v ). He also points to the necessity that the two magnitudes in a ratio be of the
same kind, but overlooks that this should create difficulties when, later, the concept is
used to explain the rule of three.

This illustrates well the limited ambition (and actual reach) of this integration of
abbacus and scholarly mathematics (Benedetto’s as well as that of the Palatino anonyme):
when it seems fitting, abbacus procedures or concepts are explained within the framework
of scholarly mathematics; but the authors reinterpret concepts as needed, and the
contradictions that arise are disregarded.

Pacioli (above, p. 327) had similar aims, and in his case we also see them reflected
in his biography: he rose socially from being a peasant’s son and then teacher of abbacus
mathematics (though in universities and not in abbacus schools) to having the rank of
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a court mathematician (until Ludovico Sforza was driven out from Milan by the French)
and to being a lecturer on and translator and editor of Euclid.

His Divina proportione – written while he was in Milan but printed in [1509a] – is
obviously inspired by Humanism (and by the wish to flatter the princely protector) in
its long introduction (Pacioli is always longwinded) and elsewhere, and attempts to make
mathematics a legitimate courtly-Humanist subject.

Pacioli’s Summa de arithmetica, geometria, proportioni et proportionalita from [1494]
is different in orientation. The contents is primarily an encyclopedic presentation of abbacus
mathematics. However, the authorities from whom Pacioli pretends initially to have
borrowed most of the material are Euclid, Boethius, Fibonacci, Jordanus, Blasius of Parma,
Sacrobosco and Prosdocimo de’ Beldomandi[610] – all Latin writers (Pacioli’s Euclid
is the Campanus edition), and all except Fibonacci bright stars on the heaven of university
mathematics (but, excepting instead Euclid and Boethius, not exactly luminaries on that
of contemporary Humanists). The work is thus (as also confirmed by the contents) in its
general orientation a parallel to the Liber abbaci, submitting abbacus material to the norms
of scholarly mathematics. The algebra to which Pacioli had access and which he presents
is certainly much more sophisticated than what we find in Fibonacci, as illustrated by
their different lists of “keys” (above, pp. 115 and 334, respectively). Among unidentifiable
others, Antonio de’ Mazzinghi plays a role [Høyrup 2009d: 99]. But while Antonio may
have understood at least in practice that purely algebraic demonstration was feasible,
Pacioli stoops (like Fibonacci) to the idea that proof has to be geometric proof – apparently
a regression if we look at matters in the perspective of the development of algebra as
an autonomous branch of scientific mathematics, but perhaps less so if we think of
Cardano’s proof of the solutions for the cubic equations (below, note 615).

Among university mathematicians taking up algebra, the central figure is Regiomon-
tanus. At least after coming in close contact with Bessarion in 1460–61, he clearly worked
intensely to connect mathematics with Humanist ideals. In his Padua lecture from 1464,
as we remember, he observed that until then “nobody [had] translated from the Greek
into Latin the thirteen most subtle books of Diophantos, in which the flower of the whole
of arithmetic is hidden, namely the art of the thing and the census, which today is called
algebra by an Arabic name”. He thus wants to understand algebra as a legitimately ancient
and Greek art, or to make the audience see it thus.[611]

610 Borrowed he certainly has, but beyond Euclid and Fibonacci his main sources are earlier abbacus
masters.

611 In order to know that the work should contain 13 books, Regiomontanus must have read at least
(in) Diophantos’s preface to book I. Since he believes all 13 books were actually present in the
manuscript, he cannot have inspected the whole of it. If after the preface he has read no more than
book I, he will have had no occasion to discover that Diophantos mainly investigates indeterminate
problems, and thus presupposes but hardly presents techniques similar to those of Arabic algebra.



– 400 –

We also know the kind of algebra he practised when calculating in private, namely
from his notes to the correspondence with Bianchini (above, p. 350). This is in the style
of Florentine abbacus algebra of his own times. He also uses algebra twice in De triangulis
(above, p. 351). Even this algebra is in abbacus style. The Humanist connection certainly
had no impact on his algebraic practice, neither inspiring transformation nor preventing
its use – nor could the problems to which Regiomontanus applied the technique ask for
more than what its traditional shape had to offer.

Another university-trained mathematician (though of much more modest level) is
Wolack, who held university lectures in Erfurt in 1467 and 1468 – in 1486 followed by
Widmann teaching in Leipzig (above, pp. 345 and 361). Wolack’s lecture may have been
the first public exposition of abbacus mathematics in German area, and shows that this
kind of mathematics was gaining acceptance in the universities of southern German.
However, the precursors of “cossic” algebra (that is, Germanized algebra in abbacus style)
already circulated in German manuscripts around a decade before, whereas Wolack taught
no algebra (Widmann did).

Some Humanists, most notably Bessarion, already thought around 1460 that
mathematics (but in particular mathematical astronomy) was an important part of the
ancient legacy. The earliest Humanist of reputation to take up mathematics was probably
Leone Battista Alberti. When looking at his treatises on perspective, in particular at his
Elementi di pittura [ed. Grayson 1973: 109–129] we may find a merger of a broadly
Humanist (but more precisely, artistic) and a mathematical outlook. Since this has nothing
to do with algebra, I shall not pursue the question – just point out that his adjustment
of the Euclidean definitions to painting practice reflects a Humanist compliance with what
is civically useful. His Ludi rerum mathematicarum [ed. Grayson 1973: 131–173] turns
out not to offer more and nothing very different. Most of the work concerns elementary
sighting geometry and area measurement. There is no trace of it being taken from
contemporary abbacus geometry, even though that would have been possible. The
authorities that are cited [ed. Grayson 1973: 153] are Columella and Savazorda [sic ] among
the ancients[612] and “Leonardo Pisano among the moderns”. Through its conception
of mathematics as noble leisure, the work may have served to provide mathematics with
Humanist legitimacy; but it did nothing for mathematics beyond that.

The first Humanist edition of ancient mathematical texts is Giorgio Valla’s posthumous
De expetendis et fugiendis rebus from [1501], where quadrivial matters, including
Euclidean excerpts but also music and astronomy cum astrology are dealt with in books
I-XIX; the second is Bartolomeo Zamberti’s translation of the Elements from an inferior
Greek manuscript, printed in [1505]. The former (certainly impressive) is a florilège and

612 Since he can only have known Savasorda through Plato of Tivoli’s translation, his sensibility
to the “barbaric” Latin of the 12th century cannot have been as acute as Humanists would like it
to be.
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the second a mere text edition (made moreover, as pointed out by Maurolico,[613] by
a translator who knew Greek but was so far from being up to the topic that he did not
discover the blunders of his inferior manuscript).

Around 1500, at the very beginning of French Humanism, we also have Lefèvre
d’Étaples mathematical editions. Their character is well illustrated by the purely medieval-
quadrivial-universitarian contents of the volume he brought out in [1496]:
– Jordanus’s Arithmetica decem libris demonstrata;
– Lefévre d’Étaples’ own Elementa musicalia in Boethian tradition;
– his Epitome in duos libros arithmeticos divi Severini Boecii;
– his description of rithmomachia, a board game invented around 1000 and serving

to train the concepts of Boethian arithmetic.
No wonder, perhaps, that Humanism had had nothing to offer to mathematics in the
preceding century – a fortiori to algebra.

1500–1575: a changing scenery

After Pacioli’s time, the abbacus environment per se was no longer theoretically
productive in algebra – Cardano and Stifel, certainly advancing algebra in continuation
of the abbacus tradition, were scholars; Tartaglia, like Pacioli, worked hard and successfully
to become one; Bombelli was an engineer-architect. Printed books linked directly to
abbacus-teaching (like [Borgi 1484], serving as “introduction for any youth dedicated to
trade” – above, p. 320) tend to include no algebra (thus agreeing with the school
curriculum). At most they would repeat what had been made before 1500 – like Ghaligai’s
Summa de arithmetica from [1521] (above, p. 324), where the last chapters (those that
deal with algebra) are drawn from what Ghaligai had been taught about that topic by his
master Giovanni del Sodo in the late 15th century.

The first to find the solution to certain irreducible third-degree equations – Scipione
del Ferro, around 1505 – was a university professor, but his way to communicate it
confidently to friends and students who could then use it in competitions shows vicinity
to the abbacus norm system. However, since we have no knowledge about the deliberations
that led him to the goal,[614] he is uninteresting for our purpose.

Let us therefore first look at a physician and intellectually omnivorous scholar who
had turned his interest to abbacus-type mathematics, namely Cardano. Most of his

613 For instance in two letters Illustrissimo Domino D. Ioanni Vegae and Illustrissimo Ac
Reverendissimo Domino D. Marco Antonio Amulio [Maurolico 1556; 1568]. See also [Rose 1975:
165].

614 Masotti [1971: 596], following [Vacca 1930], shows how mere experimentation with cubic
binomials might suffice. Since the topic had been in focus since the earlier 14th century, and since
it had been known by the more insightful abbacus algebraists for almost as long that the solutions
that circulated were false, an attentive del Ferro may well have taken note if such play suddenly
gave an interesting result.
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mathematical writings have problems or methods from abbacus mathematics as their
starting point. But they are written in Latin, and their shared aim is to produce scholarly
mathematics, mostly in agreement with (some sort of) Euclidean norms. Further, Cardano
was versed in Humanist culture; this is already obvious from the language and the rhetoric
of his Encomium geometriae, “Praise of Geometry”, read at the Academia Platina in Milan
in 1535 [Cardano 1663: 440–445] – not to speak of his non-mathematical writings.

That Cardano implored Tartaglia to give him the solution to the cubic equations and
then found the proofs (publishing them with due reference once he discovered that Tartaglia
had no priority)[615] does not set him apart from what had been done in abbacus algebra
at its best since centuries; nor does the fact that he went on and showed in the Ars magna
[1545] how other mixed cubic equations could be reduced to these types (the necessary
techniques were already used in the algebra contained in the Florentine Tratato, as we
have seen on p. 241, even though Cardano probably had to reinvent). But Cardano went
on from here to questions that had not been raised by any abbacus writer as far as we
know, investigating the relation between coefficients and roots, and insights coming from
Elements X in order to find conditions which solutions would have to fulfil. He was not
the first to work with negative numbers – Pacioli had done so, as well as the Florentine
Tratato; Stifel had also done so a year before, as we have observed on p. 381. But Cardano
did so more effortless that any precursor, and at the end of the book he even introduces
their roots and operates with them – possibly because he had run into them when working
on cubic problems, but actually on the basis of the second-degree problem r +t = 10, rt =
40, which everybody before him would just have dismissed as “impossible”. A similar
experimental spirit had been present in the university environment in Oresme’s time, but
certainly not after 1400. Nor was it common in 15th-century Humanism – Lorenzo Valla
is the only exception that comes to (my) mind. But it was not foreign to the spirit that
developed in the Humanism of the mid-16th century – we may think of two works written
around the same time in Humanist style and famous in the history of science, Vesalius’s
De fabrica humanis corporis from [1543] and Agricola’s De re metallica from [1556].
Both are respectful toward Antiquity – Agricola even shapes his title after Columella’s
De re rustica – but both are also proud to follow paths that (as they point out) had never
been explored by the ancients.

In 1545, it was possible for Cardano to pursue revolutionary novelties in algebra.
Other famous writers in the field were less revolutionary. Stifel’s Arithmetica integra from
[1544] (above, p. 378) introduced some innovations, but on the whole Stifel set forth and

615 This is Cardano’s version of the story [1545: fol. 3r, 16r, 29v]; given his work on the problems
to find two numbers from their product and either their sum or their difference in [Cardano 1539]
it sounds plausible – once you see the solution formulae for the equations K+αc = n and K = αc+n,
it is almost immediately clear that they have the corresponding structure, and from there the road
to the geometric proof is also easy – as was indeed anticipated by Tartaglia in a correspondence
from 1539 printed in [Tartaglia 1546: fol. 115r].
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systematized “all that was then known about arithmetic and algebra” [Vogel 1976: 59]
and generalized in a way his predecessors had not done (in his development of polynomial
algebra as well as in his use of symbolism). He presented everything (or almost) developed
or used by some Italian abbacus algebraist and deployed it systematically in a way none
of them (including Pacioli) had done. We may say that Stifel brought the project of
abbacus algebra to completion, as also recognized by those who borrowed from him –
Tartaglia in Italy, Peletier in France.[616]

In 1535, Cardano had referred to Grynaeus’s edition of the Greek Euclid with Proclos’s
commentary, published two years earlier. The editio princeps of Pappos’s Collection
appeared in Basel in 1538 (Commandino’s Latin translation in 1588, after having circulated
in manuscript), that of Archimedes in Basel in 1543; Memmo’s Latin edition of books
I–IV of Apollonios’s Conics appeared in 1537 (Commandino’s in 1566); Xylander’s Latin
translation of Diophantos was published in 1575 (the Greek editio princeps only in 1621).
Only from the 1530s or 1540s onward is it thus possible to distinguish a genuine Humanist
interest in mathematics. Maurolico’s and Commandino’s work in mathematics also began
around this time.

However, being a mathematically interested Humanist was not sufficient to be able
to contribute actively to the development of algebra. A good example is Peletier’s
L’algebre from [1554], which is decent but brings nothing new with respect to Stifel (in
spite of Peletier’s engagement in linguistic symbolization [1555]). Even being actively
interested in Greek mathematics was not enough – here we may think of Buteo’s Logistica
from [1559]. A perfect precursor of Molière’s précieuses ridicules (who also existed
outside comedy), he finds the term Arithmetica too vulgar, and introduces Logistica. He
writes ρ for the first power of the unknown (so had Benedetto done in 1463, and the
Florentine Tratato around 1400); for the second power he uses ♦, for the third , and
P respectively M where Stifel, following Widmann, had used + and –; even these two
signs he may have considered vulgar since mercantile. His geometric proofs for the solution
of the mixed cases refer explicitly to Elements II, and he adds and subtracts polynomials
in schemes (as done in Italy since the 14th century). But he has no further theory, only
problems, and none of his problems go beyond what could be found among 14th–15th
century abbacists. In all probability he had no intention to go beyond his predecessors,
his aim may well have been to submit the elementary textbook genre to linguistic and
notational purification (we may perhaps think of the father of Humanists, Petrarca, who
would rather be ill than cured by Arabic-inspired university medicine).[617]

616 Petrus Ramus is of course an exception; in [1569: 66] he goes as far as to mask Stifel’s very
existence, which for somebody with Ramus’s psychological constitution amounts to a confession
that his algebra from [1560] depends (in all its poverty, and maybe indirectly) on the Arithmetica
integra.

617 Lettere senili XII, 2 [ed. Fracassetti 1869: II, 260f ].
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Even Maurolico, a far better mathematician than Buteo and not burdened by linguistic
prudishness, did little more in his short manuscript Demonstratio algebrae [ed. Fenaroli
& Garibaldi, n.d.], and probably intended to do no more. The treatise is an orderly
presentation of the sequence of algebraic powers as a geometric progression, with rules
for multiplication and division. As had been formulated in many more words by Pacioli
(and by other abbacists before him), Maurolico states that the traditional rules for the mixed
second-degree cases can be used for all three-term equations where the middle power
is “equidistant” (Maurolico uses Pacioli’s word and makes no attempt to show off by
speaking of geometric means) from the other two; and his geometric proofs refer to
Elements II.

From the mid-16th century onward, Boethius’s Arithmetica and De musica gradually
lost ground in university curricula, being replaced not by anything Humanist but rather
by such works as Gemma Frisius’s Arithmeticae practicae methodus facilis [1540]; but
Humanism, with its emphasis on civic utility and polite leisure, may have contributed
to preparing the ground for this (slow) change.

The take-off of Modern algebra

One effect of the reception of the full Greek mathematical heritage and the first
creative work based on it was that problems moved into the focus of scholarly
mathematics,[618] in contrast to the emphasis on theory of the high and late medieval
Euclidean tradition.[619] This change of focus was due in part to what was found in
the ancient texts themselves (not least Pappos), in part also to the kind of activity that
came out of attempts to work creatively within the new theoretical framework provided
by these texts; but it was certainly furthered by the type of social interaction in which
players like Viète, Fermat and Mersenne participated, competitive and communicative
at the same time.

But the change was not solely toward the solution of problems taken in isolation;
it also implied interest in the general conditions for solvability and the general character
of solutions – that is, in a new kind of theory. Inspiration for this theory and some answers
(the classification of plane, solid and linear problems) could come from Pappos; but that
did not suffice. Diophantos provided challenges rather than answers (he still does, though
now the challenge is to understand his “method”). Algebra, on the other hand, had always

618 See [Bos 1996: 186–188] and, in general, [Bos 2001].

619 Beyond the theologically tainted preference for the “speculative” over the “active”, which may
have been less important than sometimes maintained by those who want to find in the Middle Ages
an epoch of religion and nothing but, the teaching style of universities certainly played a major
role in the creation of this emphasis. Lectures would allow the exposition of theory, and disputation
invited metatheoretical reflections on the status and ontology of the discipline. Even written
quaestiones, emulating the style of the disputation, invited philosophy of mathematics and not eristic
work on problems.
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been primarily a technique for solving problems, and it already had some successes to
exhibit within the kind of mathematics that now had the foreground. It will therefore have
seemed obvious to re-investigate it in order to draw from it not just isolated problem
solutions but also higher-level information.

This is indeed what we read in Descartes’ introduction to his Discours de la Methode
[ed. Adam/Tannery 1902: 17f ] (to which La geometrie is one of three appendices
purportedly meant to test the new method): he had hoped to get assistance for his project
from logic, and, among the branches of mathematics, from “the analysis of the geometers
and from algebra”. But he immediately discards logic as an art which only serves to
explain to others what one already knows, or even to speak of what one does not know.
Analysis is too intimately bound up with the consideration of geometrical figures; algebra,
finally has been so much “subjected to certain rules and certain signs that one has made
out of it a confused and obscure art that puts the mind in difficulty instead of a science
that cultivates it” (Stifel’s rules and cossic symbols, still used in Clavius’s Algebra from
[1608], which Descartes had been taught after in the Jesuit school). Algebra thus seems
to offer some hope, if only it could be liberated from these rules and signs – which is
indeed one of the things done in La geometrie.[620]

620 In contrast, we may think of the more modest ambitions expressed by Nuñez in his Libro de
algebra en arithmetica y geometria, published in [1567] but written well before that year. Nuñez’s
aim is to show the wonders algebra can perform. However, in the geometry section we find
statements like these (in total, Nuñez offers 77):
– If the side of a square is known, the area will also be known;
– if the sum of the diameter and the side is known, each of them will also be known;
– if the side and the diameter and the area joined together, each of them will be known;
– if the product of the diameter and the area of the square is known, each of them will be known;
– if one of the sides [of a rectangle] and the diameter are known, the area will be known;
– if the area [of a rectangle] is known, and the two sides containing a right angle joined in one

sum is known, each of the sides will be known;
– if the ratio of the two sides is known, and the magnitude of the diameter is known, or the ratio

of the diameter to one of the sides as well as the other side are known, each of the others will
be known;

– if the sides of a right triangle joined in one sum is known, and they are in [continued]
proportion [...], each of the three will be known;

– if the two sides of a triangle are known, and the ratio between the parts of the base where
the perpendicular falls is known, the base and the perpendicular and the area will be known;

– if the three sides of the triangle are known, and a circle is described which touches its three
sides, the semi-diameter of the circle will be known, and the parts of the sides divided by the
touching points, and the distances from the centre to the angles of the triangle will also be
known.

Only those about non-right triangles go beyond what we could find, for instance, in Abu Bakr’s
Liber mensurationum, translated by Gerard of Cremona 400 years earlier [ed. Busard 1968]. These
triangle problems, however, illlustrate why algebra might look as a promising tool already for
somebody like Viète with his aim to leave no problem unsolved (nullum non problema solvere,
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The algebra that was taken over was not directly that of the abbacus masters but
abbacus algebra as ordered and developed by Rudolff, Stifel and Cardano (and by Niccolò
Tartaglia, Pedro Nuñez, Simon Stevin and Christoph Clavius), and as it was also known
through French writers like Jacques Peletier and Guillaume Gosselin) – a creative synthesis
of the abbacus tradition with the meta-theoretical norms of high and late medieval
university mathematics.

Evidently, Viète’s famous reference to “a new art, or rather so old and so defiled
and polluted by barbarians that I have found it necessary to bring it into, and invent, a
completely new form” [Viète 1591: 2v] is in itself a Humanist confession. As demonstrated
by Regiomontanus, however, such confessions might be mere lip service.[621] The mere
wish to distinguish himself from the Arabs was certainly not what inspired Viète’s
reformulation of the whole discipline, at most what induced him to use the terms logistica,
analysis, zetetics and poristics – and it did not keep him from using also the term algebra
albeit nova, instead of inviting (like Jordanus) readers to discover. Such rhetoric
characterizes him as a scholar of Humanist constitution. But what caused his mathematics
(and that of Descartes and Fermat, and of others who did not contribute to the reshaping
of algebra) to be Humanist, or rather post-Humanist, was their participation in an endeavour
made possible (and next to compulsory for active theoretical mathematicians) by that
relatively full access to the best ancient mathematicians that had been provided by 16th-
century Humanism.

I shall not undertake a detailed analysis of the aims and the novelties of Viète’s and
Descartes’ algebra – I would not be able to add anything of importance to Richard
Witmer’s “Translator’s Introduction” [1983] nor to [Bos 2001] (to name but these two).
As an argument that the reformulation of the discipline was really needed for the post-
Humanist mathematical project, and instead of drowning myself in a study of Fermat,
I shall point to an episode that took place a small decade after the publication of Descartes’
Geometrie. In 1645–46, the adolescent Huygens studied mathematics under the guidance
of Frans van Schooten – during the same years editor of Viète’s Opera mathematica [van
Schooten 1646] and soon-to-be Latin translator of Descartes’ Geometrie [Descartes 1649].
Vol. 11 of Huygens’ Oeuvres contains a number of problems he investigated in this period
by means of Cartesian algebra, many of which deal with matters inspired by Archimedes
and Apollonios [Huygens 1908: 27–60]. Another sequence of problems (pp. 217–275),
dated around 1650, is derived in part from Pappos. It is difficult to imagine that they could
have been efficiently dealt with by algebraic notations in Cardano’s or Stifel’s style.

The total recomposition of mathematics brought about by the new (double) analysis
may not have been totally comprehended at the time – cf. [Malet 2005]. How it was soon

[1591: 9r]), and which indeed was to allow him to go far beyond what Nuñez had done.

621 Actually, Clavius [1608: 4] quotes Regiomontanus’ ascription to Diophantos as more verisimilar
than the belief that the art be Arabic. But what is found in his book is quite in Stifel’s style.
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to be seen, however, is well illustrated by this excerpt from Jean-Pierre de Crouzas’ preface
to his Traite de l’algebre [1726: á iiiv]:

Algebra is of so great utility in the rest of the mathematics; by its help one solves
geometric problems with so much facility; the calculations one needs in physics, and their
demonstration, are made by its help in such a brief and such a short way, that one has
to know it and grasp how to use it.

Before the discovery of differential calculus, [algebra] was considered almost the
last effort of the human mind. There has even been a time where this study was held to
be dangerous, and where it was counted as secure proof of a good head to have succeeded
in it without being troubled, and without the reason being damaged by it.

Abbacus algebra, filtered through Cardano, Stifel and others, provided the material
for the emergence of the “new algebra” of the 17th century, the first branch of the new
analysis – and soon, after further interaction with natural philosophy, for the creation of
the second branch, infinitesimal analysis. But it could only do so when applied in a context
where problems were taken from or inspired by what was found in Archimedes, Apollonios
and Pappos. Works like Marten Wilken’s Flores algebraici, das ist Algebra oder Coss
mit schönen ausserlesenen künstlichen theils resolvirten new erfundenen Quaestionen und
Exemplen [1622] exemplify what mathematically ambitious authors would bring forth
in the earlier 17th century in situations where this context was lacking; on his title page,
Wilken presents himself as “Rechenmeister in Emden” and his high point is a large
collection of higher-degree algebraic problems that can be solved by cossam quadratam.
As scores of Rechenbuch authors before him, Wilken competes on the book market by
claiming that “such things have never been seen before”.

The context of intellectual competition based on problems inspired by Archimedes,
Apollonios and Pappos, finally, had materialized only when (a small current within)
Humanism had taken care to make the ancient mathematical texts accessible and
interesting.

All in all, Zilsel’s general thesis appears to receive unexpected and uninvited support
from the creation of the new algebra and analysis, the central constituents of the
transformed mathematical undertaking – first in mathematical practice but at least with
d’Alembert’s generation also in ideology. In this ménage à trois, all were fathers, mothers
and midwives simultaneously, nobody was a mere bystander.
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Rashed, Roshdi (ed., trans.), 2007. Al-Khwārizmı̄, Le Commencement de l’algèbre. (Collections

Sciences dans l’histoire). Paris: Blanchard.
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al-Uqlı̄disı̄ written in Damascus in the Year 341 (A.D. 952/53). Translated and Annotated.
Dordrecht: Reidel.

Salomone, Lucia (ed.), 1982. Mo Benedetto da Firenze, La reghola de algebra amuchabale dal
Codice L.IV.21 della Biblioteca Comunale de Siena. (Quaderni del Centro Studi della
Matematica Medioevale, 2). Siena: Servizio Editoriale dell’Università di Siena.



– 426 –

Salomone, Lucia (ed.), 1984. Leonardo Pisano, E’ chasi della terza parte del XV Capitolo del Liber

Abaci della trascelta a cura di Maestro Benedetto secondo la lezione del Codice L.IV.21 (sec.
XV) della Biblioteca Comunale di Siena. (Quaderni del Centro Studi della Matematica
Medioevale, 10). Siena: Servizio Editoriale dell’Università di Siena.

Sammarchi, Eleonora, 2019. “Les collections de problèmes algèbriques dans le Qistās al-mu ādala
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et traduit. Tunis: L’Université de Tunis.
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Chuquet, Triparty: 343n, 377
Clavius, Algebra: 405
Columbia algorism: 46, 155, 162, 166, 174, 175, 191, 394
Commentary to Elements X, anonymous: 59n, 119
Craft of Nombrynge: 11
Dardi of Pisa, Aliabraa argibra: 204, 211, 220, 384, 395
De arismetica: 75n
De la Roche, Larismethique: 377
De’ Danti, Tractato de l’algorisimo: 9n, 64
Descartes, Discours de la Methode: 405
Descartes, La geometrie: 405
Diophantos, Arithmetic: 82, 189
Dixit algorismi: 55
Epaphroditas et Vitruvius Rufus: 194n
Euclid, Elements: 115, 118, 120, 121, 124, 190, 265
Euclid, Elements, Campanus version: 129n, 275n, 302, 302n, 303, 329n
Euclid, Elements, from the Greek: 107, 119, 122
Euclid, Elements, Latin translations: 265
Euclid, Elements, Zamberti’s: 400
Fibonacci, Flos: 58n, 84n, 96, 97, 128, 226, 314n
Fibonacci, Liber abbaci: v, 25, 25n, 36n, 37, 41, 56, 165, 173n, 175, 177, 179, 186, 190,

191, 195, 196, 226, 247, 250, 257, 262n, 264, 265, 279, 294, 295n, 298n, 304,
305, 380, 390, 392n

Fibonacci, Liber quadratorum: 58n, 135, 312, 314n, 325
Fibonacci, Pratica geometrie: v, 34, 59, 72n, 137, 166, 281n, 281, 306
Gemma Frisius, Arithmeticae practicae methodus facilis: 379, 413
Geometria incerti auctoris: 371, 404
Geometria incerti auctoris: 40
Gerard of Cremona, translation of al-Khwārizmı̄: 138n, 139n, 142n, 274n, 274, 308, 389,

390
“German Algebra”: 215n, 355
Ghaligai contract: 5
Ghaligai, Summa de arithmetica: 6, 308, 324, 327, 401
Gherardi, Libro di ragioni: 34n, 41n, 46, 172n, 191, 197, 198, 199-201, 206n, 221, 384
Gilio da Siena, Questioni d’algebra: 209, 313
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Giorgio Martini, Praticha di gieometria: 35n
Giovanni di Davizzo, Fragment: 201, 213, 214, 384
Gleydtsmann, Künstliches Rechenbuch: 348n, 368, 369n
Grammateus, Ayn new kunstlich Buech: 366, 374
Greek Anthology XIV: 194
Heron, Dioptra: 123n
Heron, Metrica: 123n
Ibn al-Bannā , Talkhı̄s: 110
Initius Algebras: 373
Istratti di ragioni: 262n, 263n, 384
Jacob, Ein neu und Wolgegründt Rechenbuch: 369n, 371, 372
Jacopo, Tractatus algorismi: 2, 8, 55, 75, 77, 162, 164, 166, 167, 175, 177, 181, 193, 195,

197, 200, 211, 218, 221, 222, 224, 225, 263, 333, 384, 385, 387, 394
Jean de Murs, De arte mensurandi: 116n
Jean de Murs, Quadripartitum numerorum: 352, 396
John of Salisbury, Metalogicon: 10n
John of Spain, Liber algorismi: 61
Jordanus, De numeris datis: 338, 391, 396
Jordanus, De elementis arithmetice artis: 370, 391n
Klein, Elementarmathematik vom höheren Standpunkt aus: 61
Köbel, Ain new geordnet Rechenbiechlin: 368
Köbel, Ein new geordenet Künstlich Rechenbüchlin: 369n
Köbel, Rechenbuch Auff Linien und Ziffern: 367
Larte de labbacho: 2, 319
“Latin Algebra”: 355, 360
Leacock, Stephen, “A, B and C”: 346, 346n
Lefèvre d’Étaples, In hoc opere contenta: 401
Liber algorismi: 389
Liber augmenti et diminutionis: 81
Liber habaci: 17n, 24n, 35, 46, 56, 155, 173
Liber mahameleth: 40, 61, 66, 81, 84n, 116, 117n, 131, 132n, 144, 176, 189, 190, 279,

389, 396n
Liber restauracionis: 308
Libro d’abaco, Lucca: 168n, 198, 206n, 214, 222
Libro de arismética que es dicho alguarismo: 169-172, 172n, 176
Libro de conti e mercatanzie: 30, 219n, 234n, 349n
Libro di ragioni, Pisan: 155, 158, 166, 167, 173n, 175, 394
Livero de l’abbecho: 17n, 155, 165, 167n, 172n, 174, 175, 191, 394
Mahāvı̄ra, Ganita-Sāra-Sangraha: 46
Maurolico, Demonstratio algebrae: 404
Maurolico, Illustrissimo Ac Reverendissimo Domino: 401n
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Maurolico, Illustrissimo Domino D. Ioanni Vegae: 401n
Mohammad ibn Ayyūb al-Tabarı̄’s Miftāh al-mu āmalāt: 97
Muscharello, Algorismus: 168n, 209, 320
Nefe 1565, Arithmetica: 368, 369n
Nicomachos, Introduction of Arithmetic: 130
Nine Chapters on Arithmetic: 23n, 108, 109
Nuñez, Libro de algebra en arithmetica y geometria: 381, 405n
Ober, Newgestelt Rechenbüchlin: 348n, 368, 369n
Oresme, Algorismus proportionum: 392n
Oresme, De proportionibus proportionum: 392n
Oresme, Tractatus de commensurabilitate: 392n
Ottoboniano Praticha: 81n, 226n, 230n, 245, 245n, 246, 247, 299n, 300n, 329n, 380
Ottoboniano Praticha de geometria: 247n, 280, 281n
Pacioli, Divina proportione: 399
Pacioli, Perugia manuscript: 168n, 327, 341n
Pacioli, Summa de Arithmetica ...: v, 14n, 17n, 117, 128n, 173n, 245, 314, 319, 319n, 327,

376, 399
Palatino Praticha d’arismetricha: 20n, 81n, 117n, 128n, 226, 235n, 245, 245n, 245, 245n,

246, 247, 299n, 300n, 316, 380, 398
Pamiers Algorism: 176, 177
Paolo dell’abbacho, Regoluzze: 191n, 316n
Pappos, Collectio: 130
Pappos, commentary to Elements X: 126n
Pegolotti, Pratica de mercatura: 166
Peletier, L’algebre: 381, 403
Pellos, Compendion: 176, 179
Petrarca, Lettere senili: 403n
Peurbach, Algorithmus: 370n
Piero, Trattato d’abbaco: 7, 209, 319n
Pisa curricukum description: 5, 14, 166
Planudes, Calculus according to the Indians: 91n
Pratike de geometrie: 40, 41n
Primo amastramento de l’arte de la geometria: 158, 174
Propositiones ad acuendos iuvenes: 32n, 40, 100, 347
Ps-Varro, Fragmentum geometriae: 194n
Qustā ibn Lūqā, On the Calculation with Two Errors: 109, 110
Ramus, Scholarum mathematicarum libri unus et triginta: 403n
“Regensburg Practica”: 349
Regiomontanus, De triangulis: 351, 352, 390, 400
Regiomontanus, Padua lecture: 392, 399
Regiomontanus, prospectus: 396, 397
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Regiomontanus, “Rechenbuch”: 249n
Regule dela cose secundum 6 capitula: 348
Reriomontanus, Bianchini correspondence: 350
Rhind Mathematical Papyrus: 104
Ries, First Rechenbuch: 367
Ries, Second Rechenbuch: 367
Ries, Third Rechenbuch: 367
Robert of Chester, translation of al-Khwārizmı̄: 345n, 354, 389
Roman Law, Digesta: 23
Rudolff, Coss: 17n, 370, 373, 375
Sacrobosco, Algorismus vulgaris: 9, 11, 14n, 362
Santcliment, Suma de la art de arismetica: 176, 178
Scheubel, Euclidis Megarensis Sex libri priores, ... Algebrae porro regulae: 381
Schulz, Arithmetica Oder Rechenbuch: 348n, 374
Stifel, Arithmetica integra: 370, 378, 402
Stifel, Deutsche Arithmetica: 368, 375, 375n
Stifel, Die Coss Christoffs Rudolffs: 375
Stifel, Rechenbuch von der Welschen und Deutschen Practick: 368, 375
Suàn shù shū: 23n
Tagliente, Libro de abbaco: 163n, 173n, 322
Thierfelder, Arithmetica oder Rechenbuch: 370
Thomas Aquinas, Summa theologiae: 335n
“Toledan regule”: 61, 176, 389, 396n
Tommaso della Gazzaia, Praticha di geometria: 35n
Trabeth, Compendium arithmedicae: 368
Traicté de la praticque d’algorisme: 176, 177
Tratato sopra l’arte arismetricha, Florence: 182, 182n, 236, 255, 256n, 256, 276n, 278,

316, 330, 375, 379, 395, 402
Trattato dell’alcibra amuchabile: 220, 385
“Trento algorism”: 174n, 362, 363
Tutta l’arte dell’abacho: 12, 41n, 191, 196, 199-201, 215
Ulman and Thierfelder, Ein New Künstlich Rechenbuch: 348n, 372
Valla, De expetendis et fugiendis rebus: 400
Vesalius, De fabrica humanis corporis: 402
Viète, In artem analyticem isagoge: 406
Villani, Cronica: 4
Weber, Ein New Künstlich und Wolgegründt Rechenbuch: 348n, 369, 372
Weber, Gerechnet Rechenbüchlein: 368n
Widmann, Behende und hubsche Rechenung auff allen kauffmannschafft: 365, 369
Wilken, Flores algebraici: 407
Wolack, Lecture: 345, 400



– 438 –

Manuscripts referred to as such

BM 85196: 132
Dresden, C80: 354, 360, 361
Florence, Biblioteca Nazionale Centrale, Palatino 575: 209, 219n, 220, 280, 314
Florence, Biblioteca Nazionale Centrale, Palatino 577: 314
Modena, Biblioteca Estense, Ital. 578: 356n, 359n
Munich, Clm 1696: 373
Munich, Clm 14111: 349n
Munich, Clm 14783: 346n
Munich, Clm 14908: 347n, 348
Munich, Clm 26639: 42n, 366
Paris, Bibliothèque Nationale de Paris, Latin 151: 81n
New York, Columbia University, Plimpton 188: 351
Vatican, Vat. lat. 10488: 4
Venice, Biblioteca Nazionale Marciana, fondo antico: 249n
Vienna, Pal. 5277: 359



Name and subject index

“24 rules”
in early German algebra 356, 357,

360
in Widmann’s algebra lecture 361
made fun of by Rudolff 370n

a-b-c vs. a-b-g-diagrams 80n, 86n,
108n, 118, 128, 130, 132, 136

Abbacus
meaning 1
meaning to Fibonacci 59, 60, 77

Abbacus algebra
14th-c. beginning 394
14th-century development

summarized 243, 395
absence of geometric proofs 210
addresses (pretended) business

problems 210, 278
algebraic parenthesis 215, 305
composite interest 186, 218, 222,

235, 240
division by binomials 186, 195
exploration higher-degree problems

241, 275
incipient symbolic operations 210,

316
multiplication and division of

powers 201, 317
problems involving radicals 196,

216
root replaced by thing 210
roots, powers and products of real

money 186, 201, 222, 239,
278, 395

rules defined for non-normalized
cases 188, 210

rules with restricted validity 209,
218

unknown numbers in given ratio
185, 186, 196, 208, 217, 222,

311
unknowns are not variables 184n

Abbacus books 6, 393
first generation 155
recycled introductions 9n
supposedly derived from the Liber

abbaci 55
Abbacus encyclopedias, Florentine 245

algebra 273
borrowings from earlier abbacus

masters 277n, 277
borrowings from Fibonacci 247,

250, 251, 254, 257, 259,
260-265, 267, 267n, 269, 270,
271, 277, 285, 302, 312, 315

commercial matters 251
do not represent general abbacus

culture 315
influenced by Humanist culture

315
little creativity outside traditional

abbacus-mathematics domain
316

magisterial aspirations 315
rambling cases 251, 261, 299,

299n
roots and binomials 267
their vernacular version of

al-Khwarizmi 273, 274, 306
traditions juxtaposed without

synthesis 317
written for powerful patron-friends

246, 282
Abbacus geometry

in Jacopo’s Tractatus 34
in Ottoboniano Praticha 279
in Palatino Praticha 279
no creative concern 281, 344

Abbacus in print
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coffee-table-book type 324
the basic level 319, 324
the high level 324
the intermediate level 320, 324
the role of Venice 322

Abbacus masters also engaged in urban
surveying 60n

Abbacus masters also teaching
astrology 212n

Abbacus mathematics
aim to expand knowledge 387
algebra a prestige but marginal

topic 384
answers mostly exact, not

approximate 385
expected to give true answers 385
generally reasoned 385
norms not quite different from

those governing theoretical
mathematics 387

proofs of procedure 385
roundings seen as leaving the

controlled domain 385
subtractive numbers 230n, 269n
the object supposed to be coherent

385, 386
“axioms” 35, 384

Abbacus school 1, 4
assistants 4, 6
curriculum 393
earliest evidence 4
Florentine curriculum 5
geography 1, 4
interaction with university

mathematics 199, 211
Pisa curriculum 5
ragioni 6
using Hindu-Arabic numerals 1

Abbacus schools
financed by city communes 4
private 4

students 4
Abbacus teaching a liberal profession

386
“anything goes if it goes” 386

Abbacus-type mathematics accepted as
fitting for arts-faculty teaching
345

Abū Kāmil 84n, 100, 102, 144, 145,
151, 151n, 153, 278

Accounting 60, 343, 374
Actors in problems

identified by letters 320n, 346,
350

identified by names 320
Addition and subtraction

in Liber abbaci 65
Additional explanations in Liber abbaci

79, 86, 101, 123, 136, 144
Agricola, Georg 402
Al-Andalus as plausible source for

Fibonacci 92, 93n, 104, 111,
115, 131, 391

Al-Fārābı̄, Catalogue of the Sciences

61
Al-Zanjānı̄ 114n
Alberti, Leon Battista 315, 327, 344,

400
Alcibra amuchabile 220

24 algebraic cases 221
41 solved problems 222
cases with Gherardi counterpart

222
copies Jacopo’s cases faithfully

222
diagrams for arithmetic of

binomials 220
formal fractions explained 223
structure 220

Alcuin 100, 347
Alexander, Andreas 373

author of a Latin and perhaps a
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German algebra 373
presents the same 8 basic cases as

373
Algebra

prestige within abbacus culture
273, 339, 340

Algebra et almuchabala 81, 138
inverted in explanations 138

Algebra in Jacopo’s Tractatus 182,
394

earliest extant abbacus algebra
182

examples for first and second
degree 184

pretended commercial questions
186

the lost inital sheet 183
the rules 183
third- and fourth-degree rules 187

Algebra in Liber abbaci 137, 390
Abū Kāmil as indirect source 150
Arabic use of coin names as

unknowns misunderstood 153
circumvention of irrational

coefficients 147
higher-degree problems 151
no influence on abbacus algebra

153
no systematic progression 145,

153
problem clusters adopted together

145
the al-Khwārizmı̄ cluster 145
the avere cluster 146, 390
the divided-amount cluster 149
the proofs 142
the questions 143

Algebra, al-Khwārizmı̄’s 138
“Algebra”, meaning within the book 2
Algebraic abbreviations explained by

Benedetto 310

Algebraic parenthesis 215
Algebraic writings in Clm 14908 348
Algorismus, false etymologies 11
“Algorithm”, meaning 1500-1900 17n
Algorithm concept, in general not

applicable to abbacus
mathematics 266n

Aliquot parts in Liber abbaci 69
Byzantine inspiration 69, 105

All-less-one problems
in Liber abbaci 94, 112n, 287
in Stifel’s Arithmetica integra 379
in the Florentine encyclopedias

256
Alligation principle 5n, 52, 75
Alloying

in Jacopo’s Tractatus 30, 51
in Pisa Libro di ragioni 165
used as general model 111

Amann, Friedrich 347n, 348, 350
algebra manuscript 348
collector of algebraic manuscripts

350
his algebra not inspired by

Regiomontanus 353
Antonio de’ Mazzinghi 117n, 206n,

226, 227, 236, 237, 237n, 245,
249, 255, 274n, 274, 277,
277n, 284, 314, 328, 332, 336,
380, 387, 392n, 395, 398, 399

compound interest with different
periods 235

distorted “concrete” problems 73n,
235

first tables of compound interest
226, 263

gradually developed use of two
algebraic unknowns 228

his Fioretti a work in progress
227, 234n

his Gran Trattato 226, 272n, 303
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incipient algebraic symbolization
230n

symbol for universal root 216n,
232n

Antonio de’ Mazzinghi’s Fioretti

mirabile dictum about continued
proportions 228, 333

Approximations beyond abbacus style
in the Florentine abbacus
encyclopedias 270

Arabic algebraic terminology
transcribed and explained 307

Archimedean approximation to π,
axiomatic status 34, 384

Arithmetic of mixed numbers in Liber
abbaci 68, 69

Arithmetic of polynomials in schemes
238

Arithmós as unknown number 82
Arrighi, Gino 2
Asamm 67n
Ascending continued fractions 66

Fibonacci’s use 66
generalized to metrology etc. 167,

355
in Columbia algorism 167
misunderstood in Livero de

l’abbecho 156
Augmentation and diminution 107, 111
Bachet’s weight problem 97, 335
“Bamberger block book”

dominated by rule of three 363
exclusively based on Hindu-Arabic

numerals 363
“Bamberger Rechenbuch”

biblical, not Boethian justification
363

exclusively based on Hindu-Arabic
numerals 363

full algorism 364
hardly a commercial success 365

Italian material restricted to the
practical 364

Barter in Liber abbaci 72
Bejaïa 59
Benedetto da Firenze 282

algebra rules 206n
philological care 205, 207, 227,

282, 283
Benedetto’s Praticha

36 algebraic cases and appurtenant
problems 206n, 310

algebraic cases in abbacus style
311

analogue to Fibonacci’s keys
directly from Campanus 302

chatain used about Fibonacci’s
“rule of proportion” 284

copying Antonio’s Fioretti 312
description of contents 282
discussion of proper and particular

roots 306
drawing upon Campanus Elements

302, 303
extracts from Giovanni di Bartolo

312
Fibonacci corrected 288
Fibonacci problems often solved in

new way 285, 288
finding of two mean proportionals

306
increasing precision of language

305
its abbacus historiography 312
main stated references Fibonacci

and abbacus writers 282
modo recto a preferred tool 285
proper roots and continued

proportions 306
references to university

mathematics 282
relation to Liber abbaci ch. 14
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304, 305
reporting Fibonacci’s Liber

quadratorum 312
Riddles 302
roots 303
rule of chatain proper 286
theoretical arithmetic 283

Bernard of Chartres 10
Bessarion 400
Biagio il vecchio 204, 218, 219n, 219,

240, 243
algebra questions 206, 207n, 311
algebra rules 206
algebraic abbreviations 208
distorted “concrete” problems 208
number problems 207

Binomials and apotomes
classification 120, 124
in Liber abbaci 120-124, 126
their arithmetic 119, 203
their roots 126

Boccaccio, Giovanni 396
Boethian classification of ratios 249,

377
Boethius 77n, 212, 248, 248n, 283,

315, 328, 341n, 404
in namesdropping 10, 331

Boethius’s Arithmetica and De musica

loosing ground afte 404
Bombelli, Rafael 2, 381, 401
Borgi’s Opera de arithmetica

complex partnership problems 321
more in depth than “Treviso

arithmetic” 320
multiple reprints until 1572 320
rule of three in unusual terms 321
triple-nested double false position

321
Borgo Sansepolcro: 327
Bürgi, Jost 235
Buteo, Johannes 299, 381, 403

Calandri, Filippo 324
Calandri’s De arithmetricha opuscula

originally written ca 1465 324n
Calculations on line abacus 362
Campanus de Novara 392

impossible ascription of an algebra
359

“Campanus’s book about algebra” 359
Canacci, Raffaele 307, 326n
Carat, origin and meanings 48n
Cardano, Girolamo 243, 379, 381, 399,

401
Castilian master and barter in Liber

abbaci 72
Casting out nines or sevens 14, 14n,

164, 319, 321, 322, 329, 364
Cegia, Domenico d’Agostino 245,

247n, 248, 250, 254n, 255,
256, 259n, 261n, 265, 277n,
280n, 325

incluence on Florentine abbacus
encyclopedias 316

Census, the double role 141
Challenges 82, 105, 252, 252n, 301n,

386
appurtenant norm system 84n

Champagne fairs 28
Chess-board problem

Abū Kāmil’s paraphrase of
al-Khwārizmı̄ 102

antecedents 100
in Arabic mathematics 102
in Benedetto’s Praticha 285
in Liber abbaci 100
in the Florentine abbacus

encyclopedias 263
Chest problem 32, 135
Chinese box problems 27, 90, 104, 165
Chinese Remainder Theorem

Byzantine version 261n
in Arabic mathematics 93
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in Liber abbaci 92
in the Florentine abbacus

encyclopedias 261, 300
Chuquet, Nicolas v, 343n
Circle computation

in Jacopo’s Tractatus 34, 38
Provençal primacy of the diameter

35, 42
Clavius, Christopher 406n
“Closest root” 36, 38, 46, 174, 193,

385
Cloth-cutting problems 31, 42, 135
Coin list, Jacopo’s 48, 50
“Columbia algorism” 166

ascending continued fractions 167
date 166
Iberian connections 169, 180, 394
probably written in Cortona 166
rule of three 167

Columella 400
Column in well 40, 279
Combined works 24, 80

cask filled or emptied 24n, 165
in the Florentine encyclopedias

253, 257, 289
ship with several sails 24

Commandino, Federico 403
Competitions between abbacus teachers

7, 386
Computus 173, 320
Conclusiones seu evidentiae

Pacioli’s 117n
Congruous numbers 313

abbacus interest after Fibonacci
313

in Pacioli’s Summa 328, 339
Constantinople

coupling to bezants in Liber abbaci

82, 105, 134, 172n
problems proposed to Fibonacci

69, 82

Contentio and solidatio

in Liber abbaci 115, 116, 138,
390

in Pacioli’s Summa 128n
Continued proportion

in abbacus books 217n
in Liber abbaci 77n, 86, 129

Continued proportions
in Antonio’s Fioretti 235

Counterfactual calculations 19, 77, 194
in Pacioli’s Summa 334

Counterfactual formulation of the rule
of three 77, 78, 168, 319

impossible in Arabic 179n
Cube root with addition 240, 240n,

276
Cube root with detraction 276, 276n
Cube roots

in Liber abbaci 127
in the Florentine abbacus

encyclopedias 271, 305
Cumulatitivy of knowledge 10
Dardi da Pisa 211, 355n
Dardi’s Aliabraa argibra

194 regular 216
4 irregular cases 217
afterlife of irregular cases 219
algebraic abbreviations 215
arithmetic of roots 212
Dardi’s Aliabraa

argibra|quasi-fractional
notation for monomials 215

diagrams for arithmetic of
binomials 213

explicit coefficient concept 217
irregular cases not his invention

219, 386
mixed basic cases with geometric

proofs 214
six basic cases in “abbacus order

214
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structure 211
sum of roots simplified 214

de Crouzas, Jean-Pierre 407
de la Roche, Étienne 343n
“Deaf quantities” 341, 342
Dedication, meaning in manuscript

culture 314n
Default understanding in mathematical

thought 37
Denominator understood as

denomination 167, 215, 355
Descartes, René 377, 405

learned algebra from Clavius’s
Algebra 405

Dietrich von Freiberg 10n
Diffusion cum local justification 111
Diophantine apple problem 99
Diophantos 399, 399n, 404
Discounting

by iteration 30
in Jacopo’s Tractatus 30
in the Florentine abbacus

encyclopedias 263, 264
Divided-amount problems 149, 195,

222, 223, 278, 350
Divinations

in Liber abbaci 100
in Tagliente’s Libro dabaco 323
in the Florentine abbacus

encyclopedias 263, 284
Divine invocations 54, 272n
Division

a danda 14
a regolo 14
in Liber abbaci 66

Doliometry 199, 279, 366
and two mean proportionals 374
in Rechenmeister mathematics

199n
Domenico Bragadin 327
Double false position 5n, 27, 60

Fibonacci’s proofs 107
in Liber abbaci 106, 111
in Pacioli’s Summa 337
in the Maghreb 110
in the Nine Chapters 108
nested 113, 286, 321
Qustā ibn Lūqā’s proofs 109
spoken of as “adjusting” by

Gherardi 194
Double-entry bookkeeping 343
Dragma as unit for numbers 141
Dress not taken seriously 37, 39, 80
Duns Scotus 10n
Duplex cubus 276, 348n
Elchatayn

etymology 106n
particular usage of the Florentine

encyclopedia 250, 284
regular usage the Florentine

encyclopedias 265
Elements II

use in Benedetto’s Praticha 302
Elements X

glossed upon by Fibonacci 128
in Stifel’s Arithmetica integra 378
in the Florentine abbacus

encyclopedias 268, 303
interpreted by Pacioli 128n
low-level interest among abbacus

masters 275
presented by Fibonacci 119

Euclid 118n, 247n, 248, 265n, 275,
283, 302, 320, 328, 333n, 378

referred to by Fibonacci 72n, 115,
119, 137

Euler, Leonhard 90, 91
“Evidences”, Pacioli’s, mostly

Euclidean 334, 338
Factorization

in Liber abbaci 67, 67n
termed ripiegho around 1460 in
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Florence 247
Faithful copying

in Liber abbaci 136, 137, 145
“Fallacious” or “oblique” sharing

in Lucca Libro d’abaco 199
in Pisa Libro di ragioni 162
in Trento algorism 363
in Wolack’s lecture 346

False rules
eliminated by printing 386n
for higher-degree algebraic cases

195, 276, 319n, 384, 386
in Gherardi 195
longevity 196

Fanfani, Amintore 2
Fermat, Pierre de 404
Fibonacci, Leonardo 55, 400

meeting with Frederick II 96, 128
no evidence he was a teacher 60n

Fibonacci’s Liber abbaci

ω-errors 58, 86
1202 version of chapter 12 58
a parallel to Liber mahameleth 61
added in 1228 77n, 80, 83, 84, 86,

87n, 112, 122n, 124, 128
avoidance of references to sources

137
date of versions 57
editions and translations 57
evidence for a “1228 cluster” 112,

112n, 121n
extant manuscripts 57
first attempt at synthesis 393
hardly read outside Italy before

mid-14th c. 391
incoherent structure of chapter 14

119, 121, 122
manuscript L 58, 77n, 78, 81, 83,

84, 86, 89, 96, 98, 101n, 102,
112

original prologue 58

use of existing Latin translations
116, 128

Fibonacci’s works “owned by many
Florentine citizens 227n, 247

Fictional loan documents as tool for
dating 158, 198n, 236, 245n,
284

Figurate numbers 249
in the Florentine encyclopedias

249, 284
misused as area measurements 41,

194n
Finger reckoning 173, 173n
Fish in parts 25
Florence 4, 5, 56, 246, 251, 324, 343
Florence encyclopedias 119n, 394, 398

limited ambition and reach of
synthesis 398

material and attitudes from
Humanism and university
mathematics 398

Florence, Biblioteca Nazionale
Centrale, Palatino 577 280

Florentine Tratato sopra l’arte

51 cases illustrating the 22 rules
238

arithmetic of polynomials in
schemes 238

change of “variable” 239
date 236
distorted “concrete” problems 239
miswriting shared with Biagio 240
not written by Antonio 236
polynomial transformations 241
the algebra 236
the “22 rules” 238
two unknowns coupled to double

false 241
Fondaco problems

and Pacioli’s “keys” 336, 342
in Florentine Tratato sopra l’arte
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239
in Jacopo’s Tractatus 188
pointing toward al-Andalus 190
solved by algebra by Pacioli 333
solved by means of a

proportionality factor 189
Formal fractions 195, 223, 241, 289

in Biagio 208
in German writings 349
Maghreb origin 195
misunderstood in abbacus books

349n
Fraction line 66
Fractions

in Jacopo’s Tractatus 14
left out by Tagliente 323

Fraud in abbacus mathematics
7, 386

Frederick II von Hohenstaufen 96,
128, 309, 309n, 313n, 314,
314n

Frederiksen, Frederik 366
Gemma Frisius, Rainer 371

false position applied to
homogeneous higher-degree
problems 371

Geometric arguments in Liber abbaci

79
Geometric growth or decrease in Liber

abbaci 104
Geometric problems

in Jacopo’s Tractatus 31, 34
of post-agrimensor origin 32, 40,

41, 194
Gerard of Cremona 389
German algebra from initial eclecticism

to maturation 361
“German Algebra” in Dresden C 80,

evidence of complex reception
355

Ghaligai, Francesco 6, 308, 324, 401

knows Benedetto’s work 325
Ghaligai’s Summa de arithmetica

abbreviations not used as symbols
326

algebraic cases with examples 326
borrowings from Giovanni del

Sodo 326
borrowings from Liber abbaci 326
Elements-X material from

Benedetto 326
Euclidean matters 325, 326
extracts from Liber quadratorum

325
no algebra problems about

numbers in given ratio 326
particular names and abbreviations

for powers 326
pure-number problems 325
quotes Guglielmo de Lunis 308
reference to Guglielmo de Lunis

326
similarities to the Florentine

encyclopedias 325
Gherardi, Paolo 46, 56, 173n, 191,

192-194, 197, 206n, 208, 222,
222n, 384

Gherardi’s Libro di ragioni 56
a listener’s report from 1327 192
algebra 193, 194
background shared with Jacopo

192
commercial matters 193
giomagria versus misura 194
number problems 192
roots and binomials 193

Ghubār numerals 12
Giorgio Martini 35n
Giovanni del Sodo 325, 401
Giovanni di Bartolo 212n, 255, 257n,

277, 277n, 278, 301n, 301
Giovanni di Bicci de’ Medici 275
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Giovanni di Davizzo 201, 387
algebra extract 201
algebra rules 204
multiplicative composition of

“roots” 203
roots as negative powers 202, 203,

384
Giovanni di Palermo 96, 128
Giuliano de’ Medici 324n
Giulio de’ Medici 324
Give-and-take problems 80, 113, 287

in the Florentine encyclopedias
254

non-linear 223, 255
Gleydtsmann, Georg 368, 369n
“Golden rule” 178, 345, 347, 364
“Golden section” 94, 94n
Grasping problem

in Arabic mathematics 96, 114
in Gherardi’s Libro di ragioni 194
in Liber abbaci 95
in the Florentine encyclopedias

257, 288
in the Flos 97

Gratia de’ Castellani 257, 257n, 257,
263

Guglielmo de Lunis 273, 306, 389
his algebra translation used by

Benedetto 309
his algebra translation used in the

Palatino Praticha 273
Gundisalvi, Domingo 61
Harmonic progressions in

Rechenmeister mathematics
369

Hindu-Arabic numerals taught in Liber

abbaci 63
Horse-purchase problems 86, 87, 112,

172n, 194, 241
in the Florentine encycopedias

260, 295

Humanist editions of Greek
mathematics 403

Hippocrates of Chios 35n
Huygens, Christiaan 406
“I have coin” 51, 75, 76, 165
Ibn al-Yāsamı̄n 12
Ibn Sı̄nā 59n
Impossible problems 86
Indeterminate problems 84, 84n, 96,

99
Indirect proofs no evidence of

background in philosophy
213n

Interest level in commercial practice
20

Interest, simple and compound
dealt with freely in abbacus

mathematics 20
in the Florentine abbacus

encyclopedias 263, 264, 284
Inverse rule of three 29n
Irrational coefficients

probably accepted by the source
for the avere cluster 153

tabooed 146, 146n
Irrational roots sometimes numbers,

sometimes not in Liber abbaci

119, 121, 124
Jacob, Simon 369n, 371

application and dismissal of double
false to mixed problems 371

Jacopo da Firenze 8, 181
Jacopo’s Tractatus algorismi

additional mixed problems in V

181, 190
M+F adapted to the school

curriculum 8, 181, 182
V close to the original version 8,

181, 222
V likely to reflect original version

182
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Jean de Murs 391, 396
Jean de Murs’ Quadripartitum

abbacus influence 397
striving for synthesis 397

Jean Paul 243
Jordanian circle 392
Jordanus de Nemore 370, 391
Jordanus de Nemore’s De numeris datis

reformulation of algebra as
demonstrative arithmetical
discipline 391

“Joseph game” 263, 263n, 302
Karpinski, Louis 2
Key-based second-degree calculations

in Liber abbaci 129-131, 134
”,“Keys” Fibonacci’s 115, 127, 129, 134

“Keys”, Pacioli’s 117, 333
created as tool for problem solut

337
Pacioli’s, not his own invention

336
Klein, Felix 61
Köbel, Jacob 367
Lagrange, Joseph-Louis 381
“Latin Algebra” in Dresden C 80

conditions for solvability 356
illustrating examplles for LA2 358
illustrations invented in German

area 359
link to “Robert-al-Khwārizmı̄”

356n
lists of cases 356-358
reduction of equations 356
systematic notation 355
systematic notation for powers

357, 358
Lawha 78n
“Lazy worker” in Jacopo’s Tractatus

26
Lefèvre d’Étaples, Jacques 367, 370,

401

Lenders supposed to be Jews in
Rechenbücher 348n

Leo in puteo 36n, 80, 133n, 170, 321
understood in the Florentine

encyclopedias 252, 300
Liber habaci 173

computus chapter 173
Florentine area metrology 173n
no knowledge of algebra 174
not by Paolo Gherardi 173n
rule of three 17n
uses Roman numerals 173

Liber mahameleth 176
Liber mensurationum 72n, 405n
Librettine maggiori 14
Librettine minori 14
Line abacus 362, 362n
Line-based quasi-algebra 80, 86
Livero de l’abbecho 155

alternative solutions mostly omitted
157

attempted faithful copying 157
claimed descent from Fibonacci

155
date 158
regula recta not understood 157
rule of three 17n
two levels 156, 394
uses a vernacular version of Liber

abbaci 156n
writing of mixed numbers 157

Loan amortized by rent 90, 264, 284
Lorenzo de’ Medici 4, 245
Luca di Matteo 277n, 277
Lucca Libro d’abaco

a collective work 198
algebra 199

Machiavelli, Niccolò 4
Magisterial ambitions of the Florentine

encyclopedias 248, 248n, 248
Magisterial ways, Fibonacci’s 26
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Māl 81
Marginal calculations 230n

Antonio’s 232
in the Florentine encyclopedias

245, 250, 284, 286
Marsuppini family 246
Masolo da Perugia 275
Master copies held by Fibonacci 58,

314n
Mathematical practice of abbacus

mathematics 384
Maurolico, Francesco 401, 403, 404
Means

ancient theory 130, 131n
Fibonacci’s investigation reflected

226, 272, 272n, 302
investigated in Liber abbaci 130
no active concern of abbacus

mathematics 272
“Measure” versus “geometry” 34
Medico-astrological naturalism 390
Meeting and pursuit problems

in Benedetto’s Praticha 287, 300n
in circle 193
in Jacopo’s Tractatus 24

Mersenne, Marin 404
Metamathematical commentaries in

Liber abbaci 82
Metrology for bullion and coins 48, 51
Michael Scotus 58, 314n
“Middle books” 390
Mixed problems in Jacopo’s Tractatus

22
Monetary system 28, 185, 222

lira-soldo-denaro 18n
Monetary-system problems 27
Motives for translating philosophical

and scientific works 390
Multiplication

a scacchiera 64
in Liber abbaci 64

Muscharello’s Algorismus 168n
Mu āmalāt calculation 60n
Names and abbreviations for powers in

German writings 348
Names for higher powers

based on embedding 330
based on multiplication 203, 225,

237
incipient embedding 235n, 237

Namesdropping, misleading 9, 10n
“Names”

our “powers” 120n, 212, 273
used by Antonio also about roots

233n
Negativity 86

accepted by Pacioli 340
emerging concept 304
explored by Stifel 381

“Nightmare, merchant’s” 88, 338
Nola 168n
Non-technical terminology 34, 37, 43n
Norm systems

conflicting 386
double-edged 386

Number problems in Benedetto’s
Praticha 300

Numerals, two variants 12
Nuñez, Pedro 381, 405n
Oppositione e ricuperatione 273
Ordinal numbers written like fractions

167
Oresme, Nicole 392
Ottoboniano geometry

not derived from Palatino 577
281n

representative of a whole family
280

Ottoboniano Praticha

algebra cases in abbacus order
275

explicit coefficient concept 277
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Fibonacci one among several
sources 247

higher algebraic cases 276
names for powers 273
problem and technique shared with

Regiomontanus 278
“Our vernacular” 77, 178
Pacioli, Luca 2, 319n, 327, 344, 398,

402
probably sincere believer 329
stays in Perugia 327
writings beyond the Summa and

Suis carissimis 327n
Pacioli’s Summa

2 unkowns in second-degree
problem 336

7 “marvels” 331
abbreviations for algebraic powers

330
accounting 343
accusations of plagiary 328n
algebra used before it is explained

336
algebraic abbreviations 340
algorism with extensions 329
alleged sources 328
apparent inspiration from Antonio

336, 336n
Aristotelian notions of justice 335
autobiographic note 330
badly understood metatheory 331
beginning in efficient synthesis

399
Boethian names for ratios first

explained 329n
dedication 327
Euclidean binomials and apotomes

340
figurate numbers dealt with briefly

329
general characterization 344

geometrical part drawn from
Fibonacci’s Pratica geometrie

328, 344
helcataym single as well as double

false 337
Humanist affinities 328
letters of exchange 341
listing of algebraic powers and

their products 340
mercantile matters 341
metamathematics in ancient style

328
nested double false position 338
Platonic bodies 328
possible and so far impossible

higher-degee cases 341
print run 327
problematic naming of roots 330
ratios and proportions 331
recreational classics 342
roots, normal and special 340
rule of three 17n, 330
rule of three and proportion theory

330
sacred and less sacred numerology

328
soccida contracts 341
systematic presentation of algebra

339
tariffa 343
theoretical arithmetic 328
three traditional means 331
two unknowns explained 341
two unknowns practised 342
use of Liber abbaci ch. 14 and 15

340
use of vernacular sources 328

Palatino and Ottoboniano Pratiche

based on shared model 246n,
247, 271

Paolo dell’Abbacho 204n, 316n
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Pappos 404
Partition theory 97
Partnership

as standard structure 22, 74, 87,
193, 257, 385

in Jacopo’s Tractatus 22, 190
in Liber abbaci 74
in Pisa Libro di ragioni 162
with different duration 191, 323

Partnership rule, mistaken use exposed
93, 261, 301

Peletier, Jacques 381, 403
Pentagon, fallacious area formula 41
Perfect numbers

in Ghaligai’s Summa de

arithmetica 325
in Liber abbaci 93
in the Florentine encyclopedias

249, 283
Regiomontanus’s list 249n

Petrarca, Francesco 396, 403
Peurbach, Georg 370n, 392
Piero della Francesca 7, 209, 327
Pirenne, Henri 2
Pisa Libro di ragioni 158

ascending continued fractions 160
borrowed problem clusters 163,

164, 165
date 159
dominated by the rule of three

161
metro-numerical tables 159
metrology 166
mistakes 165
misunderstands asamm as

factorization 160
no evidence for inspirations from

Liber abbaci 161
oriented toward what is

commercially useful 161
reflecting Maghreb habits 161,

166, 394
rules for divisibility 160

Place value system
explained by Jacopo 12

Plato of Tivoli 400n
“Pole against the wall” 132, 132n
Powers in continued proportion 235n,

236
Powers, division

Giovanni di Davizzo 202, 203
in Ottoboniano Praticha 274

Powers, multiplication and division
in Benedetto’s Praticha 310
in Ottoboniano Praticha 274
in Palatino Praticha 274

Problems central to scholarly
mathematics from c. 1580
onward 404

Products with more than three factors
123

Pronic root 209, 306
Proof using alternative method 32, 37
Proportion operations 129
Prossimana root 266n
Proto-abbacus community 26, 394
Ptolemy referred to by Fibonacci 72n
Pure-number problems

in Liber abbaci 83, 99, 136
in Pisa Libro di ragioni 163

Purse-finding problems 83, 84, 86,
112, 165, 241, 259, 289, 290,
295, 326, 342

in the Florentine encycopedias
259

Pythagorean rule
in Jacopo’s Tractatus 35, 37, 45,

46
in Liber abbaci 132

Pythagorean triples in Liber abbaci

134, 135n
Quantità as a synonym for “number
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206n, 207
Quantità di quantità 259
Quasi-fractional notation for monomials

215
Rabbit problem 94

antecedents 94n
likely Byzantine origin 98

Radice relata introduced by Antonio?
235n

Ragioni apostate 262, 301
encompass congruo-congruent

numbers 314
Rambling problems 90

in Liber abbaci 77, 112
Raniero Capocci 314
Ratdolt, Erhard 320
Ratio and proportion

in Liber abbaci 77, 78, 130, 131
in the Florentine encyclopedias

248, 248n, 248
Rational roots used as if they were

irrational 204, 214, 269, 271,
304

Reception of algebra, 12t–13th c. 389
Rechenmeister 2

attested in 1457 345
initially in South-German area 345
no competition by mathematical

challenges 364
Rechenmeister algebra or Coß to be

defined by Rudolff’s Coss
374, 387

Rechenmeister mathematics
beginnings outcome of multiple

exchanges 354, 355
Bergwerk Rechnung 369n
Double false position applied to

higher degrees 371
Faktor Rechnung 369
harmonic progressions a failed

discipline 369

precursors 354
separation of problems according

to ware 364, 365
tollet calculation disappearing 369
use of Roman numerals 367, 368
welsche Praktik survives 16th c

369
Rechenmeister mathematics, mature

366
a new mathematical culture

spreading to the whole
Germanic area 366

balance between line abacus and
paper calculation 367

broad adoption of line abacus and
welsche Praktik 366

line abbacus rarely presented
without paper calculation 368

Riga variant 366n
Rechenmeister tradition 3

books claimed to be new 373, 407
commercially competitive, not

agonistic 373
seminal role of university

mathematicians 372
social base in south-German

commerce 372
Rectangle computation in Jacopo’s

Tractatus 37, 39
Regel quantitatis

for Rudolph, completion of the
coss 377

name also used by de la Roche in
1520 377

Regensburg Practica 346
algebra barely included 348
borrowings from monastic

recreational culture 347
draws on the Italian tradition 347
lenders are supposed to be Jews

348
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mixed Italian and local locations
and currencies 347

shares source(s) with Wolack’s
lectur 347

Regiomontanus, Johannes 350, 392,
399, 406

algebraic knowledge 350
his algebra 400
linking university mathematic 399
marginal use of algebra in De

triangulis 351
no inventor of algebraic symbolism

353
prefers arithmetic and geometry

over algebra 352
Regolae Cosae vel Algebrae, Vienna

359
abbreviations as Dresden algebras

359
lists of cases 360
reduction of equations 360
rule of three for polynomials 360

Regula recta 80, 81, 84, 87
absorbed in algebra in later 15th c.

326n
called regula rei by Jean de Murs

396
handed down through teaching

tradition 82, 250
known to Fibonacci in 1202 83
possible ancient origin 82
with several unknowns 89, 113,

243, 259, 285, 288, 289, 290,
295

with symbolic calculations 259,
285, 316

with unknown quantità in the
Florentine encyclopedias 250,
255, 257, 284, 287

Regula versa 83, 89
Repeated travel with gain and expenses

88, 90, 164, 171
analogues 90

Repeated travels with constant profit
rate 134, 185, 187

Restauratio and oppositio 117n
Restoration additive as well as

subtractive in abbacus algebra
186n

Rhetorical quasi-algebra 85, 96, 258
probably used by Gratia de’ Cast

258
Richard de Fournival 392
Riemann’s ζ-function 370
Ries, Adam 367

copying Initius Algebras 373
Robert of Chester’s al-Khwārizmı̄,

appendix in
north-Italian/south-German
style 354

Roger Bacon 392
Roman numerals

in Liber habaci 173
in Rechenbücher 362, 367

Rompiasi family 327, 343
Root identified with thing 141
“Root names” for powers 236, 330,

355
claimed by Pacioli to be Arabic

330
Roots in the Florentine abbacus

encyclopedias 265
Roots of fractions and mixed numbers

in the Florentine abbacus
encyclopedias 266, 303

Roots of roots in Liber abbaci 123,
125

Rucellai family 245
Rudolff, Christoph 370, 370n, 387
Rudolff’s Coss

8 cases instead of 24 370n, 371
8 rules of the coß 377
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abbreviations adopted by Stifel and
Clavius (etc.) 377

algorism for roots and binomials
377

algorisms for integers and fractions
376

defining Rechenmeister algebra
375

examples for the rules 377
names and abbreviations for

powers 376
new augmented edition by Stifel in

1553 375
powers named by embedding 376
preceded by Heinrich Schreyber

374
reduction of equations 377
regel quantitatis 377
three unknowns but only two at a

time 378, 378n
“algorism of the coß” 376

Rule of five
in Liber abbaci 73

Rule of proportions, Fibonacci’s 86,
114

Rule of three
al-Khwārizmı̄’s formulation 180
alternatives 22, 198
applied to polynomials 360
called “golden rule” 178, 364
explained in Ottoboniano Praticha

248
Ibero-Provençal ways 176
in al-Karajı̄’s Kafi 70
in Jacopo’s Tractatus 17
in Liber abbaci 70
in Lucca Libro d’abaco 198
in Sanskrit mathematics 180
in the Pisa Libro di ragioni 161
in “Treviso arithmetic” 319
quasi-axiomati status 214, 384

standard formulation 17
“contrary” formulation 177, 178,

179
“mentioned” formulation 168,

319, 330
“similar” formulation 17n, 175,

323, 330, 362, 363
“Rule”, openended meaning in abbacus

culture 17
Savasorda 400
Scheubel, Johann 2, 381
Scholarly mathematics from c. 1580

onward
classification and solvability of

problems 404
communicative and agonistic 404
problems becoming central 404

School arithmetic 1
Schreib- und Rechenschule 345
Schreyber, Heinrich 366
Schreyber’s Ayn new kunstlich Buech

Coß a central interest 374
includes algebra, music and

book-keeping 374
powers identified by exponents

374
root extraction within the algebra

375
schemes for arithmetic of

polynomials 375
three reprints until 1572 374n

Scipione del Ferro 379, 401
Scuola di Rialto 327
“Second thing” 341
Series summation

in abbacus mathematics 222
in Benedetto’s Praticha 287
in Liber abbaci 77

Sfortunati, Giovanni 324
Sforza, Ludovico 399
Shortcuts
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in interest calculation 20
metrological 20

Sign rules
Dardi’s proof 213
in Giovanni di Davizzo 202
in Liber abbaci 125
in Pacioli’s Summa, close to Dardi

339
in the Florentine abbacus

encyclopedias 267
Sign rules for divisions 269, 304, 340
Single false position 5, 25

applied to higher degrees 79, 191
Fibonacci’s alternative 25
in Jacopo’s Tractatus V 191
in Tagliente’s Libro dabaco 323

Smith, David Eugene 2
Solomon and senno 11
Sombart, Werner 2
Square root

approximation from above 46
approximation from below 36, 44,

46, 193
geometric construction 118, 267,

303
in Liber abbaci 118, 121, 122,

124
in Liber habaci 174
in Primo amastramento 174
multiplicative method 118
second-order approximation 43,

44, 46, 118, 303
Square root explained 38
Stake-sharing for interrupted game

302, 302n
Stereometry

in Jacopo’s Tractatus 32, 40
in Pisa Libro di ragioni 165

Stiborius, Andreas 392
Stifel, Michael 2, 371, 375, 376, 387,

401, 402, 403

Stifel’s Arithmetica integra

borrows Rudolff’s symbolism 378
explores negative numbers

systematically 381
knows Cardano’s Practica

arithmetice 379
system for naming several

unknowns 379
Stroke, long, indicating equality or

confrontation 278, 279, 289,
290

Studia humanitatis 396
Symbolic algebraic calculations in the

Florentine encyclopedias 253,
260

Symbolic calculation with 4-5
unknowns

in Benedetto’s Praticha 290, 295,
296, 298, 316

not considered revolutionary by
Benedetto 295

seemingly never noticed 299
Tagliente, Giovanni Antonio 322n,

324n
Tagliente, Girolamo 322
Tagliente’s Libro dabaco

“abbacus mathematics made easy”
324

addressed to noblemen, citizens,
enlightened artisans 322

at least 30 reprints until 1586 322
fractions not dealt with 323
geometry in abbacus tradition 323

Tannstetter, Georg 393
Tariffa

in Lucca Libro d’abaco 199
in Tagliente’s Libro dabaco 323

Tartaglia, Nicolò 2, 381, 401-403
Thierfelder, Caspar 370, 372
Thing abbbreviated ρ 209n, 230n, 285,

310, 377n, 403
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in Biagio 208
Tollet calculation 29n, 364

adopted by German from Italian
merchants 364

early disappearance 369
Tommaso della Gazzaia 35n
Tozzetti, Giovanni Targioni 173n
Trabeth, Christian 368
Traders’ mathematics taken over by

“mathematicians” 111
Translation of Elements directly from

the Greek used by Fibonacci
108, 118n, 119, 137

Tree problems
in Liber abbaci 79, 112
in Pisa Libro di ragioni 162

“Trento algorism”
all numbers in words or Roman

numerals 362
author clerical or university

culture? 362
rule of three called regula ternari

362
“Treviso arithmetic” 319

meant for beginners 320
no publishing success 320

Tutta l’arte dell’abacho

algebra 197
not written by Paolo dell’Abbacho

191n
written in 1334 in Avignon(?) 196

Twin inheritance problem 23n
Chinese analogues 23n
in Digesta 23
in Florentine abbacus

encyclopedias 262, 301
in Jacopo’s Tractatus 23

Two-tower problem
in Liber abbaci 112, 132
simplified by Jacopo 45

Ulman, Oswald 372

Unit fractions in Liber abbaci 69
Unknown heritage

in Gherardi 193
in Jacopo’s Tractatus 190
in Liber abbaci 90
in the Florentine abbacus

encyclopedias 261, 300, 300n
in Wolack’s lecture 346
origin 91, 92
sophisticated versions 91

Usury prohibition and interest
calculation 20, 285

occasional qualms of conscience
20n, 284, 386

Valla, Giorgio 400
Valla, Lorenzo 402
Van Egmond, Warren 2
van Schooten, Frans 406
Venice 4, 211, 320, 322, 327, 343, 362
Vernacular vs. magistraliter in

Fibonacci 61, 77, 123
“Vernacular” ways in Palatino Praticha

248
Vesalius, Andreas 402
Viète, François 404, 405n, 406
Volume measured in area metrology

33, 40
Wagner, Ulrich 363

originally a merchant? 365
“We”, Fibonacci’s 26, 78, 78n, 394
Weber, Johann 369, 370, 372
Weight metrology 18n
Welsche Praktik 29, 364, 366, 369,

369n, 372
shaped as discipline within

Rechenmeister mathematics
369

Widmann, Johannes 354, 400, 403
a university scholar 361, 365
algebra lectures 361
owner and user of Dresden C 80
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362
Widmann’s Behende und hubsche

Rechenung 365
4 reprints until 1526 365
algorism of fractions, including

tollet 365
algorism referring to Sacrobosco

365
double false position 365
geometry translated from Latin

15th-c. manuscript 366
rule of three based on

proportionality 365
Wilken, Marten 407
William of Ockham 10n
Wolack, Gottfried 345, 400
Wool-washing problems 31
Zamberti, Bartolomeo 400
Zensus evidence of north-Italian

influence 348
Zilsel, Edgar 388

larger project 388
Zilsel thesis 388

applies well to the emergence of
the new algebra 407
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